
Intelligent Systems: Reasoning and Recognition

James L. Crowley

Practice Exam

2) (6 points) You are presented with a single neuron with two inputs (X_1, X_2) and a single output a computed using a sigmoid $(F(z) = \sigma(z))$. Your network has been initialized with weights $W_1 = -0.5$ and $W_2 = +0.2$ and b=0.5. Assume a learning rate of $\eta=0.5$.

Your network should be trained to recognize the following training data:

m	x_1	x_2	y _m
1	1	0	0
2	0	1	0
3	0	0	1
4	1	1	1

a) Compute z, and a for m=1.

MoSIG M1

$$z = -0.5 \cdot X_1 + 0.2 \cdot X_2 + 0.4 = -0.5 + 0.5 = 0$$

$$a = f(z) = \sigma(0) = 0.5$$

b) Compute $\delta_m^{(2)} = h(X_m) - y_m$ for m = 1

$$\delta_1^{(2)} = h(X_1) - y_1 = 0.5 - 0 = 0.5$$

c) Compute $\delta_m^{(l)}$ for m=1

$$\delta_m^{(1)} = a_m^{(1)} (1 - a_m^{(1)}) \cdot \delta_m^{(2)} = 0.5 \cdot 0.5 \cdot 0.5 = 0.125$$

d) Compute ΔW_1 , ΔW_2 , and Δb for m=1

$$\begin{split} \Delta w_1^{(1)} &= X_1 \delta_m^{(1)} = 1 \cdot (0.125) = 0.125 \\ \Delta w_2^{(1)} &= X_2 \delta_m^{(1)} = 0 \\ \Delta b_m &= \delta_m^{(1)} = 0.125 \end{split}$$

e) Update W_1 , W_2 , and b for m=1.

$$\begin{split} W_1 &\leftarrow W_1 - \eta \Delta W_1 = -0.5 - (0.5) \cdot 0.125 = -0.5625 \\ W_2 &\leftarrow W_2 - \eta \Delta W_2 = 0.2 + 0 = 0.2 \\ b &\leftarrow b - \eta \Delta b_m = 0.5 - 0.5 \cdot 0.125 = 0.4375 \end{split}$$

f) Will your neuron converge for this training data?

No. There is no linear surface that can separate the training data (Not-XOR)