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655 ave. de l’Europe,
38330 Montbonnot St. Martin

France

Abstract

In this paper we discuss a new robust tracking technique
applied to histograms of intensity normalized color. This
technique supports a video codec based on orthonormal
basis coding. Orthonormal basis coding can be very effi-
cient when the images to be coded have been normalized in
size and position. However, an imprecise tracking proce-
dure can have a negative impact on the efficiency and the
quality of reconstruction of this technique, since it may in-
crease the size of the required basis space. The face track-
ing procedure described in this paper has certain advan-
tages, such as greater stability, higher precision, and less
jitter, over conventional tracking techniques using color his-
tograms. In addition to those advantages, the features of the
tracked object such as mean and variance are mathemati-
cally describable.

1. Introduction

In communication by video telephone or video electronic
mail, the desired images are generally restricted to a view of
the head and shoulders of a speaker. Relevant variations are
movements of the mouth, eyes and head. Precise coding of
the background is unimportant or may even be undesirable.
Such image sequences have properties which make possible
high compression ratios. Movements of the face and eyes
tend to be repetitive making it possible for a compression
algorithm to exploit the limited range of movements and
their repetitive nature.

In this paper we report on experiments with techniques
which exploit the simplified nature of a talking-head scene
to provide a very high compression rate. Our technique has
two components: 1) A face tracking system which keeps a
face centered in the image at a particular size, and 2) an or-
thogonal basis coding technique (OBC), in which the nor-
malized face image is projected onto a space of basis im-
ages.

The focus of this paper, however, will be on the face
tracking system, or, more precisely, on the (skin) color
tracking module. The OBC components have been intro-
duced in [1, 2], and we will give here a rather short coverage
and refer the reader to forthcoming papers for newer results
and developments.

We employ a multi-modal face tracker which integrates
eye blink detection, cross-correlation, and robust tracking of
skin colored regions. An earlier version of this multi-modal
tracker was reported in [3]. While that system provided ro-
bust tracking of a moving face under changing illumination,
the color skin detection technique relied on detecting con-
nected components of thresholded color regions. Grouping
thresholded pixels led to an unacceptable amount of jitter
in the tracked images. We have recently developed a new
technique which replaces thresholding and connected com-
ponents with the moments of color pixels weighted by a
Gaussian density function.

The subsequent compression technique relies on estimat-
ing a basis of orthogonal images onto which the talking-
head images are projected. We present the overall approach
and then present experimental results with the off-line ver-
sion of this algorithm. In this algorithm, a static fixed ba-
sis space is computed using principal components analy-
sis based on a ”representative” sample of images. Such
an algorithm is well suited to off-line coding for applica-
tions such as video electronic mail and talking heads on web
pages.

2 Multi-modal tracking of faces

Tracking greatly reduces the required bandwidth while
providing the speaker with the freedom to move about
while communicating. Our system uses a multi-modal face
tracker which automatically detects a face, keeps track of its
position, and steers a camera to keep the face in the center
of the image. The modules of the face tracker are described
in [3]. For completeness, we review the function of each
module.



Figure 1. Probability images for the Connected Compo-
nents Algorithm (left) and the Center of Gravity Algorithm
(right).

A face is represented as an image position, vertical and
horizontal extent, and a confidence factor. All measure-
ments are accompanied by a covariance matrix, enabling
them to be combined by a recursive estimator based on a
zeroth order Kalman filter. A correlation mask for the eyes,
and a color histogram of skin are initialized, either by hand
(mouse-click), or by an eye blink detection module. The
eye-blink detection process is used for a quick initialization
or re-initialization of the face tracker. This allows the sys-
tem to continually adapt to changes in ambient illumination.

We initially built a color skin detection process which
uses a connected components algorithm to group skin col-
ored pixels. The connected components algorithm has been
found to be overly sensitive to pixel noise, causing an un-
acceptable amount of jitter. In the following section we de-
scribe a new robust grouping algorithm which greatly en-
hances stability. Figure 1 shows comparative images for
both, the thresholded probability image (connected compo-
nents algorithm) and the robust estimator (center of gravity
algorithm).

Every observation is accompanied by a numerical con-
fidence factor, computed statistically by comparing the ob-
served parameters to an average parameter vector and nor-
malizing by an observed covariance. This gives a form of
Mahalanobis distance which is used as the power for an ex-
ponential function, giving a value of 1 for a typical param-
eter vector and tending towards zero for unlikely vectors.
Confidence factors allow the system to detect which pro-
cesses are functioning reliably and to reinitialize the indi-
vidual processes dynamically. The estimated position and
size of the face is fed into a camera control unit. This unit
calculates the distance between the actual position of a face
and the center of the image. A PID-controller then directs
the camera to pan, tilt, and zoom so as to maintain the face
at a standard size and position in the image.

3 Robust tracking of faces using color

Detecting pixels with the color of skin provides a reli-
able method for detecting and tracking faces. The statistics
of the color of skin can be recovered from a sample of a
known face region and then used in successive images to

detect skin colored regions. Swain and Ballard have shown
how a histogram of color vectors can be back-projected to
detect the pixels which belong to an object [4]. Schiele and
Waibel showed that for face detection, color RGB triples
can be divided by the luminance to remove the effects of
relative illumination direction [5]. In earlier work [3] we
described an algorithm in which a histogram of normalized
skin color was initialized by blink detection and then used to
determine the possibility that a pixel represents skin. In that
work we thresholded skin possibilities and then performed
a connected components algorithm on the resulting binary
images (see Figure 1, left image). Since that time, we have
reformulated the skin detection and tracking process using
an approach inspired by robust statistics.

3.1 Probability of Skin

The reflectance function of human skin may be mod-
eled as a sum of a Lambertian and a specular reflectance
function. In most cases the Lambertian component domi-
nates. For a Lambertian surface, the intensity of reflected
light varies as a function of the cosine of the angle between
the surface normal and illumination. Because the face is a
highly curved surface, the observed intensity of a face ex-
hibits strong variations. These variations may be removed
by dividing the three components of a color pixel, (R, G, B)
by the intensity. This gives an intensity-normalized color
vector, with two components, (r, g).

r =
R

R+G+B
g =

G

R+G+B

The intensity-normalized pixels from a region of an image
known to contain skin can be used to define a two dimen-
sional histogram, hskin(r; g), of skin color. The effects of
digitizing noise can be minimized by smoothing this his-
togram with a small filter. A second histogram of the same
dimensions, htotal(r; g), can be made from all of the pixels
of the same image. This second histogram should also be
smoothed by the same filter. These two histograms make
it possible to apply Bayes rule to each pixel of an image to
obtain the probability that a given pixel is skin.

Application of Bayes rule requires the following terms:

hskin(r; g) : Histogram of intensity normalized
colors from a region of an image
known to represent skin

Nskin : Sum over r and g of hskin(r; g)
htotal(r; g) : Histogram of intensity normalized

colors from the entire image
Ntotal : Sum over r and g of htotal(r; g)

The probability of a color vector, (r, g) given skin is ap-
proximated by

p(r; gjskin) � 1

Nskin

hskin(r; g) (1)
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The probability of obtaining a skin pixel in the image is
approximated by the fraction of observed pixels known to
be skin.

p(skin) � Nskin

Ntotal

(2)

The probability of observing a color vector is given by :

p(r; g) � 1

Ntotal

htotal(r; g) (3)

Bayes rule states that the probability of skin given a color
vector (r, g) is

p(skinjr; g) = p(r; gjskin) � p(skin)
p(r; g)

(4)

This reduces to the ratio of the two histograms as shown in
equation 5.

p(skinjr; g) � hratio(r; g) =
hskin(r; g)

htotal(r; g)
(5)

The ratio of these two histograms gives a table which
directly converts an intensity-normalized pixel (r, g) into
the probability that the pixel is skin, p(skinjr; g) by table
lookup. A default value of 0 may be placed in this table for
all pixels for which htotal(r; g) is zero. Strictly speaking,
equation 5 is only valid for the image from which the skin
sample was obtained. In practice, we have found that the
technique will work well for subsequent images provided
that the color of the scene illumination does not change.
This table is trivial to build and may be renewed whenever
an independent source has detected the face in the image.

A number of authors have indicated a preference for us-
ing Gaussian mixture model in place of the two histograms.
Our experience is that such a model provides a very slight
improvement in the probability image, at a very great cost
in computation whenever the histogram must be renewed,
making frequent update of the histogram ratio impracti-
cal. For a real-time system, the robustness obtained by fre-
quently renewing the histogram ratio table greatly exceeds
the slight improvement observed with a static mixture of
Gaussian models.

In order to detect a skin color region we must group skin
pixels into a region. Let Pskin(i; j) represent the proba-
bility map of skin for each color pixel (r(i; j); g(i; j)) at
position (i; j).

Pskin(i; j) = p(skinjr(i; j); g(i; j)) (6)

The center of gravity or first moment of the probability
map gives the position and spatial extent of the skin colored
region.

~� =

�
�i
�j

�
C(i; j) =

�
�2
i

�ij
�ij �2

j

�
(7)

Unfortunately, skin color pixels in any other part of the
image will contribute to these two moments. This effect
can be minimized by weighting the probability image with
a Gaussian function placed at the location where the face
is expected. The initial estimate of the covariance of this
Gaussian should be the size of the expected face. Once
initialized, the covariance is estimated recursively from the
previous image.

For each new image, a two dimensional Gaussian func-
tion, g(i; j; ~�;C), using the mean and covariance from the
previous image is multiplied with the probability map as
shown in equation 8 to give new estimates for the mean and
covariance.

�i =
1

S

X
i;j

Pskin(i; j) � i � g(i; j; ~�;C)

�j =
1

S

X
i;j

Pskin(i; j) � j � g(i; j; ~�;C)

�2
i

=
1

S

X
i;j

Pskin(i; j) � (i� �i)
2 � g(i; j; ~�;C)

�2
j

=
1

S

X
i;j

Pskin(i; j) � (j � �j)
2 � g(i; j; ~�;C)

�ij =
1

S

X
i;j

Pskin(i; j) � (i� �i)(j � �j) � g(�)

(8)

where S =
P

i;j
Pskin(i; j) � g(i; j; ~�;C). The effect of

multiplying new images with the Gaussian function is that
other objects of the same color in the image (hands, arms,
or another face) do not disturb the estimated position of the
region being tracked.

3.2 Behavior discussion

The use of a Gaussian weighting function for new in-
put data actually can lead to a problem, if the object being
tracked moves above a certain speed. Let us therefore con-
sider the dynamic behavior of the color tracker. Since the
two-dimensional case is largely more complex, we present
here the one-dimensional case which actually suffices to
justify our compensation measures.

3.2.1 One-dimensional case

Let g(x; �1; �1) be the probability density function (pdf) of
our weighting function, and g(x; �2; �2) the pdf of the new
input data (image). The resulting, i.e., effectively detected
pdf is then product of both functions:

g(x; �1; �1) � g(x; �2; �2) =
1p
2��1

exp

"
�1

2

�
x� �1
�1

�2
#
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� 1p
2��2

exp

"
�1

2

�
x� �2
�2

�2
#
=

Ap
2��new

exp�1

2

�
x� �2

�new

�2

; (9)

where

A =
�1�2p

2�(�2
1
+ �2

2
)

exp

�
�1

2

(�1 � �2)
2

(�2
1
+ �2

2
)

�
(10)

�new =
�1�

2

2
+ �2�

2

1

(�2
1
+ �2

2
)

(11)

�2
new

=
�2
2
�2
1

�2
1
+ �2

2

(12)

Equation 9 is a function with the shape of a Gaussian
function which integrates from �1 to +1 to A.

Let �1 = �2 = �0, then

�2
new

=
�2
2
�2
1

�2
1
+ �2

2

=
�2
0
�2
0

2�2
0

=
�2
0

2
(13)

That is, if we assume the distribution function of the tracked
object – even if it does not move – to be approximately the
same for subsequent images, the combined pdf of weighting
and distribution function will shrink with each cycle, if no
measure of compensation is taken. Equation 13 suggests a
compensation factor of 2.

3.2.2 Motion compensation

If the tracked object moves, then the center of the combined
pdf will lie between the center of the weighting function
and the center of the pdf of the new input data. Equation 11
shows that the relation �1=�2 determines if the new center
is closer to the center of the weighting pdf or to the center
of the new input pdf. For �1 � �2 = �0 (a likely case for a
sufficiently high frequency), the combined center will lie in
the middle of both distribution functions.

Depending on the speed of the tracked object, equations
10 and 11 can cause the combined pdf to vanish, and –
since we use quantized values for the probability map of
our tracked object – the tracker to break.

First experiments with compensation measures suggest a
Kalman filter update function

Cnew = C +�T 2 �
�
v2
i;obj

0

0 v2
j;obj

�
; (14)

where �T is the time elapsed since the last frame was
processed. Obviously, vi;obj = ��i � �T and vj;obj =

��j ��T , with ��i = �i;1 ��i;2 and ��j = �j;1� �j;2.
Equation 14 compensates uncertainty due to accelerations
and object movements. Combining the results of equations
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Figure 2. Computing time per image for the robust esti-
mator (COG or Center of Gravity), Connected Components
Algorithm without (CCO w/o Kalman) and with (CCO w/
Kalman) assistance from a Kalman filter recursive estima-
tor.

13 and 14 we get as the covariance matrix of the Gaussian
weighting function for new incoming data:

C
0
(i; j) =

�
2(�2

i
+��2

i
) �ij

�ij 2(�2
j
+��2

j
)

�
(15)

3.3 Performance evaluation

Our robust tracking algorithm carries a somewhat higher
computational cost than connected components of a thresh-
olded image. This is illustrated with the computing times
shown in Figure 2. This figure shows the execution time
for a QCIF [6] sized image on a SGI 02 workstation for the
robust tracker COG (center of gravity), connected compo-
nents CCO and connected components assisted by a zeroth
order Kalman filter. Average execution times are around 25
milliseconds per image for the connected components and
70 milliseconds for the robust algorithm.

Jitter is the number of pixels that the estimated position
moves when the target is stationary. Jitter is the result of
interference with illumination, electrical noise, shot noise,
and digitizer noise. Algorithms which employ a threshold
are especially sensitive to such noise. Table 1 illustrates the
reduction in jitter for the robust tracker when compared to
connected components.

Figure 3 compares the precision of tracking an object
moving in the horizontal direction. All three trackers were
applied to the same image sequence. The output of the color
tracker using the connected components algorithm is shown
with and without Kalman filter. The Kalman filter elimi-
nates position jitter but reduces precision of global position
estimation.
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COG CCO w/o KF CCO w/ KF

Jitter Energy 29 308 151

CCO : Connected Components Algorithm
COG : Robust Algorithm
KF : Kalman Filter

Table 1. Jitter energy measured for a stationary object by
the robust estimator, and by connected components with
and without a Kalman Filter
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Figure 3. Comparing tracking precision of a moving ob-
ject.

4 Orthogonal basis coding for video commu-
nications

For a more thorough discussion of this module we refer
the reader to previous publications [1, 2]. Forthcoming pub-
lications will include newer developments and results such
as an incremental version of the Orthonormal Basis Codec
(OBC).

There are currently four video coding standards used
for commercial systems, the ITU-T recommendations
H.261 [6] and H.263 [7], plus the ISO standards 11172 [8]
(MPEG-1) and 13818 [9] (MPEG-2). More recent develop-
ments such as MPEG-4 and MPEG-7 target the integration
of multimedia services and use MPEG-1 and MPEG-2 for
video/audio-coding (MP3 is just the audio layer of MPEG-
1). Rejecting a model-based approach for further research
into video compression [10], we are investigating an ap-
proach based on projecting images into an orthogonal basis
space.

A stabilized video sequence is cropped in order to pro-
vide a sequence of images with the face normalized and
centered in each image. Selected frames from the sequence
are used to create a basis space into which new images can
be mapped. Each mapped image is represented as a vector
of coefficients. The number of coefficients is equal to the
number of images in the original basis space. By only stor-

ing and transmitting the vectors, extremely high compres-
sion rates can be achieved, especially for long sequences.

4.1 Integrating face tracking and video coding

Due to processing constraints, Principal Components
Analysis cannot be computed using every frame from a se-
quence of several minutes of video in a reasonable time. An
algorithm, called Most-representative Algorithm attempts
to find similar images anywhere in the sequence to be en-
coded. The OBC compression scheme operates as follows:

1. choose a limited set of images from the sequence to
form the basis (Most-representative Algorithm),

2. energy compaction by Karhunen-Loeve expansion to
generate an orthonormal basis space from the images,

3. entropy reduction by mapping each image in the se-
quence into this basis space, resulting in a small set of
coefficients,

4. redundancy reduction by LZW loss-less compression
on the basis and, if sensible, the parameter vectors.

An image mapped into the basis space will produce a num-
ber of coefficients equal to the number of images used to
create the basis space. We have obtained good results using
only fifteen basis images for a 400-frame video sequence.
Thus, each frame was represented by only fifteen coeffi-
cients.

The algorithm can be made sensitive to movements of
the eyes and mouth by multiplying these regions by an extra
weighting factor during the comparison of images with the
to-do set. Thus variations in eye and mouth configurations
receive a better representation in the selected sample set.

4.2 Performance evaluation

Using the standard compression options with the Berke-
ley mpeg encode program [11], we found an average PSNR
of approximately 27 dB for the BillS2 [1] sequence. The
MPEG reconstruction errors, see Figure 4c, were due to
the typical blocking artifacts of DCT/DPCM 1 codecs. The
reconstructed images from the OBC codec were slightly
blurred, as can be seen in Figure 4b, which is the typical
artifact for codecs using eigenspace representations. The
closed mouth in Figure 4b is due to the fact that there were
no images with a fully opened mouth among the fifteen ba-
sis images.

The BillS2 video clip contains 418 frames and lasts 69
seconds (6 fps). The various file sizes are shown in Table 2.

1MPEG video compression algorithms use the Discrete Cosine Trans-
form (DCT) for energy compaction, and Differential Pulse Code Modula-
tion (DPCM) as entropy reduction step.
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Figure 4. Example frame from test-sequence BillS2: a)
Original Image, b) Reconstruction w/ 15 basis images, c)
MPEG reconstruction.

Video Stream File Size [kB]

Original Video (Uncompressed) 12550
MPEG 72
OBC (5 basis frames) 71
OBC (5 basis frames) w/ LZW 58
OBC (15 basis frames) 217
OBC (15 basis frames) w/ LZW 178

Table 2. Comparison of file sizes (kB) for OBC and MPEG

We used the a LZW-based compression library on the OBC
basis to do simple compression (redundancy elimination)
on the file.

Each additional frame for the 15-basis-frame reconstruc-
tion would have added 60 bytes to the OBC file size. Ad-
ditional frames for the 5-basis-frame reconstruction would
have added only 20 bytes, while additional frames for the
MPEG would have added significantly more.

5 Conclusions

Various techniques from computer vision have been used
to create a fast and robust face tracking system, which in
turn was used to build an efficient video codec based on
orthonormal basis coding (OBC). The face tracker also en-
hances the usability of a video communication system by
allowing the user to freely move in front of the camera
while communicating. It is crucial however, that the face-
tracking system be stable and accurate in order to provide
the best results for OBC compression. An important ques-
tion when enhancing any video coding system is, if the re-
sults in terms of image quality and compression ratio make
up for the added complexity. The system described in this
paper provides a positive outlook on further development of
low-bandwidth video communication.

The reader is referred to future publications for more de-
tailed information on those topics.
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