Intro to Keras

Hello world!

Nachwa Aboubakr

Overview

How to build your own Neural Network?
Keras Library.

First example.

Exercise: Recognition of handwritten digits.

How to build your own NN?

. Input X & OutputY ¢ Architecture

nature (fixed, sequential, ..), Type of layers, # of layers,
type, shape kernels size, ...

The task Tune hyperparameters
o regression, classification, ..., o Learning rate, batch size, # of
and therefore, your loss epochs, ...

function.

1. Specify Input (X) & Output (Y)

e [nput:
o Vector,
o n-D matrix,
o sequential data,
o Multimodal input, ...

e Output:
o discrete scalar,
o vector,
o n-D matrix,
o sequential output, ...

2. Define the task

A. Classification predictive modeling:

is the task of approximating a mapping function (f) from input variables (X) to discrete output
variables (y). The output variables are often called labels or categories. The mapping function
predicts the class or category for a given observation.

Dataset examples

G

- i

o
B

2. Define the task

e Aclassification problem requires that examples be
classified into one of two or more classes.

e A problem with two classes is often called a two-class
or binary classification problem.

e A problem with more than two classes is often called
a multi-class classification problem.

e A problem where an example is assigned to multiple
classes is called a multi-label classification
problem. , :

There are many ways to evaluate a classification predictive R i
model, but perhaps the most common is to calculate the | o
classification accuracy.

2. Define the task

B. Regression predictive modeling:

is the task of approximating a mapping function (f) from input variables (X) to a continuous output
variable (y). A continuous output variable is a real-value, such as an integer or floating point value.
These are often quantities, such as amounts and sizes. A regression predictive model predicts a
quantity, therefore to evaluate the model we report an error in those predictions.

Daily Ridership

250

200 1

150 -

100

50 -

o

Oct Jan Apr Jul Oct Jan
2013 2014

Datetime

2. Define the task

Computer Vision Tasks

Semantic Classification Object Instance
Classification =~ Segmentation + Localization Detection Segmentation

CAT GRASS, CAT, CAT DOG, DOG, CAT DOG, DOG, CAT
\ _ TREE,SKY ,, g A y
— Y Y ' A
Single Object No objects, just pixels Single Object Multiple Object

http://cs231n.stanford.edu/slides/2017/cs231n_2017 lecturell.pdf

Figure 1: Different computer vision tasks. Source: Introduction to Artificial Intelligence and Computer Vision Revolution
(https://www.slideshare.net/darian_f/introduction-to-the-artificial-intelligence-and-computer-vision-revolution).

3. Choose your Network Architecture

e Image related tasks:

o Convolutional Neural Networks (CNN)
e Time-series tasks:

o Recurrent Neural Networks (RNN)
e \Video/Audio related tasks:

o (?)

3. Choose your Network Architecture

e Image related tasks: Don't Reinvent

o Convolutional Neural Networks (CNN)

e Time-series tasks:
o Recurrent Neural Networks (RNN)

e Video/Audio related tasks:

o (?)

Many architectures have been
proposed in the literature.
Look for what suits your problem Perfect It

Design choices:
Transfer Learning is a machine Data and machine learning
learning technique where a model
trained on one task is re-purposed on a New Al methods
second related task. (deep learning)
Data Augmentation is the technique of
increasing the size of data used for
training a model.

o)
O
C
©
€
S
O

't
0

o

Amount of data

4. Start training...

e Observe the progress of your training.

e Tune Hyperparameters.
o Learning Rate
o Number of epochs

e Test and evaluate your model.
e Don't fall into an overfitting case!l. g

A
Best Testing Error
Complexity

Training Error

1 » Model Complexity
s

Existing Platforms

+ TensorFlow

Keras is a high-level neural networks API,
written in Python and capable of running on
top of TensorFlow, CNTK, or Theano. It was
developed with a focus on enabling fast
experimentation.

o Allows for easy and fast prototyping
(through user friendliness, modularity,
and extensibility).

e Supports both convolutional networks
and recurrent networks, as well as
combinations of the two.

[keras.io]

https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano

Sequential Model

The Sequential model is a linear stack of layers.

You can create a Sequential model by passing a list of layer instances to the
constructor:

from keras.models import Sequential
from keras.layers import Dense

model = Sequential([
Dense(32, input_shape=(784,), activation='relu’),
Dense(10, activation="softmax")

)

from keras.models import Sequential
model = Sequential()

from keras import layers

e Core layers:
o Dense layer: fully connected layer

Ps

Fully-connected layer

model.add(Dense(4, activation='softmax'))

from keras import layers

e Convolutional layers:

o Conv1D, Conv2D, Conv3D 4

o UpSampling1D, UpSampling2D...
| Convolved
mage Feature

model.add(Conv2D(filters=5, kernel_size=(3,3), activation='sigmoid'))

from keras import layers

e Pooling Layers:
o MaxPooling1D, MaxPooling2D, ...
o AveragePooling1D, AveragePooling2D, ...

Convolved Pooled

model.add(MaxPooling2D(pool_size=(8,8)))
feature feature

from keras.layers import activations

Activation layers in neural networks, takes a value that is passed through a
function which squashes the value into a range.

Sigmoid)

O'($) = H_%

tanh ‘
tanh(z) R

RelLU
max(0,)

Leaky ReLU ’
max(0.1z, x)

Maxout
max(w{ x + by, wlz + by)

ELU ”
T x>0
ale®—-1) z<0 - io

from keras.layers import activations

Softmax Sigmoid
e calculates the probabilities of each target e returns a real-valued output.
class over all possible target classes. e s often used as the activation function for
e s often used in the final layer of a neural artificial neurons.

network-based classifier.

@ = — !
012 = ——] id(x) =

i Zf___l - sigmoid(x) T g
model.add(Activation('softmax')) model.add(Activation('sigmoid'))

from keras import losses

A loss function or cost function is a function that maps values of one or more
variables onto a real number intuitively representing some associated "cost". An
optimization problem seeks to minimize a loss function.

The loss function lets us quantify the quality of any particular set of parameters (weights W
and biases B). Some available loss functions:

mean_squared_error
mean_absolute_error

[J
[]
®
e categorical_crossentropy
e binary_crossentropy

[]

from keras import optimizers

The goal of optimization is to find the set of parameters (W and B) that
minimizes the loss function.

Some available optimizer:

Algorithm Gradient Descent

SGD #Stochastic gradient descent optimizer. e Vg F(0,1)

-1 ==
AdaGrad #Adaptive gradient descent optimizer 0, « 6,_, —ng
RMSProp

Adam #adaptive moment estimation

Source: Dozat, Timothy. "Incorporating nesterov momentum into adam." (2016).

from keras import optimizers

The goal of optimization is to find the set of parameters (W and B) that
minimizes the loss function.

Some available optimizer:

Algorithm Classical Momentum

SGD #Stochastic gradient descent optimizer. g« Vo f(6i_1)
AdaGrad #Adaptive gradient descent optimizer m, « pum,_; +g
RMSProp 0, 0, —nm,

Adam #adaptive moment estimation

Source: Dozat, Timothy. "Incorporating nesterov momentum into adam." (2016).

from keras import optimizers

The goal of optimization is to find the set of parameters (W and B) that
minimizes the loss function.

Some available optimizer:

Algorithm AdaGrad

e SGD #Stochastic gradient descent optimizer. BN (0e)
e AdaGrad #Adaptive gradient descent optimizer n, — n_) +g’

e RMSProp 0, —0,_;— n—ﬁ%
e Adam #adaptive moment estimation

[J

Source: Dozat, Timothy. "Incorporating nesterov momentum into adam." (2016).

from keras import optimizers

The goal of optimization is to find the set of parameters (W and B) that
minimizes the loss function.

Some available optimizer:

Algorithm RMSProp

e SGD #Stochastic gradient descent optimizer. g <« Vo, f(6,-1)

e AdaGrad #Adaptive gradient descent optimizer n, < vn_ +(1—-v)g
e RMSProp 0r 0r—1 — N7

e Adam #adaptive moment estimation

[]

Source: Dozat, Timothy. "Incorporating nesterov momentum into adam." (2016).

from keras import optimizers

The goal of optimization is to find the set of parameters (W and B) that
minimizes the loss function.

Some available optimizer:

Algorithm Adam

e SGD #Stochastic gradient descent optimizer. g« Vo f(6,_1)

e AdaGrad #Adaptive gradient descent optimizer m, — pm; +(1—p)g
e RMSProp M, l_iu,

e Adam #adaptive moment estimation n, <« v+ (1 —v)g?
° fi, — 13",:

Source: Dozat, Timothy. "Incorporating nesterov momentum into adam." (2016).

from keras import applications

Keras Applications are deep learning models that are made available

alongside pre-trained weights. These models can be used for prediction,
feature extraction, and fine-tuning.

e Xcepton °® InceptionResNetV2
e VGG16 e MobileNet

e VGG19 e DenseNet

e ResNetso ® NASNet

e InceptionV3

from keras.applications.vgg16 import VGG16

model = VGG16(weights='imagenet', include_top=True)

from keras import data augmentation

— ’ —

Image Augmentation is the
process of taking images that are
already in a training dataset and
manipulating them to create
many altered versions of the
same image.

from keras import data augmentation

Generate batches of tensor image data with real-time data augmentation. The
data will be looped over (in batches) indefinitely.

datagen = ImageDataGenerator(
featurewise std normalization=True,
rotation_range=20,
width_shift_range=0.2,
height_shift range=0.2,
horizontal_flip=True)

datagen.fit(x_train)

for x, y in datagen.flow(x_train, y_train, batch_size=32):

from keras import wrap-up!

model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation(sigmoid))

opt = Adam(Ir=0.01)
model.compile(loss="categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])

model.fit(x_train, y_train,
epochs=20,
batch_size=32)
score = model.evaluate(x_test, y test, batch size=32)

label = 2 label =1 label = 3 label =1 label = 4

)
o
o
I

o

28 x 28 = 784

https://docs.google.com/file/d/1jPXFu8ZnDKYKVm9xgfbvOT7KPJrclSkD/preview

Useful links:

Conda: https://docs.conda.io/en/latest/miniconda.html

Install keras: https://anaconda.org/conda-forge/keras

Keras Docs: https://keras.io/

MNIST dataset: http://yann.lecun.com/exdb/mnist/

If you have any question, feel free to contact me

e nachwa.aboubakr@inria.fr

https://docs.conda.io/en/latest/miniconda.html
https://anaconda.org/conda-forge/keras
https://keras.io/
http://yann.lecun.com/exdb/mnist/

