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Notation 
 
xd   A feature.  An observed or measured value.  
  

€ 

! 
X    A vector of D  features.   
D   The number of dimensions for the vector    

€ 

! 
X  

  

€ 

! y    A dependent variable to be estimated.  
ŷ = g(

!
X, "w)   A model that predicts    

€ 

! y  from   

€ 

! 
X .   

  

€ 

! w    The parameters of the model.  
  

€ 

{
! 
X m}  

€ 

{ym} Training samples for learning.  
M   The number of training samples.  

  

€ 

L( ! w ) =
1
2M

(ym − g(
! 
X m ,
! w ))2

m=1

M

∑  The average Loss for the function   

€ 

ˆ y = g(
! 
X , " w )  

   MSE Loss estimates the cost of errors as the Mean Square Error.  
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Perceptrons 
 

History 
The Perceptron is an incremental learning algorithm for linear classifiers invented by 
Frank Rosenblatt in 1956.   The first Perceptron was a room-sized analog computer 
that implemented Rosenblatz’s learning function for recognition. However, it was 
soon recognized that both the learning algorithm and the resulting recognition 
algorithm are easily implemented as computer programs.  
 
In 1969, Marvin Minsky and Seymour Papert of MIT published a book entitled 
“Perceptrons”, that claimed to document the fundamental limitations of the 
perceptron approach.  Notably, they claimed that a linear classifier could not be 
constructed to perform an “exclusive OR”. While this is true for a one-layer 
perceptron, it is not true for multi-layer perceptrons.  
 

The Perceptron Classifier 
The perceptron is an on-line learning algorithm that learns a linear decision boundary 
(hyper-plane) for separable training data.  If the training data is non-separable, the 
method will not converge, and must be stopped after a certain number of iterations.  
 
The Perceptron is an "on-line" learning algorithm. At any time, new training samples 
can be used to update the perceptron.   
 
The Perceptron algorithm uses errors in classifying the training data to update the 
decision boundary plane until there are no more errors.   
 
Assume a training set of M observations  

€ 

{
! 
X m}  of D features, with indicators variables, 

€ 

{ym} where 
 

 

  

€ 

! 
X m =

x1m

x2m

"
xDm

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 and  ym  = {–1, +1} 

 
The indicator variable, 

€ 

{ym},  tells the class label for each sample.  
For binary pattern detection,  
 ym =  +1 for examples of the target class (class 1) 
 ym =  –1 for all others (class 2) 
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The Perceptron will learn the coefficients for a linear boundary  
 

 

  

€ 

! w =

w1

w2

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  and b 

 

Such that for all training data, ,  
 
    

€ 

! w T
" 
X m + b  ≥ 0 for Class 1 and   

€ 

! w T
" 
X m + w0  < 0 for Class 2.  

 
Note that   

€ 

! w T
" 
X m + b ≥ 0  is the same as    

€ 

! w T
" 
X m ≥   −b .  

Thus b can be considered as a threshold on the product:   

€ 

! w T
" 
X m  

 

The decision function is the sgn() function:  

€ 

sgn(z) =
1 if z ≥ 0
−1 if z < 0
$ 
% 
& 

  

Where z =
!wT "Xm + b  

 
A training sample is correctly classified if:  
 
    

€ 

ym ⋅
! w T
" 
X m + b( ) ≥ 0    

 
The algorithm requires a learning rate,  η.  Typically set to a very small number such 
as η = 10-3
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The Perceptron Learning Algorithm  
 
The algorithm will continue to loop through the training data until it makes an entire 
pass without a single miss-classified training sample. If the training data are not 
separable then it will continue to loop forever.  
Algorithm:  
   

€ 

! w (0) ← 0; 

€ 

b (i )← 0,  i← 0 ; set η (for example η = 10-3) 
WHILE update DO 

  update ← FALSE; 
  FOR m = 1 TO  M  DO  
   IF  

  

€ 

ym ⋅
! w (i)T
" 
X m + b(i)( ) < 0  THEN  

    update ← TRUE 
    

!w(i+1)←
!w(i) +η ⋅ ym ⋅

!
Xm  

    b(i+1)← b(i) +η ⋅ ym  
    i ← i + 1  
   END IF 
  END FOR 
 END WHILE.  
 
Notice that the weights are a linear combination of training data that were incorrectly 
classified.  
 
The final classifier is:     if    

€ 

! w (i)T
" 
X m + b(i) ≥ 0  then P else N.   

 
If the data is not separable, then the Perceptron will not converge, and will continue 
to loop. Thus it is necessary to have a limit the number of iterations.  
 
The fact that the algorithm requires separable training data is a major weakness.  
This was later overcome by reformulating the algorithm using a soft decision surface 
and Gradient descent as explained below.  
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Gradient Descent 
Gradient descent is a first-order iterative optimization algorithm for finding the local 
minimum of a differentiable function. Gradient descent is a popular algorithm for 
estimating parameters for a large variety of models.    
 
The gradient of a scalar-valued differentiable function of several variables, f (

!
X)  is 

!
∇f (
"
X) = ∂ f (

"
X)

∂
"
X

=

∂ f (
"
X)

∂x1
∂ f (
"
X)

∂x2
#

∂ f (
"
X)

∂xD

"

#

$
$
$
$
$
$
$
$
$$

%

&

'
'
'
'
'
'
'
'
''

 

 
The gradient of a function f (

!
X)at a point 

!
X is the direction and rate of fastest increase 

or decrease (greatest slope). The direction of the gradient is the direction of greatest 
slope, the magnitude is the slope (rate of change) in that direction.  
 
To use gradient descent to estimate the parameters for a discriminant y = g(

!
X, "w) , we 

need to define a loss function.  A popular loss function is the Sum of squared errors. 
  
A popular loss for a model g(

!
X, "w)  with parameters !w  is the mean square error for a 

training set of M samples  

€ 

{
! 
X m}

€ 

{ym}:  
 

 L(
!
Xm{ }, ym{ },

!w) = 1
2M

(ym − g(
"
Xm,
!w)

m=1

M

∑ )2  

The gradient is the vector derivative with respect to the model parameters, !w .  
To find a local minimum of a function using gradient descent, we update the function 
by subtracting corrections proportional to the negative of the gradient of the function 
at the current point. The derivative of the loss is zero at the optimum   

€ 

! w  and positive 
for other values.  We can move to the optimum by subtracting a part of the derivative.   

 
For the best model, the gradient is zero.  

!
∇L(
"
Xm,
!w) = 0  

The model parameters   

€ 

! w  that minimize the loss are said to be “optimum”. Note that 
the parameters are only optimum for the training set.  A different training set may 
give a different optimum.  
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Non-linear decision Function 
In order to use Gradient Descent, we need to replace the decision function in the 
perceptron with a differentiable function f(z).  A popular choice for decision function 
is the sigmoid function:   

 σ (z) = 1
1+ e−z

   

 

 
 

This function changes the discriminant to g(
!
X, !w) =σ !wT

!
X( )   

 
The classifier is now   IF σ

!wT
!
X( ) ≥ 0.5  THEN  P ELSE N 

 
This changes our target variables to y ∈ {0, 1}.  
In this case, y easily generalized to the multiclass case K > 2 by writing y as a binary 
vector 

!y , with 1 for the target class and 0 elsewhere.  
 
Note that the derivative is:   dσ (z)

dz
=σ (z)(1−σ (z)) . We need this for the gradient. 

 

Homogenous Coordinate Notation for Linear Models 
 
Homogeneous coordinates provide a unified notation for geometric operations and is 
widely used in Computer Vision, Computer Graphics and Robotics.  
 

For the model, y = g(
!
X, "w) = !wT "X + b = w1x1 +w2x2 +...+wDxD + b  

 
The equation !wT !X + b = 0  is a hyper-plane in a D-dimensional space.   

€ 

! w is the normal 
to the plane. b is the perpendicular distance to the origin. 

 
With homogeneous coordinates, we add an additional constant term to the input 
feature vector   

€ 

! 
X . This allows us to include the bias in the model vector  

€ 

! w .  
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€ 

! 
X =

x1
"

xD

1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 and  

  

€ 

! w =

w1

"
wD

b

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
The linear model can then be expressed in homogeneous coordinates as: z =

!wT
!
X  

 z = !wT
!
X = w1 " wD b( )

x1
!
x2
1

!

"

#
#
#
##

$

%

&
&
&
&&

 

Loss Function 
 
Assume M samples of training data 

!
Xm  with indicator variables  ym  ∈ {0, 1}.  

 
The vector,

!
Xm , has D dimensions. The indicator ym, gives the expected result for the 

vector.  ym  ∈ {0, 1} 
 
For any training data sample   

€ 

! 
X m  for which the true value of the model, ym = g(

!
Xm,
!w) , 

is known, the error is the difference between the true value and the estimated value 
provided by the model.  
 
 δm = ym − g(

!
Xm,
"w)  

 
To estimate   

€ 

! w , we estimate the "Loss" function as the “Mean Square Error” (MSE).  
 
The loss for an individual sample is L(

!
Xm,
"w) = 1

2
δm
2 =
1
2
ym − g(

!
Xm,
"w)( )

2  

 
where we have included the term  

€ 

1
2

 to simplify the algebra.  

 
The average loss for the all M training samples, {  

€ 

! 
X m },  is:  

 

  L( !w) = 1
2M

δm
2

m=1

M

∑ =
1
2M

(ym − g(
!
Xm,
"w)

m=1

M

∑ )2  
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 The Gradient Descent Algorithm for Perceptron Learning 
 
We seek to estimate that parameters   

€ 

! w  for a model expressed in homogenous 
coordinates, from a training set of M samples  

€ 

{
! 
X m}

€ 

{ym}.  
 
The discriminant function (model) is    g(

!
X, !w) =σ !wT

!
X( )   

 
The classifier is    IF σ

!wT
!
X( ) ≥ 0.5  THEN  P ELSE N 

 
The error for any sample is:  δm = (ym −σ (

!wT "Xm ))  
The loss function is the sum of squared errors:  
 

 L( !w) = 1
2M

δm
2

m=1

M

∑ =
1
2M

(ym −σ (
!wT "Xm )

m=1

M

∑ )2  

  
To determine the optimum values for the parameters,   

€ 

! w , we will iteratively refine the 
model to reduce the loss function.  The gradient of the loss is the derivative of the 
loss with respect to each model parameter.  
 

 
!
∇L(
!
Xm,
!w) = ∂L(

!
Xm,
!w)

∂
!w

=

∂L(
!
Xm,
!w)

∂w1
∂L(
!
Xm,
!w)

∂w2
!

∂L(
!
Xm,
!w)

∂wD

"

#

$
$
$
$
$
$
$
$
$$

%

&

'
'
'
'
'
'
'
'
''

  

 
The gradient tells us how much to correct the model for each training sample,   

€ 

! 
X m .  

With  a bit of algebra and calculus we can show that the gradient of the loss is:  
 
 

!
∇L(
"
Xm,
!w) = ∂L(

!
Xm,
"w)

∂
!w

= − ym −σ (
!wT
!
Xm )( )

!
Xm  

 
which we can also write as   

€ 

! 
∇ L(
" 
X m ,
! w ) = −δm

! 
X m   because δm = (ym −σ (

!wT !Xm ))  
 
We can use the gradient to “correct” the model parameters for each training sample 
by  
 Δ

!wm = −δm
!
Xm  
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The correction is weighted by a (very small) learning rate “η” to stabilize learning.  
 
 

!w(i) =
!w(i−1) +ηΔ

!wm  
 
in the presence of noise.  
 
Each pass through the training data is referred to as an “epoch”. Gradient descent 
may require many epochs to reach an optimal (minimum loss) model.  
 

Batch mode 
 
The individual training sample are random noisy. Individual training samples will 
send the model in arbitrary directions.  While, updating with each sample will 
eventually converge, this tends to be costly. A more efficient approach is to correct 
the model with the average of a large set of training samples. This is called  “batch 
mode”.  
 

 
  

€ 

Δ
! w = 1

M
Δ
! w m

m=1

M

∑ =
1
M

δm

" 
X m

m=1

M

∑  

 
we then update the model with the average error.     

!w(i) =
!w(i−1) +ηΔ

!w  
 
It is common to divide the training data into “folds” and update with the average of 
each fold.  
 



Perceptrons and Gradient Descent  
 

11 

Feature Scaling 
For a training set   

€ 

{
! 
X m}  of M training samples with D values, if the individual features 

do not have a similar range of values, than large values will dominate the gradient.  
Small errors in this dimension are magnified.  
 
One way to assure sure that features have similar ranges is to normalize the training 
data.   A simple technique is to normalize the range of sample values.  
 

For example,   ∀m=1
M : xdm :=

xdm −min(xd )
max(xd )−min(xd )

 

 
 

  

 

 
 
After estimating the model, use max(xd )  and min(xd )  to project the data back to the 
original space.  
 
Gradient Descent Algorithm (Batch mode) 
Initialization:  (i=0)  and set   

€ 

! w (0) to some initial (random) vector.  
Choose some value for the learning rate η (typically 0.001) 
 
WHILE    

€ 

L( ! w (i+1) )− L( ! w (i) ) >  ε  DO 
  i ←i+1 

 Δ
!w(i) =

1
M

Δ
!wm
( i )

m=1

M

∑  where Δ !wm
( i ) = −δm

!
Xm = (ym − g(

"
Xm,
!w(i) ))

!
Xm  

 !w(i) =
!w(i−1) +ηΔw(i)  

 L( !w(i) ) = 1
2M

(ym – g(
"
Xm,
!w(i) )

m=1

M

∑ )2   

END 
 
The algorithm halts when the change in   

€ 

ΔL( ! w (i) ) becomes small:    

€ 

L( ! w (i) )− L( ! w (i−1) ) <  ε  
For some small constant 

€ 

ε .  (or after “N” iterations.) 
 
It is common to make many iterations through the training data.  Each pass through 
all the training data is called an epoch.  
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Stochastic Gradient Descent 
 
Gradient descent assumes that the loss function is convex. This depends on the 
training data. In many real examples, the Loss function is not completely convex but 
contains local minimum. 
 

 
 
With Stochastic gradient descent we choose a single training sample randomly and 
update the model with that sample. 
 
You can see the training data as creating a cloud of possible error vectors. Batch 
gradient descent steps by the average error from the cloud. While this is efficient, it 
can be trapped in local minima. Updating independently with each training data is 
less efficient, but less likely to be trapped in a local minima. 
 
 
 
 
 

 
 


