Intelligent Systems: Reasoning and Recognition

James L. Crowley

Ensimag 2 Lesson 4 Winter Semester 2020 14 Feb 2020

Non-Parametric Models for Bayesian Recognition

Notation	.2
Bayesian Classification	
Classification with a Ratio of Histograms	.4
Number of samples required	
Variable Sized Histogram Cells Kernel Density Estimators	
K Nearest Neighbors	
Probability Density Functions	

Bibliographical sources:

[&]quot;Pattern Recognition and Machine Learning", C. M. Bishop, Springer Verlag, 2006.

[&]quot;Pattern Recognition and Scene Analysis", R. E. Duda and P. E. Hart, Wiley, 1973.

Notation

x A variable

X A random variable (unpredictable value). an observation.

N The number of possible values for X

 \vec{x} A vector of D variables.

 \vec{X} A vector of D random variables.

D The number of dimensions for the vector \vec{x} or \vec{X}

 C_k The class k k Class index

K Total number of classes

 ω_k The statement (assertion) that $X \in C_k$

 $P(\omega_k) = P(X \in C_k)$ Probability that the observation X is a member of the class k.

 M_k Number of examples for the class k.

M Total number of examples.

 $M = \sum_{k=1}^{K} M_k$

 $\{\vec{x}_m\}$ A set of training samples

 $\{y_m\}$ A set of indicator vectors for the training samples in $\{\vec{X}_m\}$

p(X) Probability density function for a continuous value X

 $p(\vec{X})$ Probability density function for continuous \vec{X}

 $p(\vec{X} \mid \omega_k)$ Probability density for \vec{X} give the class k. $\omega_k = X \in C_k$.

Q Number of cells in h(x). $Q = N^D$

S A sum of V adjacent histogram cells: $S = \sum_{\vec{x} \in V} h(\vec{x})$

V The "Volume" of the region of the histogram

Bayesian Classification

Our problem is to build a box that maps a set of features \vec{X} from an observation, X to a class C_k from a set of K possible classes.

$$\vec{X} \longrightarrow$$
 Classify $\longrightarrow \vec{X} \in \hat{C}_k$

Let ω_k be the proposition that the event belongs to class k: $\omega_k = \vec{X} \in C_k$

In order to minimize the number of mistakes, we will maximize the probability that $\omega_k = X \in C_k$

$$\hat{\omega}_k = \arg \max_{\omega_k} \left\{ P(\omega_k \mid \vec{X}) \right\}$$

 $\hat{\omega}_k = \arg - \max_{\omega_k} \left\{ P(\omega_k \mid \vec{X}) \right\}$ Our primary tool for this is Bayes Rule: $P(\omega_k \mid \vec{X}) = \frac{P(\vec{X} \mid \omega_k) P(\omega_k)}{P(\vec{X})}$

To apply Bayes rule, we require a representation for the probabilities $P(\vec{X} \mid \omega_k)$, $P(\vec{X})$, Today we will look at some simple, non-parametric models for and $p(\omega_{\nu})$. probability.

Today will look at three non-parametric representations for $P(\vec{X} \mid \omega_k)$ and $P(\vec{X})$:

- 1) Histograms
- 2) Kernel Density Estimators
- 3) K-Nearest Neighbors

Classification with a Ratio of Histograms

Consider an example of K classes of objects where objects are described by a feature, X, with N possible integer values from [1, N]. Assume that we have a "training set" of M samples $\{x_m\}$ along with indicator variables $\{y_m\}$ where the indicator variable is the class, k, for each training sample.

For each class k, we allocate a histogram, $h_k()$, with N cells and count the values in the training set.

$$\forall_{m=1}^{M}: h(x_m) \leftarrow h(x_m) + 1$$

$$\text{IF } y_m = k \text{ THEN } h_k(x_m) \leftarrow h_k(x_m) + 1; M_k \leftarrow M_k + 1$$

Then

$$P(X = x) = \frac{1}{M}h(x)$$

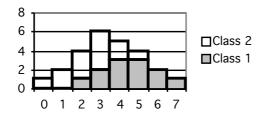
$$P(X = x \mid X \in C_k) = P(X \mid \omega_k) = \frac{1}{M_k}h_k(x)$$

and $P(\omega_k)$ can be estimated from the relative size of the training set.

$$P(X \in C_k) = P(\omega_k) = \frac{M_k}{M}$$
giving:
$$P(\omega_k \mid X) = \frac{P(X \mid \omega_k) P(\omega_k)}{P(X)} = \frac{\frac{1}{M_k} h_k(X) \frac{M_k}{M}}{\frac{1}{M} h(X)} = \frac{h_k(X)}{h(X)}$$

This can also be written as:
$$P(\omega_k \mid X) = \frac{h_k(X)}{\sum_{k=1}^K h_k(X)}$$
 because $h(X) = \sum_{k=1}^K h_k(X)$

The ratio of histograms can be represented by a lookup table. $P(\omega_k \mid X) = T(X)$ To illustrate, consider an example with 2 classes (K=2) and where X can take on 8 values (N=8, D=1).



Recall that the number of cells in the histogram is $Q=N^{D}$.

Having M >> Q is NECESSARY but NOT Sufficient.

Having M < Q is a guarantee of INSUFFICIENT TRAINING DATA.

Number of samples required

<u>Problem</u>: Given a feature x, with N possible values, how many observations, M, do we need for a histogram, h(x), to provide a reliable estimate of probability?

The worst case Root Mean Square error is proportional to $O(\frac{Q}{M})$.

This can be estimated by comparing the observed histograms to an ideal parametric model of the probability density or by comparing histograms of subsets samples to histograms from a very large sample. Let p(x) be a probability density function. The RMS (root-mean-square) sampling error between a histogram and the density function is

$$E_{RMS} = \sqrt{E\{(h(x) - p(x))^2\}} \approx O(\frac{Q}{M})$$

The worst case occurs for a uniform probability density function.

For most applications, $M \ge 8 Q$ (8 samples per "cell") is reasonable (less than 12% RMS error).

So what can you do if you do not have M >> Q? Adapt the size of the cell to the data!

Variable Sized Histogram Cells

Suppose that we have a D-dimensional feature vector \vec{X} with each feature quantized to N possible values, and suppose that we represent $p(\vec{X})$ as a D-dimensional histogram $h(\vec{x})$. Let us fill the histogram with M training samples $\{\vec{x}_m\}$.

Let us define the volume of each cell as 1.

The volume for any block of V cells is V.

Then the volume of the entire space is $Q=N^{D}$.

If the quantity of training data is too small, ie if M < 8Q, then we can combine adjacent cells so as to amass enough data for a reasonable estimate.

Suppose we merge V adjacent cells such that we obtain a combined sum of S.

$$S = \sum_{\vec{x} \in V} h(\vec{x})$$

The volume of the combined cells would be V.

To compute the probability we replace $h(\vec{x})$ with $\frac{S}{V}$.

The probability $p(\vec{X})$ for $\vec{X} \in V$ is:

$$p(\vec{X} \in V) = \frac{1}{M} \cdot \frac{S}{V}$$

This is typically written as: $p(\vec{X}) = \frac{S}{MV}$

We can use this equation to develop two alternative non-parametric methods.

Fix V and determine $S \Rightarrow$ Kernel density estimator.

Fix S and determine $V \Rightarrow K$ nearest neighbors.

(note that the symbol "K" is often used for the sum the cells.

This conflicts with the use of K for the number of classes.

Thus we will use the symbol S for the sum of adjacent cells).

Kernel Density Estimators

For a Kernel density estimator, we represent each training sample with a kernel function $k(\vec{X})$.

Popular Kernel functions include

- a hypercube centered of side w
- a triangular function with base of w
- a sphere of radius w
- a Gaussian of standard deviation σ .

We can define the function for the hypercube as

$$k(\vec{u}) = \begin{cases} 1 & if \ |\mathbf{u}_{d}| \le 1/2 \text{ for all } d = 1,...,D \\ 0 & otherwise \end{cases}$$

This is called a Parzen window.

Subtracting a point, \vec{z} , centers the Parzen window at that point.

Dividing by w scales the Parzen window to a hyper-cube of side w.

$$k\left(\frac{\vec{X}-\vec{z}}{w}\right)$$
 is a cube of size w^D centered at \vec{z} .

The M training samples define M overlapping Parzen windows.

For an feature value, \vec{X} , the probability $p(\vec{X})$ is the sum of Parzen windows at \vec{X}

$$S = \sum_{m=1}^{M} k \left(\frac{\vec{X} - \vec{x}_m}{w} \right)$$

The volume of the Parzen window is $V = w^D$.

Thus the probability
$$p(\vec{X}) = \frac{S}{MV} = \frac{1}{Mw^D} \sum_{m=1}^{M} k \left(\frac{\vec{X} - \vec{x}_m}{w} \right)$$

A Parzen window is discontinuous at the boundaries, creating boundary effects. We can soften this using a triangular function evaluated within the window.

$$k(\vec{u}) = \begin{cases} 1 - 2\|\vec{u}\| & if \ \|\vec{u}\| \le 1/2 \\ 0 & otherwise \end{cases}$$

Even better is to use a Gaussian kernel with standard deviation σ .

$$k(\vec{u}) = \frac{1}{(2\pi)^{D/2}\sigma} e^{-\frac{1}{2}\frac{\|\vec{u}\|^2}{\sigma^2}}$$

We can note that the volume (or integral) of $e^{-\frac{1}{2}\frac{\|\vec{u}\|^2}{\sigma^2}}$ is $V = (2\pi)^{D/2}\sigma$

In this case
$$p(\vec{X}) = \frac{S}{MV} = \frac{1}{M} \sum_{m=1}^{M} k(\vec{X} - \vec{x}_m)$$

This corresponds to placing a Gaussian at each training sample and summing the Tails at \vec{X} .

The probability for a value \vec{X} is the sum of the Gaussians.

In fact, we can choose any function $k(\vec{u})$ as kernel, provided that

$$k(\vec{u}) \ge 0$$
 and $\int k(\vec{u})d\vec{u} = 1$

K Nearest Neighbors

For K nearest neighbors, we hold S constant and vary V. (We have used the symbol S for the number of neighbors, rather than K to avoid confusion with the number of classes).

For each training sample, \vec{x}_m , we construct a tree structure (such as a KD Tree) that allows us to easily find the S nearest neighbors for any point.

To compute $p(\vec{X})$ we need the volume of a sphere in D dimensions that encloses the nearest S neighbors. Suppose the set of S nearest neighbors is the set $\{X_s\}$.

This is D dimensional sphere of radius $R = \arg \max_{\{X_s\}} \{ \|\vec{X} - \vec{x}_s\| \}$

$$V = \frac{\pi^{\frac{D}{2}}}{\Gamma(\frac{D}{2} + 1)} R^{D}$$

Where $\Gamma(D) = (D-1)!$

For even D this is easy to evaluate

For odd D, use a table to determine $\Gamma\left(\frac{D}{2}+1\right)$

Then as before:
$$p(\vec{X}) = \frac{S}{MV}$$

Probability Density Functions

A probability density function p(X), is a function of a continuous variable X such that

- 1) X is a continuous real valued random variable with values between $[-\infty, \infty]$
- $2) \qquad \int_{-\infty}^{\infty} p(X) = 1$

Note that p(X) is NOT a number but a continuous function.

A probability density function defines the relatively likelihood for a specific value of X. Because X is continuous, the value of p(X) for a specific X is infinitely small. To obtain a probability we must integrate over some range of X.

To obtain a probability we must integrate over some range V of X.

In the case of D=1, the probability that X is within the interval [A, B] is

$$P(X \in [A,B]) = \int_{A}^{B} p(x)dx$$

This integral gives a number that can be used as a probability.

Note that we use upper case $P(X \in [A,B])$ to represent a probability value, and lower case p(X) to represent a probability density function.

Classification using Bayes Rule can use probability density functions

$$P(\omega_k \mid X) = \frac{p(X \mid \omega_k)}{p(X)} P(\omega_k) = \frac{p(X \mid \omega_k) P(\omega_k)}{\sum_{i=1}^K p(X \mid \omega_i) P(\omega_i)}$$
 because $p(X) = \sum_{j=1}^K p(X \mid \omega_j) P(\omega_j)$

Note that the ratio $\frac{p(X \mid \omega_k)}{p(X)}$ IS a number, provided that $p(X) = \sum_{k=1}^{K} p(X \mid \omega_k) P(\omega_k)$

Probability density functions are easily generalized to <u>vectors of random variables</u>. Let $\vec{X} \in \mathbb{R}^D$, be a vector random variables.

A probability density function, $p(\vec{X})$, is a function of a vector of continuous variables

- 1) \vec{X} is a vector of D real valued random variables with values between $[-\infty, \infty]$
- $2) \qquad \int_{-\infty}^{\infty} p(\vec{x}) d\vec{x} = 1$