
Computer Vision
MoSIG options GVR and UIS

James L. Crowley

Fall Semester 23 November 2017
Lesson 5

 Artificial Neural Networks, Back-Propagation and CNN

Lesson Outline:

1. Introduction...2

1.1. Key Equations ...2
1.2. Artificial Neural Networks ..2
1.3. The Artificial Neuron ..3
1.4. The Neural Network model ...5
1.5. Backpropagation..8
1.6. Summary of Backpropagation ...11

2. Convolutional Neural Networks. ...12
2.1. Fully connected Networks. ..12
2.2. Local and Stationary Signals ...13
2.3. What Window Size? ..13
2.4. Convolutional Neural Network for an image. ..14
2.5. Pooling ..16

3. AutoEncoders..17
3.1. The Sparsity Parameter..18
3.2. Kullback-Leibler Divergence...19
3.3. Examples of the Hidden Units given by Autoencoders20

 5-2

1. Introduction

1.1. Key Equations

 Feed Forward from Layer i to j:

!

aj
(l) = f wij

(l)ai
(l"1) +bj

(l)

i=1

N (l"1)

#
$

%
& &

'

(
))

 Feed Forward from Layer j to k:

!

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N (l)

"

$
% %

&

'
((

 Back Propagation from Layer j to i:

!

"i,m
(l#1) =

$f (zi
(l#1))

$zi
(l#1) wij

(l)" j,m
(l)

j=1

N (l)

%

 Back Propagation from Layer k to j:

!

" j,m
(l) =

#f (z j
(l))

#zj
(l) wjk

(l+1)"k ,m
(l+1)

k=1

N (l+1)

$

 Weight and Bias Corrections for layer j:

!

"wij,m
(l) = ai

(l#1)$ j ,m
(l)

!

"bj ,m
(l) = # j,m

(l)

 Network Update Formulas:

!

wij
(l) " wij

(l) #$ %&wij,m
(l)

!

bj
(l) " bj

(l) #$ %&bj ,m
(l)

1.2. Artificial Neural Networks

Artificial Neural Networks, also referred to as “Multi-layer Perceptrons”, are
computational structures composed a weighted sums of “neural” units. Each neural
unit is composed of a weighted sum of input units, followed by a non-linear decision
function.

Note that the term “neural” is misleading. The computational mechanism of a neural
network is only loosely inspired from neural biology. Neural networks do NOT
implement the same learning and recognition algorithms as biological systems.

The approach was first proposed by Warren McCullough and Walter Pitts in 1943 as
a possible universal computational model. During the 1950’s, Frank Rosenblatt
developed the idea to provide a trainable machine for pattern recognition, called a
Perceptron. The perceptron is an incremental learning algorithm for linear classifiers.
The first Perceptron, constructed in 1956, was a room-sized analog computer that
learned recognition functions. However, both the learning algorithm and the resulting
recognition algorithm are easily implemented as computer programs, and future
perceptrons were implemented as programs. .

 5-3

In 1969, Marvin Minsky and Seymour Papert of MIT published a book entitled
“Perceptrons”, that claimed to document the fundamental limitations of the
perceptron approach. Notably, they demonstrated that a one-level perceptron could
not be constructed to perform an “exclusive OR”.

In the 1970s, frustrations with the limits of Artificial Intelligence research based on
Symbolic Logic led a small community of researchers to explore the perceptron
based approach. In 1973, Steven Grossberg, showed that a two layered perceptron
could overcome the problems raised by Minsky and Papert, and solve many problems
that plagued symbolic AI. In 1975, Paul Werbos developed an algorithm referred to
as “Back-Propagation” that uses gradient descent to learn the parameters for
perceptrons from classification errors with training data.

During the 1980’s, Neural Networks went through a period of popularity with
researchers showing that Networks could be trained to provide simple solutions to
problems such as recognizing handwritten characters, recognizing spoken words, and
steering a car on a highway. However, results were overtaken by more
mathematically sound approaches for statistical pattern recognition such as support
vector machines and boosted learning.

In 1998, Yves LeCun showed that convolutional networks composed from many
layers could outperform other approaches for recognition problems. Unfortunately
such networks required extremely large amounts of data and computation. Around
2010, with the emergence of cloud computing combined with planetary-scale data,
training and using convolutional networks became practical. Since 2012, Deep
Networks have outperformed other approaches for recognition tasks common to
Computer Vision, Speech and Robotics. A rapidly growing research community
currently seeks to extend the application beyond recognition to generation of speech
and robot actions. Notably, just about any algorithm can be used to train a network,
often yielding a solution that executes faster.

1.3. The Artificial Neuron

The simplest possible neural network is composed of a single neuron.

A “neuron” is a computational unit that integrates information from a vector of
features,

!

!
X , to compute the likelihood of a hypothesis, hw,b()

!

a = h ! w ,b (
"
X)

The neuron is composed of a weighted sum of input values

 5-4

!

z = w1x1 +w2x2 + ...+wDxD +b

 followed by a non-linear “activation” function,

!

f (z) (sometimes written

!

"(z))

!

a = h ! w ,b (
"
X) = f (! w T

"
X + b)

Many different activation functions may be used.
A popular choice for activation function is the sigmoid:

!

f (z) =
1

1+ e"z

This function is useful because the derivative is:

!

df (z)
dz

= f (z)(1" f (z))

This gives a decision function: if

!

h ! w ,b (
"
X) > 0.5 POSITIVE else NEGATIVE

Other popular decision functions include the hyperbolic tangent and the softmax.

 The hyperbolic Tangent:

!

f (z) = tanh(z) =
ez " e"z

ez + e"z

The hyperbolic tangent is a rescaled form of sigmoid ranging over [-1,1]

We can also use the step function:

!

f (z) =
1 if z " 0
0 if z < 0

$
%

Or the sgn function:

!

f (z) =
1 if z " 0
#1 if z < 0
$
%
&

Plot of Sigmoid (red), Hyperbolic Tangent (Blue) and Step Function (Green)

 5-5

The softmax function is often used for multi-class networks. For K classes:

!

f (zk) =
ezk

ezk
k=1

K
"

The rectified linear function is popular for deep learning because of a trivial
derivative:

 Relu:

!

f (z) =max(0, z)

While Relu is discontinuous at z=0, for z > 0 :

!

df (z)
dz

=1

Note that the choice of decision function will determine the target variable “y” for
supervised learning.

1.4. The Neural Network model

A neural network is a multi-layer assembly of neurons. For example, this is a 2-layer
network:

The circles labeled +1 are the bias terms.
The circles on the left are the input terms. Some authors, notably in the Stanford
tutorials, refer to this as Level 1.

We will NOT refer to this as a level (or, if necessary, level L=0).
The rightmost circle is the output layer, also called L.
The circles in the middle are referred to as a “hidden layer”. In this example there is
a single hidden layer and the total number of layers is L=2.

The parameters carry a superscript, referring to their layer.

We will use the following notation:
L The number of layers (Layers of non-linear activations).
l The layer index. l ranges from 0 (input layer) to L (output layer)

 5-6

N(l) The number of units in layer l. N(0)=D

!

aj
(l) The activation output of the jth neuron of the lth layer.

!

wij
(l) The weight from the unit i of layer l-1 for the unit j of layer l.

!

bj
(l) The bias term for jth unit of the lth layer

f(z) A non-linear activation function, such as a sigmoid, tanh, or soft-max

For example:

!

a1
(2) is the activation output of the first neuron of the second layer.

!

W13
(2) is the weight for neuron 1 from the first level to neuron 3 in the second level.

The above network would be described by:

!

a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 +b1
(1))

!

a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 +b2
(1))

!

a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 +b3
(1))

!

h ! w ,b (
!
X) = a1

(2) = f (w11
(2)a1

(1) + w21
(2)a2

(1) + w31
(2)a3

(1) + b1
(2))

 This can be generalized to multiple layers. For example:

!

!
h (
!
X m) is the vector of network outputs (one for each class).

Each unit is defined as follows:

The notation for a multi-layer network is

!

! a (0) =
!
X is the input layer.

!

ai
(0) = Xd

 l is the current layer under discussion.
 N(l) is the number of activation units in layer l. N(0) = D
 i,j,k Unit indices for layers l-1, l and l+1: i→j→k

!

wij
(l) is the weight for the unit i of layer l-1 feeding to unit j of layer l.

 5-7

(We use the subscript is j,i to respect matrix notation convention.)

!

aj
(l) is the activation output of the jth unit of the layer l

!

bj
(l) the bias term feeding to unit j of layer l.

!

zj
(l) = wij

(l)ai
(l"1) +bj

(l)

i=1

N (l"1)

is the weighted input to jth unit of layer l

 f(z) is a non-linear decision function, such as a sigmoid, tanh(), or soft-max

!

aj
(l) = f (zj

(l)) is the activation output for the jth
 unit of layer l

In deriving the back-propagation algorithm for learning, we will use

!

zj
(l) = wij

(l)ai
(l"1)

i=1

N (l"1)

+bj
(l)

!

zk
(l+1) = wjk

(l+1)aj
(l)

j=1

N (l)

" +bk
(l+1)

!

aj
(l) = f wij

(l)ai
(l"1) +bj

(l)

i=1

N (l"1)

#
$

%
& &

'

(
))

!

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N (l)

"

$
% %

&

'
((

It can be more convenient to represent this using vectors:

!

! z (l) =

z1
(l)

z2
(l)

"
zN l

(l)

"

$
$
$
$

%

&

'
'
'
'

!

! a (l) =

a1
(l)

a2
(l)

"
aN l

(l)

"

$
$
$
$

%

&

'
'
'
'

and to write the weights and bias at each level l as a k by j Matrix,

!

W (l) =

w11
(l) ! w1i

(l) ! w1N (l"1)
(l)

" # " $ "
wj1
(l) ! wji

(l) ! wjN (l"1)
(l)

" $ " # "
wN (l) 1
(l) ! wN (l)i

(l) ! wN (l)N (l"1)
(l)

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

!

!
b (l) =

b1
l

"
bi

l

"
bN (l"1)

l

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

(note: To respect matrix notation, we have reversed the order of i and j in the
subscripts.)

We can see that the weights are a 3rd order Tensor or vector of matrices, with one
matrix for each level, The biases are a matrix (vector of vectors) with a vector for
each level.

!

! z (l) = W (l) ! a (l"1) +
"
b (l) and

!

! a (l) = f (! z (l)) = f (W (l)! a (l"1) +
!
b (l))

 5-8

We can assemble the set of matrices

!

W (l) into an 3rd order Tensor (Vector of
matrices), W, and represent

!

! a (l),

!

! z (l) and

!

!
b (l) as matrices (vectors of vectors): A, Z,

B.

So how to do we learn the weights W and biases B?

We could train a 2-class detector from a labeled training set

!

{
!
X m} ,

!

{ym} using gradient
descent. For more than two layers, we will need to use the more general “back-
propagation” algorithm.

1.5. Backpropagation

Back-propagation adjusts the network the weights

!

wij
(l) and biases

!

bj
(l) so as to

minimize an error function between the network output

!

!
h (
!
X m;W ,B) =

! a (L) and the target
value

!

! y m for the M training samples

!

{
!
X m} ,

!

{! y m}.

This is an iterative algorithm that propagates an error term back through the hidden
layers and computes a correction for the weights at each layer so as to minimize the
error term.

This raises two questions:
1) How do we initialize the weights?
2) How do we compute the error term for hidden layers?

1) How do we initialize the weights?

A natural answer for the first question is to initialize the weights to 0.

By experience this causes problems. If the parameters all start with identical values,
then the algorithm can end up learning the same value for all parameters. To avoid
this, we initialize the parameters with a small random variable that is near 0, for
example computed with a normal density with variance ε (typically 0.01).

!

"
i, j ,l
wji
(l) = N (0;#) and

!

"
j,l
bj
(l) = N (0;#) where

!

N is a sample from a normal density.

An even better solution is provided by Xavier GLORIOT’s technique (see course
web site on Xavier normalization). However that solution is too complex for today’s
lecture.

2) How do we compute the error term?

Back-propagation propagates the error term back through the layers, using the
weights. We will present this for individual training samples. The algorithm can
easily be generalized to learning from sets of training samples (Batch mode).

 5-9

Given a training sample,

!

!
X m , we first propagate the

!

!
X m through the L layers of the

network (Forward propagation) to obtain a hypothesis

!

!
h (
!
X m;W ,B) =

! a (L).

We then compute an error term. In the case, of a multi-class network, this is a vector,
with k components, one output for each hypothesis. In this case the indicator vector
would be a vector, with one component for each possible class:

!

!
" m
(L) =

! a m
(L) #
! y m() or for each class k:

!

"k,m
(L) = ak,m

(L) # yk,m()

This error term tells how much the unit was responsible for differences between the
activation of the network

!

!
h (
!
X m;wjk

(l) ,bk
(l)) and the target value

!

! y m .

To keep things simple, let us consider the case of a two class network, so that

!

"m
(L+1),

!

h(
!
X m),

!

am
(L+1) , and

!

ym are scalars. The results are easily generalized to vectors for
multi-class networks. At the output layer, the “error” for each training sample is:

!

"m
(L) = am

(L) # ym()

For the hidden units in layers l ≤ L the error

!

" j
(l) is based on a weighted average of the

error terms for

!

"k
(l+1) .

We compute error terms,

!

" j
(l) for each unit j in layer l back to l =l–1 using the sum of

errors times the corresponding weights times the derivative of the activation function.

!

" j,m
(l) =

#f (z j
(l))

#zj
(l) wjk

(l+1)"k,m
(l+1)

k=1

N l+1

$

!

"i,m
(l#1) =

$f (zi
(l#1))

$zi
(l#1) wij

(l)" j,m
(l)

j=1

N (l)

%

For the sigmoid activation function.

!

f (z) =
1

1+ e"z
 the derivative is:

!

df (z)
dz

= f (z)(1" f (z))

For

!

aj
(l) = f (zj

(l)) this gives:

!

" j,m
(l) = aj ,m

(l) (1# aj ,m
(l)) $ wjk

(l+1)"k,m
(l+1)

k=1

N (l+1)

%

 5-10

This error term can then used to correct the weights and bias terms leading from layer
j to layer i.

!

"wij,m
(l) = ai

(l#1)$ j ,m
(l)

!

"bj ,m
(l) = # j ,m(l)

Note that the corrections

!

"wij,m
(l) and

!

"bj ,m
(l) are NOT applied until after the error has

propagated all the way back to layer l=1, and that when l=1,

!

ai
(0) = xi .

For “batch learning”, the corrections terms,

!

"wji,m
(l) and

!

"bj ,m
(l) are averaged over M

samples of the training data and then only an average correction is applied to the
weights.

!

"wij
(l) =

1
M

"wij,m
(l)

m=1

M

!

"bj
(l) =

1
M

"bj,m
(l)

m=1

M

then

!

wij
(l) " wij

(l) #$ %&wij
(l)

!

bj
(l) " bj

(l) #$ %&bj
(l)

where

!

" is the learning rate.

Back-propagation is equivalent to computing the gradient of the loss function for
each layer of the network. A common problem with gradient descent is that the loss
function can have local minimum. This problem can be minimized by regularization.
A popular regularization technique for back propagation is to use “momentum”

!

wij
(l) " wij

(l) #$ %&wij
(l) + µ %wij

(l)

!

bj
(l) " bj

(l) #$ %&bj
(l) + µ %bj

(l)

where the terms

!

µ "wj
(l) and

!

µ "bj
(l) serves to stabilize the estimation.

The back-propagation algorithm may be continued until all training data has been
used. For batch training, the algorithm may be repeated until all error terms,

!

" j,m
(l) , are

a less than a threshold.

 5-11

1.6. Summary of Backpropagation

The Back-propagation algorithm can be summarized as:

1) Initialize the network and a set of correction vectors:

!

"
i, j ,l
wji
(l) = N (0;#)

!

"
i,l
bj
(l) = N (0;#)

!

"
i, j ,l
#wji

(l) = 0

!

"
i,l
#bj

(l) = 0

where

!

N is a sample from a normal density, and

!

" is a small value.

2) For each training sample,

!

!
X m , propagate

!

!
X m through the network (forward

propagation) to obtain a hypothesis

!

!
h (
!
X m;W ,B). Compute the error and propagate this

back through the network:

 a) Compute the error term:

!

"m
(L) = h(

!
X m)# ym() = am

(L) # ym()

 b) Propagate the error back from l=L-1 to l=1:

!

" j,m
(l) =

#f (z j
(l))

#zj
(l) wjk

(l+1)"k ,m
(l+1)

k=1

N (l+1)

$

!

"i,m
(l#1) =

$f (zi
(l#1))

$zi
(l#1) wji

(l)" j,m
(l)

j=1

N (l)

%

 c) Use the error to set a vector of correction weights.

!

"wij,m
(l) = ai

(l#1)$ j ,m
(l)

!

"bj ,m
(l) = # j,m

(l)

3) For all layers, l=1 to L, update the weights and bias using a learning rate,

!

"

!

wij
(l) " wij

(l) #$ %&wij,m
(l) + µ %wij

(l)

!

bj
(l) " bj

(l) #$ %&bj ,m
(l) + µ %bj

(l)

Note that this last step can be done with an average correction matrix obtained from
many training samples (Batch mode), providing a more efficient algorithm.

 5-12

2. Convolutional Neural Networks.

Convolutional Neural Networks take inspiration from the Receptive Field model of
biological vision systems proposed by Hubel and Weisel in 1968 to explain the
organization of the visual cortex.

2.1. Fully connected Networks.

A fully connected network is a network where each unit at level l+1 receives
activations from all units at level l.

If there are N(l) units at level l and N(l+1) units are level l+1 then a fully connected
network requires learning N(l)·N(l+1) parameters. While this may be tractable for small
examples, it quickly becomes excessive for practical problems, as found in computer
vision or speech recognition.

For example, a typical image may have 1024 x 2048 = 221 pixels. If we assume, say
a 512 x 512 =218 hidden units we have 239 parameters to learn for a single class of
image pattern. Clearly this is not practical (and, in any case unnecessary)

A common solution is to perform learning using a limited size window, and to use all
possible windows as training data. This leads to a technique where we fix a window
size at NxN input units and use all possible, overlapping, windows of size NxN from
our training data to train the network.

We then use the same learned weights with every hidden cell. The resulting operation
is equivalent to a “convolution” of the learned weights with the input signal and the
learned weights are referred to as “receptive fields” in the neural network literature.

 5-13

2.2. Local and Stationary Signals

Convolutional Neural Networks (CNNs) are used to interpret image and speech
signals because both images and speech signals have two interesting theoretical
properties: They are local and stationary.

1) Local. Local means that (most of) the required information can be found within a
limited sized neighborhood of the signal. In fact, image information tends to be
multi-scale, but this can be easily accommodated using multi-scale signal techniques
using a scale invariant pyramid. Such a representation is “local” at multiple scales,
with low-resolution scales providing context for higher resolution. This can be
referred to as “multi-local”.

2) Stationary. A stationary signal is a random (unknown) signal whose joint
probability density function does not change when shifted in time (speech) or space
(image). Image and Speech signals tend to have stationary statistics. Thus the same
processing can be applied to every possible (overlapping) window.

There are exceptions to both rules, but these can be handled with established
techniques.

2.3. What Window Size?

What window size should be used for a feature in a Convolutional Neural Network?
This tends to depend on the problem. It is not uncommon to see tutorials proposal 5
x 5 image windows. The impressive results in category learning were obtained with
a 2D image window of 11 x 11. It is common for authors to use 3x3 or 5x5. Most
authors test a range of sizes and discover which works best.

 5-14

2.4. Convolutional Neural Network for an image.

Convolutional Neural Network (CNN) can be used as feature detectors for image
analysis. When used with images, a CNN provides K features at each pixel using
convolution with K receptive fields. Each feature will be computed as a weighted
sum of the pixels within an N x N window for each position in the level below.

Let us assume our input feature vector,

!

!
X , is an image of R rows and C columns

!

P(c,r). Note that we can always “flatten” the image by mapping the pixel,

!

P(i, j),
onto a vector component

!

xd using

!

xd = P(c,r) where

!

d = r "C + c

However, such a mapping is not at all necessary. It will be more useful, to visualize
the input vector a 2D image.

Note that in general, the image will be a color image. In this case, each pixel has 3
color values. Each pixel (c,r) is a color vector,

!

!
P (c,r), represented by 3 integers

between 0 and 255 representing Red, Green and Blue.

!

!
P (c,r) =

R
G
B

"

$
$
$

%

&

'
'
'

In the literature on CNNs, the colors are referred to as “channels”, and the number of
channels is called the Depth.

The CNN will describe each possible NxN window by multiplying by K filters (or
kernels)

!

wk (u,v), of size NxN. If the image is a D valued color image, then each filter
is a tensor of size NxNxD,

!

! w k (u,v). To keep things simple, let us assume a “black
and white” image composed only gray values from 0 to 255. (8 bits per pixel).

The CNN will independently describe the large set of overlapping NxN windows
ranging from the upper left corner of the image to the lower right corner. Let us refer
to each such window as Rcr(u,v)

 5-15

 If we consider the position of the window as its upper left corner, then for each
position from c=1, r=1 to c =C-N+1, r=R-N+1:

!

Rc,r (u,v) = P(c+u "1,r + v"1) for u, v from (1, 1), to (N,N).

The K filters area applied to each such window as a vector product, followed by a
non-linear decision function, resulting in an activation at each position (i,j). We
could write this as:

!

ak (c,r) = f (wk (u,v)Rc,r (u,v)
u,v
" +bk

(1))

Note that written as a convolution, the formula would be

!

ak (c,r) = f (wk (u,v)P(c"u,r " v)
u,v
+bk)

Note that when written as a convolution, we no longer have need for the “window”
symbol R(u,v). The K filters are directly applied at each image position.

The result is a “feature map” of k features at each position ak(c,r), with k values at
each position (c,r)

The receptive fields,

!

wk (u,v) can be learned using back-propagation, from a training
set where each window is labeled with a target class, using an “indicator” image
y(c,r). For multiple target classes, the indicator image is a vector image,

!

! y (c,r). More
classically, y(c,r) is a binary image with 1 at each location that contains the target
class and 0 elsewhere.

 5-16

Hyperperameters:

CNNs are typically configured with a number of “hyper-parameters”:

Depth: This is the number D of channels for each image pixel. For a color image, this
would be D=3. Note that with multiple hidden layers, depth is sometimes used to
refer to the number of filters, K, applied at each position.

Stride: Stride is the step size, S, between window positions. By default it may be 1,
but for larger windows, it is possible define larger step sizes.

Spatial Extent: This is the size of the filter, NxN.

Zero-Padding: Size of region at the border of the feature map that is filled with zeros
in order to preserve the image size (typically N/2).

2.5. Pooling
Pooling is a form of non-linear down-sampling that partitions the image into non-
overlapping regions and computes a representative value for each region.

Pooling is typically performed over contiguous regions of the image. In this case, the
stride equals the pooling window size. The CNN feature image is partitioned into
small non-overlapping rectangular regions, typically of size 2x2 or 4x4.

Several non-linear functions can be used. These include Max, Average, Median, and
Histograms. Max pooling seems to be the most popular.

For example, the SIFT operation, in Computer vision, uses local histograms over a
4x4 window.

 5-17

3. AutoEncoders

We can use an auto-encoder to learn a set of K receptive fields,

!

wk (u,v) for a data set
for use with a convolutional neural network.

An auto-encoder is an unsupervised learning algorithm that uses back-propagation to
learning a sparse set of features for describing the training data. Rather than try to
learn a target variable, ym, the auto-encoder tries to learn to reconstruct the input X
using a minimum set of features.

The auto-encoder provides a limited basis set for reconstruction. Mathematically, we
can say that it maps the input signal (or image) onto a manifold.

Using the notation from our 2 layer network, given an input feature vector

!

!
X m the

auto-encoder learns

!

{wij
(1) ,bj

(1)} and

!

{wjk
(2) ,bk

(2)} such that for each training sample,

!

! a m
(2) = ˆ X m "

!
X m using as few hidden units as possible.

Note that N(2) =D and that N(1) << N(2)

When the number of hidden units N(2) is less than the number of input units, D,

!

! a m
(2) = ˆ X m "

!
X m is necessarily an approximation.

The error for back-propagation for each unit is

!

"k,m
(2) = ak ,m

(2) # xi,m
For each component xi,m of the training sample

!

!
X m

 5-18

3.1. The Sparsity Parameter

The auto-encoder will learn weights subject to a sparseness constraints specified by a
sparsity parameter

!

ˆ " j = " , typically set close to zero. The sparsity parameter

!

" is the
average activation for the hidden units.

The auto-encoder is described by:

Level 0:

!

!
X m =

x1,m
"

xD,m

"

$
$
$

%

&

'
'
'
 Composed of window extracted from P(c,r)

level 1:

!

aj,m
(1) = f (wij

(1)xi,m +bj
(1)

i=1

D

")

level 2:

!

ak,m
(2) = f (wjk

(2)aj ,m
(1) +bk

(2)

j=1

N (1)

")

Desired output

!

! a m
(2) =

a1
(2)

"
aD

(2)

"

$
$
$

%

&

'
'
'

= ˆ X m (
!
X m , with error

!

"k,m
(2) = ak ,m

(2) # xi,m

The average activation

!

ˆ " j is computed as the average activation for each of the N(1)

hidden units, j=1 to N(1) for the M training samples:

!

ˆ " j =
1
M

aj,m
(1)

m=1

M

The auto-encoder can be learned by back-propagation using a minor change to the
cost function.

!

Lsparse(W , B;
!
X m , ym) =

1
2

(! a m
(2) "
!
X m)2 +# KL($ ||

j=1

N (1)

% ˆ $ j)

where

!

KL(" ||
j=1

N (1)

ˆ " j) is the Kullback-Leibler Divergence of the hidden unit activations

and

!

" controls the weight of the sparsity parameter.

(Don’t panic - this is easy to do).

 5-19

3.2. Kullback-Leibler Divergence

The KL divergence between the desired and average activation is:

!

KL(" ||
j=1

N (1)

ˆ " j) = " log
"
ˆ " j

+ (1$")log
1$"
1$ ˆ " j

%

&
' '

(

)
* *

j=1

N (1)

To incorporate the KL divergence into back propagation, we replace

!

" j
(1) =

#f (zj
(1))

#zj
(1) wjk

(2)"k
(2)

k=1

N (2)

$

with

!

" j
(1) =

#f (zj
(1))

#zj
(1) wjk

(2)"k
(2)

k=1

N (2)

$ +% &
'
ˆ ' j

+
1&'
1& ˆ ' j

(

)
* *

+

,
- -

(

)
* *

+

,
- -

where N(2) = D.

Note you need the average activation

!

ˆ " j to compute the correction. Thus you need to
compute a forward pass on all the training data, before computing the back-
propagation on any of the training samples. This can be a problem if the number of
training samples is large.

The auto-encoder forces the hidden units to become approximately orthogonal,
allowing a small correlation determined by

!

" .

Thus the hidden units act as a form of basis space for the input vectors.

 5-20

3.3. Examples of the Hidden Units given by Autoencoders

An example of 100 hidden units learned by a sparse auto-encoder from images:

When applied at multiple levels and trained on face images this can give recognizable
features:

or when trained on YouTube videos: Cats

when trained with car images:

 5-21

