Intro to Keras

Hello world!

Nachwa Aboubakr

Overview

- How to build your own Neural Network?
- Keras Library.
- First example.
- Exercise: Recognition of handwritten digits.

How to build your own NN?

Input X & Output Y

nature (fixed, sequential, ..), type, shape

Architecture

Type of layers, # of layers, kernels size, ...

The task

regression, classification, ..., and therefore, your loss function.

Tune hyperparameters

Learning rate, batch size, # of epochs, ...

1. Specify Input (X) & Output (Y)

• Input:

- Vector,
- n-D matrix,
- sequential data,
- Multimodal input, ...

Output:

- discrete scalar,
- vector,
- o n-D matrix,
- o sequential output, ...

A. <u>Classification predictive modeling:</u>

is the task of approximating a mapping function (f) from input variables (X) to discrete output variables (y). The output variables are often called labels or categories. The mapping function predicts the class or category for a given observation.

- A classification problem requires that examples be classified into one of two or more classes.
- A problem with two classes is often called a two-class or binary classification problem.
- A problem with more than two classes is often called a multi-class classification problem.
- A problem where an example is assigned to multiple classes is called a multi-label classification problem.

There are many ways to evaluate a classification predictive model, but perhaps the most common is to calculate the classification accuracy.

B. Regression predictive modeling:

is the task of approximating a mapping function (f) from input variables (X) to a continuous output variable (y). A continuous output variable is a real-value, such as an integer or floating point value. These are often quantities, such as amounts and sizes. A regression predictive model predicts a quantity, therefore to evaluate the model we report an error in those predictions.

Computer Vision Tasks

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

Figure 1: Different computer vision tasks. Source: Introduction to Artificial Intelligence and Computer Vision Revolution (https://www.slideshare.net/darian f/introduction-to-the-artificial-intelligence-and-computer-vision-revolution).

3. Choose your Network Architecture

- Image related tasks:
 - Convolutional Neural Networks (CNN)
- Time-series tasks:
 - Recurrent Neural Networks (RNN)
- Video/Audio related tasks:
 - o (?)

3. Choose your Network Architecture

- Image related tasks:
 - Convolutional Neural Networks (CNN)
- Time-series tasks:
 - Recurrent Neural Networks (RNN)
- Video/Audio related tasks:
 - o (?)

Many architectures have been proposed in the literature.

Look for what suits your problem

Don't Reinvent

Perfect It

3. Choose your Network Architecture

- Design choices:
- Transfer Learning is a machine learning technique where a model trained on one task is re-purposed on a second related task.
- **Data Augmentation** is the technique of increasing the size of data used for training a model.

4. Start training ...

- Observe the progress of your training.
- Tune Hyperparameters.
 - Learning Rate
 - Number of epochs
- Test and evaluate your model.
- Don't fall into an overfitting case!.

Keras

Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation.

- Allows for easy and fast prototyping (through user friendliness, modularity, and extensibility).
- Supports both convolutional networks and recurrent networks, as well as combinations of the two.

[keras.io]

Sequential Model

The **Sequential** model is a linear stack of layers.

You can create a **Sequential** model by passing a list of layer instances to the constructor:

```
from keras.models import Sequential
from keras.layers import Dense

model = Sequential([
    Dense(32, input_shape=(784,), activation='relu'),
    Dense(10, activation='softmax')
])
from keras.models import Sequential
model = Sequential()
```

from keras import layers

- Core layers:
 - Dense layer: fully connected layer

model.add(Dense(4, activation='softmax'))

Fully-connected layer

from keras import layers

- Convolutional layers:
 - Conv1D, Conv2D, Conv3D
 - UpSampling1D, UpSampling2D...

$\begin{array}{c ccccc} O_{x_0} & I_{x_1} & I_{x_0} & 1 & 0 \\ \hline O_{x_1} & O_{x_0} & I_{x_1} & 1 & 1 \\ \hline O & O & 1 & 1 & 0 \\ \hline O & 1 & 1 & O & 0 \\ \end{array}$	1,	1,0	1,	0	0
0 4 4 0 0	O ×0	1,	1,0	1	0
0 4 4 0 0	0,1	0,0	1,1	1	1
0 1 1 0 0	0	0	1	1	0
	0	1	1	0	0

Image

Convolved Feature

model.add(Conv2D(filters=5, kernel_size=(3,3), activation='sigmoid'))

from keras import layers

- Pooling Layers:
 - MaxPooling1D, MaxPooling2D, ...
 - AveragePooling1D, AveragePooling2D, ...

model.add(MaxPooling2D(pool_size=(8,8)))

Convolved feature

Pooled feature

from keras.layers import activations

Activation layers in neural networks, takes a value that is passed through a function which *squashes* the value into a range.

from keras.layers import activations

Softmax

- calculates the probabilities of each target class over all possible target classes.
- is often used in the final layer of a neural network-based classifier.

$$\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

Sigmoid

- returns a real-valued output.
- is often used as the activation function for artificial neurons.

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

model.add(Activation('softmax'))

model.add(Activation('sigmoid'))

from keras import losses

A **loss function** or **cost function** is a function that maps values of one or more variables onto a real number intuitively representing some associated "cost". An optimization problem seeks to minimize a loss function.

The loss function lets us quantify the quality of any particular set of parameters (weights **W** and biases **B**). Some available loss functions:

- mean_squared_error
- mean_absolute_error
- ...
- categorical_crossentropy
- binary_crossentropy
- ..

The goal of optimization is to find the set of parameters (**W** and **B**) that minimizes the loss function.

- SGD #Stochastic gradient descent optimizer.
- AdaGrad #Adaptive gradient descent optimizer
- RMSProp
- Adam #adaptive moment estimation
- ...

Algorithm	Gradient Descent	
$\mathbf{g}_t \leftarrow \nabla_{\boldsymbol{\theta}_{t-}}$		
$\theta_t \leftarrow \theta_{t-}$	$_{1}-\eta\mathbf{g}_{t}$	

The goal of optimization is to find the set of parameters (**W** and **B**) that minimizes the loss function.

- SGD #Stochastic gradient descent optimizer.
- AdaGrad #Adaptive gradient descent optimizer
- RMSProp
- Adam #adaptive moment estimation
- ...

Algorithm	Classical Momentum	
$\mathbf{g}_t \leftarrow \nabla_{\theta_{t-}}$	$_{1}f(\boldsymbol{\theta}_{t-1})$	
$\mathbf{m}_t \leftarrow \mu \mathbf{m}$	$\mathbf{q}_{t-1} + \mathbf{g}_t$	
$\theta_t \leftarrow \theta_{t-1}$	$-\eta \mathbf{m}_t$	

The goal of optimization is to find the set of parameters (**W** and **B**) that minimizes the loss function.

- SGD #Stochastic gradient descent optimizer.
- AdaGrad #Adaptive gradient descent optimizer
- RMSProp
- Adam #adaptive moment estimation
- ...

Algorithm	AdaGrad	
$\mathbf{g}_t \leftarrow \nabla_{\boldsymbol{\theta}_{t-}}$		
$\mathbf{n}_t \leftarrow \mathbf{n}_{t-1}$	$+\mathbf{g}_{t}^{2}$	
$\theta_t \leftarrow \theta_{t-}$	$1 - \eta rac{\mathbf{g}_t}{\sqrt{\mathbf{n}_t} + \mathbf{\epsilon}}$	

The goal of optimization is to find the set of parameters (**W** and **B**) that minimizes the loss function.

- SGD #Stochastic gradient descent optimizer.
- AdaGrad #Adaptive gradient descent optimizer
- RMSProp
- Adam #adaptive moment estimation
- ...

Algorithm	RMSProp	
$\mathbf{g}_t \leftarrow \nabla_{\theta_{t-}}$	$_{1}f(\boldsymbol{\theta}_{t-1})$	
$\mathbf{n}_t \leftarrow \mathbf{v} \mathbf{n}_t$	$_{-1} + (1 - v)\mathbf{g}_{t}^{2}$	
$\theta_t \leftarrow \theta_{t-1}$	$1-\eta rac{\mathbf{g}_{t}}{\sqrt{\mathbf{n}_{t}}+arepsilon}$	

The goal of optimization is to find the set of parameters (**W** and **B**) that minimizes the loss function.

- SGD #Stochastic gradient descent optimizer.
- AdaGrad #Adaptive gradient descent optimizer
- RMSProp
- Adam #adaptive moment estimation
- ...

Algorithm Adam	
$\mathbf{g}_t \leftarrow \nabla_{\boldsymbol{\theta}_{t-1}} f(\boldsymbol{\theta}_{t-1})$	
$\mathbf{m}_t \leftarrow \mu \mathbf{m}_{t-1} + (1 -$	$-\mu$) \mathbf{g}_{t}
$\hat{\mathbf{m}}_t \leftarrow \frac{\mathbf{m}_t}{1-\mu^t}$	
$\mathbf{n}_t \leftarrow \mathbf{v} \mathbf{n}_{t-1} + (1 - \mathbf{v})$	$(v)\mathbf{g}_t^2$
$\hat{\mathbf{n}}_t \leftarrow \frac{\mathbf{n}_t}{1-V^t}$	
$ heta_t \leftarrow heta_{t-1} - \eta rac{\hat{\mathbf{m}}_t}{\sqrt{\hat{\mathbf{n}}_t} + \epsilon}$	$\overline{arepsilon}$

from keras import applications

Keras Applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

- Xception
- VGG16
- VGG19
- ResNet50
- InceptionV3

- InceptionResNetV2
- MobileNet
- DenseNet
- NASNet

from keras.applications.vgg16 import VGG16

model = VGG16(weights='imagenet', include_top=**True**)

from keras import data augmentation

Image Augmentation is the process of taking images that are already in a training dataset and manipulating them to create many altered versions of the same image.

from keras import data augmentation

Generate batches of tensor image data with real-time data augmentation. The data will be looped over (in batches) indefinitely.

```
datagen = ImageDataGenerator(
  featurewise std normalization=True,
  rotation range=20,
  width shift range=0.2,
  height shift range=0.2,
  horizontal flip=True)
datagen.fit(x train)
for x, y in datagen.flow(x train, y train, batch size=32):
```

from keras import wrap-up!

```
model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation(sigmoid))
opt = Adam(Ir=0.01)
model.compile(loss='categorical crossentropy',
        optimizer=opt,
        metrics=['accuracy'])
model.fit(x train, y train,
      epochs=20,
      batch size=32)
score = model.evaluate(x_test, y_test, batch_size=32)
```

Exercise: handwritten digits

Exercise: handwritten digits

Exercise: handwritten digits

Useful links:

Conda: https://docs.conda.io/en/latest/miniconda.html

Install keras: https://anaconda.org/conda-forge/keras

Keras Docs: https://keras.io/

MNIST dataset: http://yann.lecun.com/exdb/mnist/

If you have any question, feel free to contact me

• nachwa.aboubakr@inria.fr