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1. Introduction 
 
1.1. Key Equations  
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 Back Propagation from Layer j to i:  
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 Back Propagation from Layer k to j:  
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 Weight and Bias Corrections for layer j: 
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 Network Update Formulas:   
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1.2. Artificial Neural Networks  
 
Artificial Neural Networks, also referred to as “Multi-layer Perceptrons”, are 
computational structures composed a weighted sums of “neural” units.  Each neural 
unit is composed of a weighted sum of input units, followed by a non-linear decision 
function.   
 
Note that the term “neural” is misleading. The computational mechanism of a neural 
network is only loosely inspired from neural biology. Neural networks do NOT 
implement the same learning and recognition algorithms as biological systems.  
 
The approach was first proposed by Warren McCullough and Walter Pitts in 1943 as 
a possible universal computational model. During the 1950’s, Frank Rosenblatt 
developed the idea to provide a trainable machine for pattern recognition, called a 
Perceptron. The perceptron is an incremental learning algorithm for linear classifiers.   
The first Perceptron, constructed in 1956, was a room-sized analog computer that 
learned recognition functions. However, both the learning algorithm and the resulting 
recognition algorithm are easily implemented as computer programs, and future 
perceptrons were implemented as programs. .  
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In 1969, Marvin Minsky and Seymour Papert of MIT published a book entitled 
“Perceptrons”, that claimed to document the fundamental limitations of the 
perceptron approach.  Notably, they demonstrated that a one-level perceptron could 
not be constructed to perform an “exclusive OR”.  
 
In the 1970s, frustrations with the limits of Artificial Intelligence research based on 
Symbolic Logic led a small community of researchers to explore the perceptron 
based approach. In 1973, Steven Grossberg, showed that a two layered perceptron 
could overcome the problems raised by Minsky and Papert, and solve many problems 
that plagued symbolic AI.  In 1975, Paul Werbos developed an algorithm referred to 
as “Back-Propagation” that uses gradient descent to learn the parameters for 
perceptrons from classification errors with training data.  
 
During the 1980’s, Neural Networks went through a period of popularity with 
researchers showing that Networks could be trained to provide simple solutions to 
problems such as recognizing handwritten characters, recognizing spoken words, and 
steering a car on a highway.  However, results were overtaken by more 
mathematically sound approaches for statistical pattern recognition such as support 
vector machines and boosted learning.  
 
In 1998, Yves LeCun showed that convolutional networks composed from many 
layers could outperform other approaches for recognition problems. Unfortunately 
such networks required extremely large amounts of data and computation.  Around 
2010, with the emergence of cloud computing combined with planetary-scale data, 
training and using convolutional networks became practical. Since 2012, Deep 
Networks have outperformed other approaches for recognition tasks common to 
Computer Vision, Speech and Robotics. A rapidly growing research community 
currently seeks to extend the application beyond recognition to generation of speech 
and robot actions. Notably, just about any algorithm can be used to train a network, 
often yielding a solution that executes faster.  
 
1.3. The Artificial Neuron 
 
The simplest possible neural network is composed of a single neuron.  

 
A “neuron” is a computational unit that integrates information from a vector of  
features,   

! 

! 
X ,  to compute the likelihood of a hypothesis, hw,b() 

 
   

! 

a = h ! w ,b (
" 
X ) 

 
The neuron is composed of a weighted sum of input values   
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! 

z = w1x1 +w2x2 + ...+wDxD +b  
 
 followed by a non-linear “activation” function,   

! 

f (z)  (sometimes written 

! 

"(z)) 
 
   

! 

a = h ! w ,b (
" 
X ) = f ( ! w T

" 
X + b) 

 
Many different activation functions may be used.   
A popular choice for activation function is the sigmoid:  

! 

f (z) =
1

1+ e"z
 

 
 

This function is useful because the derivative is:   

! 

df (z)
dz

= f (z)(1" f (z)) 

 
This gives a decision function:   if   

! 

h ! w ,b (
" 
X ) >  0.5 POSITIVE else NEGATIVE 

 
Other popular decision functions include the hyperbolic tangent and the softmax. 
 

 The hyperbolic Tangent:  

! 

f (z) = tanh(z) =
ez " e"z

ez + e"z
 

 
The hyperbolic tangent is a rescaled form of sigmoid ranging over [-1,1] 
 

We can also use the step function:   

! 

f (z) =
1 if z " 0
0 if z < 0
# 
$ 
% 

 

 

Or the sgn function:  

! 

f (z) =
1 if z " 0
#1 if z < 0
$ 
% 
& 

 

 
Plot of Sigmoid (red), Hyperbolic Tangent (Blue) and Step Function (Green) 
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The softmax function is often used for multi-class networks. For K classes:   
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f (zk ) =
ezk

ezk
k=1

K
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The  rectified linear function is popular for deep learning because of a trivial 
derivative:  
 
 Relu:  

! 

f (z) =max(0, z) 
 
While Relu is discontinuous at z=0, for   z > 0 :  

! 

df (z)
dz

=1 

 
Note that the choice of decision function will determine the target variable “y” for 
supervised learning.  
 
1.4. The Neural Network model 
 
A neural network is a multi-layer assembly of neurons.  For example, this is a 2-layer 
network:  
 

 
The circles labeled +1 are the bias terms.  
The circles on the left are the input terms.  Some authors, notably in the Stanford 
tutorials, refer to this as Level 1.  
 
We will NOT refer to this as a level (or, if necessary, level L=0).  
The rightmost circle is the output layer, also called L.  
The circles in the middle are referred to as a “hidden layer”.  In this example there is 
a single hidden layer and the total number of layers is L=2.  
 
The parameters carry a superscript, referring to their layer.   
 
We will use the following notation:  
L    The number of layers (Layers of non-linear activations).  
l     The layer index.  l ranges from 0 (input layer) to L (output layer) 
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N(l)  The number of  units in layer l.  N(0)=D 

! 

aj
(l )    The activation output of the jth neuron of the lth layer.  

! 

wij
(l )    The  weight  from the unit i of layer l-1 for the unit j of layer l.  

! 

bj
(l )     The bias term for jth unit of the lth layer 

f(z)  A non-linear activation function, such as a sigmoid, tanh, or soft-max 
 
For example:   

! 

a1
(2) is the activation output of the first neuron of the second layer.  

! 

W13
(2) is the weight for neuron 1 from the first level to neuron 3 in the second level.  

 
The above network would be described by:  
 

! 

a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 +b1
(1) )  

 

! 

a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 +b2
(1) )  

 

! 

a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 +b3
(1) )  

   

! 

h ! w ,b (
! 
X ) = a1

(2) = f (w11
(2)a1

(1) + w21
(2)a2

(1) + w31
(2)a3

(1) + b1
(2) ) 

 
 
 
 This can be generalized to multiple layers.  For example:  
 

 
   

! 

! 
h (
! 
X m )  is the vector of network outputs (one for each class).  

 
Each unit is defined as follows:  
 

 
The notation for a multi-layer network is  
   

! 

! a (0) =
! 
X  is the input layer. 

! 

ai
(0) = Xd     

 l is the current layer under discussion.  
 N(l)  is the number of activation units in layer l. N(0)  = D 
 i,j,k Unit indices for layers l-1, l and l+1:   i→j→k 
 

! 

wij
(l ) is the  weight for the unit i of layer l-1 feeding to unit j of layer l.  
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(We use the subscript is j,i to respect matrix notation convention. ) 
 

! 

aj
(l )   is the activation output of the jth unit of the layer  l 

 

! 

bj
(l )   the bias term feeding to unit j of layer l. 

 

! 

zj
(l ) = wij

(l)ai
(l"1) +bj

(l)
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N ( l"1)

#   is the weighted input to jth unit of layer l 

 f(z) is a non-linear decision function, such as a sigmoid, tanh(), or soft-max 
 

! 

aj
(l ) = f (zj

(l ) ) is the activation output for the jth
 unit of layer l 

 
In deriving the back-propagation algorithm for learning, we will use  
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It can be more convenient to represent this using vectors:   
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and to write the weights and bias at each level l as a k by j Matrix,  
 

 

  

! 

W (l ) =

w11
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(l) ! w1N ( l"1)
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" # " $ "
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(l) ! wN ( l )i

(l ) ! wN ( l )N ( l"1)
(l)

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

 

  

! 

! 
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b1
l

"
bi

l
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(note: To respect matrix notation, we have reversed the order of i and j in the 
subscripts. ) 
 
We can see that the weights are a 3rd order Tensor or vector of matrices, with one 
matrix for each level, The biases are a matrix (vector of vectors) with a vector for 
each level.  
 
   

! 

! z (l) = W (l) ! a (l"1) +
" 
b (l)  and    

! 

! a (l) = f (! z (l) ) = f (W (l )! a (l"1) +
! 
b (l) ) 
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We can assemble the set of matrices 

! 

W (l )  into an 3rd order Tensor (Vector of 
matrices), W,  and represent   

! 

! a (l),   

! 

! z (l)  and   

! 

! 
b (l )  as matrices (vectors of vectors):  A, Z, 

B.  
 
So how to do we learn the weights W and biases B?   
 
We could train a 2-class detector from a labeled training set   

! 

{
! 
X m} ,

! 

{ym} using gradient 
descent.  For more than two layers, we will need to use the more general “back-
propagation” algorithm.  
 
1.5. Backpropagation 
 
Back-propagation adjusts the network the weights 

! 

wij
(l ) and biases 

! 

bj
(l )  so as to 

minimize an error function between the network output   

! 

! 
h (
! 
X m;W ,B) =

! a (L ) and the target 
value  

! 

! y m  for the M training samples   

! 

{
! 
X m} ,   

! 

{! y m}.  
 
This is an iterative algorithm that propagates an error term back through the hidden 
layers and computes a correction for the weights at each layer so as to minimize the 
error term.  
 
This raises two questions:  
1) How do we initialize the weights? 
2) How do we compute the error term for hidden layers? 
 
1) How do we initialize the weights? 
 
A natural answer for the first question is to initialize the weights to 0.  
 
By experience this causes problems. If the parameters all start with identical values, 
then the algorithm can end up learning the same value for all parameters. To avoid 
this, we initialize the parameters with a small random variable that is near 0, for 
example computed with a normal density with variance ε (typically 0.01).  
 
 

  

! 

"
i, j ,l
wji
(l ) = N (0;#) and  

  

! 

"
j,l
bj
(l ) = N (0;#) where   

! 

N  is a sample from a normal density.  

 
An even better solution is provided by Xavier GLORIOT’s technique (see course 
web site on Xavier normalization). However that solution is too complex for today’s 
lecture.  
 
2) How do we compute the error term? 
 
Back-propagation propagates the error term back through the layers, using the 
weights.   We will present this for individual training samples. The algorithm can 
easily be generalized to learning from sets of training samples (Batch mode).  
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Given a training sample,   

! 

! 
X m , we first propagate the   

! 

! 
X m  through the L layers of the 

network (Forward propagation) to obtain a hypothesis   

! 

! 
h (
! 
X m;W ,B) =

! a (L ).  
 
We then compute an error term.  In the case, of a multi-class network, this is a vector, 
with k components, one output for each hypothesis. In this case the indicator vector 
would be a vector, with one component for each possible class:  
 
   

! 

! 
" m
(L ) =

! a m
(L ) #
! y m( )      or for each class k:   

! 

"k,m
(L ) = ak,m

(L ) # yk,m( ) 
  
This error term tells how much the unit was responsible for differences between the 
activation of the network   

! 

! 
h (
! 
X m;wjk

(l) ,bk
(l ) ) and the target value   

! 

! y m .   
 
To keep things simple, let us consider the case of a two class network, so that 

! 

"m
(L+1), 

  

! 

h(
! 
X m ), 

! 

am
(L+1) , and 

! 

ym  are scalars. The results are easily generalized to vectors for 
multi-class networks.  At the output layer, the “error” for each training sample is: 
 
 

! 

"m
(L ) = am

(L ) # ym( )  
 
For the hidden units in layers l ≤ L the error 

! 

" j
(l )  is based on a weighted average of the 

error terms for 

! 

"k
(l+1) .  

 
 

We compute error terms, 

! 

" j
(l )  for each unit j in layer l  back to l =l–1 using the sum of 

errors times the corresponding weights times the derivative of the activation function.  
 

 

! 

" j,m
(l ) =

#f (z j
(l) )

#zj
(l ) wjk

(l+1)"k,m
(l+1)

k=1

N l+1

$   

! 

"i,m
(l#1) =

$f (zi
(l#1) )

$zi
(l#1) wij

(l )" j,m
(l )

j=1

N ( l )

%  

 
For the sigmoid activation function. 

! 

f (z) =
1

1+ e"z
 the derivative is:  

! 

df (z)
dz

= f (z)(1" f (z)) 

For 

! 

aj
(l ) = f (zj

(l ) ) this gives:  
 

 

! 

" j,m
(l ) = aj ,m

(l) (1# aj ,m
(l ) ) $ wjk

(l+1)"k,m
(l+1)

k=1

N ( l+1)

%  
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This error term can then used to correct the weights and bias terms leading from layer 
j to layer i.  
 
  

! 

"wij,m
(l) = ai

(l#1)$ j ,m
(l)    

   

! 

"bj ,m
(l) =  # j ,m(l)  

 
Note that the corrections 

! 

"wij,m
(l)  and 

! 

"bj ,m
(l)  are NOT applied until after the error has 

propagated all the way back to layer l=1, and that when l=1, 

! 

ai
(0) = xi .  

 
For “batch learning”, the corrections terms, 

! 

"wji,m
(l)  and 

! 

"bj ,m
(l) are averaged over M 

samples of the training data and then only an average correction is applied to the 
weights.  

 

! 

"wij
(l) =

1
M

"wij,m
(l )

m=1

M

#   

! 

"bj
(l) =

1
M

"bj,m
(l )

m=1

M

#  

then  
 
 

! 

wij
(l ) " wij

(l ) #$ %&wij
(l)  

! 

bj
(l ) " bj

(l ) #$ %&bj
(l)  

 
where 

! 

" is the learning rate.  
 
Back-propagation is equivalent to computing the gradient of the loss function for 
each layer of the network.  A common problem with gradient descent is that the loss 
function can have local minimum.  This problem can be minimized by regularization.  
A popular regularization technique for back propagation is to use “momentum”  
 
 

! 

wij
(l ) " wij

(l ) #$ %&wij
(l) +  µ %wij

(l)  
 

! 

bj
(l ) " bj

(l ) #$ %&bj
(l) + µ %bj

(l)  
 
where the terms 

! 

µ "wj
(l )  and 

! 

µ "bj
(l ) serves to stabilize the estimation.   

 
The back-propagation algorithm may be continued until all training data has been 
used. For batch training, the algorithm may be repeated until all error terms, 

! 

" j,m
(l ) , are 

a less than a threshold.  
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1.6. Summary of Backpropagation 
 
The Back-propagation algorithm can be summarized as:  
 
1) Initialize the network and a set of correction vectors:  
 
 

  

! 

"
i, j ,l
wji
(l ) = N (0;#)  

    

! 

"
i,l
bj
(l ) = N (0;#)  

 

! 

"
i, j ,l
#wji

(l) = 0 
 

! 

"
i,l
#bj

(l) = 0  
 
where   

! 

N  is a sample from a normal density, and 

! 

"  is a small value.  
 
2) For each training sample,   

! 

! 
X m , propagate   

! 

! 
X m  through the network (forward 

propagation) to obtain a hypothesis   

! 

! 
h (
! 
X m;W ,B).  Compute the error and propagate this 

back through the network:  
 
 a) Compute the error term:     

! 

"m
(L ) = h(

! 
X m )# ym( ) = am

(L ) # ym( ) 
 
 b) Propagate the error back from  l=L-1  to l=1:   
  

   

! 

" j,m
(l ) =

#f (z j
(l) )

#zj
(l ) wjk

(l+1)"k ,m
(l+1)

k=1

N ( l+1)

$   

! 

"i,m
(l#1) =

$f (zi
(l#1) )

$zi
(l#1) wji

(l )" j,m
(l )

j=1

N ( l )

%  

 
 c) Use the error to set a vector of correction weights.  
 
   

! 

"wij,m
(l) = ai

(l#1)$ j ,m
(l)    

! 

"bj ,m
(l) =  # j,m

(l )  
 
3) For all layers, l=1 to L, update the weights and bias using a learning rate,  

! 

" 
 
  

! 

wij
(l ) " wij

(l ) #$ %&wij,m
(l) +  µ %wij

(l)  
  

! 

bj
(l ) " bj

(l ) #$ %&bj ,m
(l) + µ %bj

(l )  
 
Note that this last step can be done with an average correction matrix obtained from 
many training samples (Batch mode), providing a more efficient algorithm.   
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2. Convolutional Neural Networks.  
 
Convolutional Neural Networks take inspiration from the Receptive Field model of 
biological vision systems proposed by Hubel and Weisel in 1968 to explain the 
organization of the visual cortex. 
 
2.1. Fully connected Networks.  
 
A fully connected network is a network where each unit at level l+1 receives 
activations from all units at level l.    
 
If there are N(l) units at level l and N(l+1) units are level l+1 then a fully connected 
network requires learning N(l)·N(l+1) parameters. While this may be tractable for small 
examples, it quickly becomes excessive for practical problems, as found in computer 
vision or speech recognition.  
 
For example, a typical image may have 1024 x 2048 = 221 pixels.   If we assume, say 
a 512 x 512 =218  hidden units we have 239 parameters to learn for a single class of 
image pattern. Clearly this is not practical (and, in any case unnecessary)  
 
A common solution is to perform learning using a limited size window, and to use all 
possible windows as training data.   This leads to a technique where we fix a window 
size at NxN input units and use all possible, overlapping, windows of size NxN from 
our training data to train the network.  
 
We then use the same learned weights with every hidden cell. The resulting operation 
is equivalent to a “convolution” of the learned weights with the input signal and the 
learned weights are referred to as “receptive fields” in the neural network literature.  
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2.2. Local and Stationary Signals 
 
Convolutional Neural Networks (CNNs) are used to interpret image and speech 
signals because both images and speech signals have two interesting theoretical 
properties: They are local and stationary.  
 
1) Local.  Local means that (most of) the required information can be found within a 
limited sized neighborhood of the signal. In fact, image information tends to be 
multi-scale, but this can be easily accommodated using multi-scale signal techniques  
using a scale invariant pyramid. Such a representation is “local” at multiple scales, 
with low-resolution scales providing context for higher resolution.  This can be 
referred to as “multi-local”.  
 
2) Stationary. A stationary signal is a random (unknown) signal whose joint 
probability density function does not change when shifted in time (speech) or space 
(image).  Image and Speech signals tend to have stationary statistics.  Thus the same 
processing can be applied to every possible (overlapping) window. 
 
There are exceptions to both rules, but these can be handled with established 
techniques.  
 
2.3. What Window Size? 
 
What window size should be used for a feature in a Convolutional Neural Network?   
This tends to depend on the problem.   It is not uncommon to see tutorials proposal 5 
x 5 image windows.   The impressive results in category learning were obtained with 
a 2D image window of 11 x 11.  It is common for authors to use 3x3 or 5x5. Most 
authors test a range of sizes and discover which works best.  
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2.4. Convolutional Neural Network for an image.  
 
Convolutional Neural Network (CNN) can be used as feature detectors for image 
analysis. When used with images, a CNN provides K features at each pixel using 
convolution with K receptive fields. Each feature will be computed as a weighted 
sum of the pixels within an N x N window for each position in the level below. 
 
Let us assume our input feature vector,   

! 

! 
X , is an image of R rows and C columns 

! 

P(c,r). Note that we can always “flatten” the image by mapping the pixel, 

! 

P(i, j),  
onto a vector component 

! 

xd  using  
 
 

! 

xd = P(c,r) where 

! 

d = r "C + c 
 
However, such a mapping is not at all necessary.  It will be more useful, to visualize 
the input vector a 2D image.  
 
Note that in general, the image will be a color image. In this case, each pixel has 3 
color values. Each pixel (c,r) is a color vector,   

! 

! 
P (c,r), represented by 3 integers 

between 0 and 255 representing Red, Green and Blue.  
 

 

  

! 

! 
P (c,r) =

R
G
B

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
 

 
In the literature on CNNs, the colors are referred to as “channels”, and the number of 
channels is called the Depth.   
 
The CNN will describe each possible NxN window by multiplying by K filters (or 
kernels) 

! 

wk (u,v), of size NxN. If the image is a D valued color image, then each filter 
is a tensor of size NxNxD,    

! 

! w k (u,v).  To keep things simple,  let us assume a “black 
and white” image composed only gray values from 0 to 255. (8 bits per pixel).  
 
The CNN will independently describe the large set of overlapping  NxN windows 
ranging from the upper left corner of the image to the lower right corner.  Let us refer 
to each such window as Rcr(u,v) 
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 If we consider the position of the window as its upper left corner, then for each 
position from c=1, r=1 to c =C-N+1, r=R-N+1:  
 
 

! 

Rc,r (u,v) = P(c+u "1,r + v"1)   for u, v from (1, 1), to (N,N). 
 
The K filters area applied to each such window as a vector product, followed by a 
non-linear decision function, resulting in an activation at each position (i,j).  We 
could write this as:  
 
 

! 

ak (c,r) = f ( wk (u,v)Rc,r (u,v)
u,v
" +bk

(1) ) 

 
Note that written as a convolution, the formula would be  
 
 

! 

ak (c,r) = f ( wk (u,v)P(c"u,r " v)
u,v
# +bk )  

 
Note that when written as a convolution, we no longer have need for the “window” 
symbol R(u,v). The K filters are directly applied at each image position.  
 
The result is a “feature map” of k features at each position ak(c,r), with k values at 
each position (c,r) 
 
The receptive fields, 

! 

wk (u,v)  can be learned using back-propagation, from a training 
set where each window is labeled with a target class, using an “indicator” image 
y(c,r). For multiple target classes, the indicator image is a vector image,   

! 

! y (c,r).  More 
classically, y(c,r) is a binary image with 1 at each location that contains the target 
class and 0 elsewhere.  
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Hyperperameters:  
 
CNNs are typically configured with a number of “hyper-parameters”:  
 
Depth: This is the number D of channels for each image pixel. For a color image, this 
would be D=3. Note that with multiple hidden layers, depth is sometimes used to 
refer to the number of filters, K,  applied at each position.   
 
Stride:  Stride is the step size, S, between window positions.  By default it may be 1, 
but for larger windows, it is possible define larger step sizes.  
 
Spatial Extent:  This is the size of the filter, NxN.  
 
Zero-Padding: Size of region at the border of the feature map that is filled with zeros 
in order to preserve the image size (typically N/2).  
 
2.5. Pooling 
Pooling is a form of non-linear down-sampling that partitions the image into non-
overlapping regions and computes a representative value for each region.  
 
Pooling is typically performed over contiguous regions of the image. In this case, the 
stride equals the pooling window size. The CNN feature image is partitioned into 
small non-overlapping rectangular regions, typically of size 2x2 or 4x4.   
 
Several non-linear functions can be used. These include Max, Average, Median, and 
Histograms.  Max pooling seems to be the most popular.  
 
For example, the SIFT operation, in Computer vision, uses local histograms over a 
4x4 window.  
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3. AutoEncoders 
 
We can use an auto-encoder to learn a set of K receptive fields, 

! 

wk (u,v) for a data set 
for use with a convolutional neural network. 
 
An auto-encoder is an unsupervised learning algorithm that uses back-propagation to 
learning a sparse set of features for describing the training data.  Rather than try to 
learn a target variable, ym, the auto-encoder tries to learn to reconstruct the input X 
using a minimum set of features.  
 
The auto-encoder provides a limited basis set for reconstruction. Mathematically, we 
can say that it maps the input signal (or image) onto a manifold.  
 

  
 
Using the notation from our 2 layer network, given an input feature vector   

! 

! 
X m  the 

auto-encoder learns 

! 

{wij
(1) ,bj

(1)}  and 

! 

{wjk
(2) ,bk

(2)}  such that for each training sample,  

  

! 

! a m
(2) = ˆ X m "

! 
X m  using as few hidden units as possible.  

 
Note that N(2) =D  and that N(1) << N(2) 
 
When the number of hidden units N(2)  is less than the number of input units, D,  
 
   

! 

! a m
(2) = ˆ X m "

! 
X m   is necessarily an approximation.  

 
The error for back-propagation for each unit is    

! 

"k,m
(2) = ak ,m

(2) # xi,m  
For each component xi,m of the  training sample   

! 

! 
X m  
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3.1. The Sparsity Parameter 
 
The auto-encoder will learn weights subject to a sparseness constraints specified by a 
sparsity parameter 

! 

ˆ " j = " , typically set close to zero.    The sparsity parameter 

! 

"  is the 
average activation for the hidden units.  
 
The auto-encoder is described by:  
 

Level 0:   

  

! 

! 
X m =

x1,m
"

xD,m

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
  Composed of window extracted from P(c,r) 

 

level 1:  

! 

aj,m
(1) = f ( wij

(1)xi,m +bj
(1)

i=1

D

" ) 

 

level 2:  

! 

ak,m
(2) = f ( wjk

(2)aj ,m
(1) +bk

(2)

j=1

N (1)

" )  

 

Desired output  

  

! 

! a m
(2) =

a1
(2)

"
aD

(2)

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

= ˆ X m (
! 
X m ,   with error 

! 

"k,m
(2) = ak ,m

(2) # xi,m  

 
The average activation 

! 

ˆ " j  is computed as the average activation for each of the N(1)
  

hidden units, j=1 to N(1) for the M training samples:  
 

 

! 

ˆ " j =
1
M

aj,m
(1)

m=1

M

#  

 
The auto-encoder can be learned by back-propagation using a minor change to the 
cost function.  
 

 
  

! 

Lsparse(W , B;
! 
X m , ym ) =

1
2

(! a m
(2) "
! 
X m )2 +# KL($ ||

j=1

N (1)

%  ˆ $ j ) 

 

where 

! 

KL(" ||
j=1

N (1)

#  ˆ " j ) is the Kullback-Leibler Divergence of the hidden unit activations  

 
and 

! 

"  controls the weight of the sparsity parameter.  
 
(Don’t panic - this is easy to do).  
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3.2. Kullback-Leibler Divergence 
 
The KL divergence between the desired and average activation is:  
 

 

! 

KL(" ||
j=1

N (1)

#  ˆ " j ) = " log
"
ˆ " j

+ (1$")log
1$"
1$ ˆ " j

% 

& 
' ' 

( 

) 
* * 

j=1

N (1)

#  

  
 
To incorporate the KL divergence into back propagation, we replace 
 

 

! 

" j
(1) =

#f (zj
(1) )

#zj
(1) wjk

(2)"k
(2)

k=1

N (2)

$  

with  
 

 

! 

" j
(1) =

#f (zj
(1) )

#zj
(1) wjk

(2)"k
(2)

k=1

N (2)

$ +% &
'
ˆ ' j

+
1&'
1& ˆ ' j

( 

) 
* * 

+ 

, 
- - 

( 

) 
* * 

+ 

, 
- -  

 
where  N(2) = D.    
 
Note you need the average activation 

! 

ˆ " j  to compute the correction. Thus you need to 
compute a forward pass on all the training data, before computing the back-
propagation on any of the training samples. This can be a problem if the number of 
training samples is large.  
 
The auto-encoder forces the hidden units to become approximately orthogonal, 
allowing a small correlation determined by 

! 

" .  
 
Thus the hidden units act as a form of basis space for the input vectors.  
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3.3. Examples of the Hidden Units given by Autoencoders 
 
An example of 100 hidden units learned by a sparse auto-encoder from images:  
 

 

 
 
When applied at multiple levels and trained on face images this can give recognizable 
features: 
 

 
 
or when trained on YouTube videos: Cats 
 

   
 
when trained with car images:  
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