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1. Describing Appearance with Local Features 
 
1.1. Local Invariant descriptions of Appearance  
 
For a computer, an image is just a meaningless table of numbers.  To detect, track or 
recognize phenomena, we need to construct a description of contents in the image. 
Ideally this description should be local, invariant and multi-scale.   
 
Information that can be perceived in an image is referred to as "phenomena". 
Phenomena may be found many scales in an image. 
 
Scale and Resolution 
Scale refers to the unit of measure to describe space. On a sheet of paper, we measure 
scale with centimeters. In a city, we measure position in kilometers.  If we print a 
map of a city on a paper, we specify the "scale" of the map to tell how many cm 
represent a km.  
 
Resolution is the ability to "resolve" detail.  In a high-resolution map of the city, you 
can "resolve" small details such as sidewalks and entrances to buildings. In a low-
resolution version, we can only resolve large structures such as roads and buildings.  
 
Multi-scale vs Multi-resolution descriptions 
A low-resolution map of a city will give global structure such as relative position of 
rivers, highways and neighborhoods.   A low-resolution description provides context 
for high-resolution details such as streets and buildings.  This shows the importance 
of description at multiple scales.  
 
We will work with sampled images. The sample rate (distance between pixels) 
determines the scale of an image and sets a lower bound on the resolution. We will 
see in this lecture that we can oversample an image and obtain a low resolution image 
independent of scale.  
 
Locality 
Information (phenomena) appear in an image over a range of scales and positions.  
A position in an image and its immediate neighborhood are referred to as a "locality".  
The size of the neighborhood depends on both scale and resolution.  
Typically, the neighborhood is expressed in "pixels".  The sample rate (or sample 
size, or pixel size) determines the scale of the neighborhood.   
 
Today, we will look at the question: How many pixels should be used to represent a 
local image neighborhood. The number of samples determines the maximum 
information that can be represented.  
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Appearance 
Appearance is what you see. For an image, appearance refers to the structures that we 
can describe in the image.  We seek a description of appearance that will not change 
when the appearance changes in position, orientation, or scale.  We refer to such a 
description as invariant.    
 
Position, orientation and scale of appearance will change in predictable ways as a 
camera moves, or as objects moves.  We seek a description that is position invariant 
(shift invariant), orientation invariant and scale invariant so that we obtain the same 
decription independent of the relative position of the object.  
 
1.2. Describing Local Appearance with Receptive Fields 
Consider an image P(i, j). Ideally we want to describe local appearance with a set of 
local functions, that describe the "appearance" around a point in an image. In the 
biological literature, these functions are called “receptive fields”.  
 
Ideally we should have a family of k such functions, 

€ 

fk x, y( ) (x and y are integers). 
Each receptive field, 

€ 

fk x, y( ) responds to some local pattern of appearance at an image 
position   (i,j)  by providing a feature value, 

€ 

ak (i, j)  
 

 

  

€ 

! 
A (i, j) =

a1
a2
...
aK

" 

# 

$ 
$ 
$ 
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% 
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The features values are computed by convolution of the receptive field functions 
with the image: 
 

 ak (i, j) = fk*P(i, j) = P(i− x, j − y) fk (x, y)
y=−R

R

∑
x=−R

R

∑  

 
The value R is a radius that determines the locality for the feature.  
Note in this class, we will NEVER use * for multiplication.  
We can find examples of such functions in the human visual cortex. 
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1.3. The Mammalian Visual Cortex 
 
The Visual Cortex of mammals is composed of multiple layers of retinotopic maps.  
Each map is an image of the retina projected onto (convolved with) a receptive field 
at different scales and orientations.  
 

 
 
The of Retino-topic maps occur over a range of scales and orientations 
 

 
  

Scene Retina (Right Eye) Visual Cortex area V1 
 
1.4. Receptive Fields in the Visual Cortex 
 
In 1968, Hubel and Wiesel probed the visual cortex of a cat with electrodes and 
found layers of cells that responded to local patterns of stimulation. They discovered 
that the visual cortex is composed of a series of layers. Each layer is a map of the 
retina filtered by a “receptive field” that respond to a certain pattern over a narrow 
range of sizes and orientations.  
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The patterns at the lowest level look like these:  
 

      
      

 

    
    

 
Each layer is a specific pattern at a specific orientation and scale.   
 

  
1st order Gaussian derivatives at 3 scales 2nd order Gaussian Derivatives at 3 scales 

This figure shows first and second order Gaussian derivative features from 3 scales, computed using 
sums and differences of adjacent samples in a half-octave Gaussian pyramid. 

 
The first level receptive fields were found to be local filters that pass a narrow range 
of spatial frequencies. The first layer receptive fields were found to be modeled by  
Gabor functions (Gaussian modulated by a Cosine plus an imaginary Sin).  
 
The first layer receptive fields can also be modeled multi-scale derivatives of 
Gaussians functions.  These two representations are very similar. However, Gabor 
functions can be very expensive to convolve with an image. Multi-scale Gaussian 
derivatives can convolved very efficiently because of a number mathematical 
properties that we will discuss below.   
 
As they moved up the visual cortex, Hubel and Weisel found that these patters were 
combined to form more complex patterns, such as corners, bars, crosses, etc. These 
were named "complex" receptive field.   
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It is possible to learn receptive fields for local image description using back-
propagation. This is useful for tuning a system to a specific problem domain. 
However, the general case of vision in the real world, this can require a very large set 
of training data and computing time.  
 
Researchers in several different communities have found that as the variety of 
training data increases, the learned receptive fields converge to Gaussian Derivative 
Functions.  This result has been demonstrated by researchers in both machine 
learning and computer vision, since the 1990's.  
 

2. Using the Gaussian Function to Compute Image Derivatives 
For a variety of reasons, derivatives of the Gaussian function emerge as general local 
image features.   Chief among these are invariance to affine transformations.   
 
In addition, using a well-defined mathematical function for receptive fields makes it 
possible to predict and explain system behavior, AND to avoid the very high cost of 
learning general functions. Gaussian functions also make possible a highly efficient 
computation for the lower levels of a deep network for image recognition.  
 
In the next two lectures we will see how to use Gaussian derivatives to define general 
purpose receptive fields for image descriptions that are invariant to scale, orientation, 
and illumination, and robust to changes in viewing direction and illumination color.  
 
2.1. The Gaussian Function 

The Gaussian Function is   

€ 

G(x,σ ) = e
−
x2

2σ 2
 

 
The standard deviation, σ, is often referred to as the scale of the Gaussian. Scale 
determines the size (spatial extent) of the locality of the description.  
 
The Gaussian function is invariant to affine transformations.   
 
 Ta{G(x, y, σ) }  = G(Ta{x}, Ta{y},Ta{σ})  
 
This  invariance is a consequence of the fact that Gaussian functions are based on 
moments, and moments are affine invariant.  
 
This is just one of the many interesting properties of the Gaussian function that make 
them very well suited as a basis function for local image description.  
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2.2. Gaussian Derivative Operators 

The Gaussian function is:  

€ 

G(x,σ ) =
1
2πσ

e
−
x2

2σ 2  

Fourier Transform:  

€ 

F{e
−

x2

2σ 2 } = G(ω,σ ) = 2π σ e
−
1
2
σ 2ω 2

 
 
Scale property:   

€ 

G(x, 2σ ) =G(x,σ )∗G(x,σ ) 
 
Derivatives:   

€ 

∂G(x,σ )
∂x

= – x
σ 2 G(x,σ ) =Gx (x,σ ) 

   

€ 

∂ 2G(x,σ )
∂x2

=
x2 −σ 2

σ 4 G(x,σ ) =Gxx (x,σ ) 

   

€ 

∂ 3G(x,σ )
∂x3

=
x3 − xσ 2

σ 6 G(x,σ ) =Gxxx (x,σ ) 

 
Note that the derivative of a Gaussian "contains" the original Gaussian.  
Derivatives are modulated Gaussians!  
 
2.3. 2D Gaussian functions 

2D Gaussian Kernel:     

€ 

G(x, y,σ ) =
1

2πσ 2 e
−
(x2+y2 )
2σ 2

 

Separability:  G(x, y,σ ) = 1
2πσ 2 e

−
(x2+y2 )
2σ 2 =

1
2πσ

e
−
x2

2σ 2 ⋅
1
2πσ

e
−
y2

2σ 2  

But also  

€ 

G(x, y,σ ) =
1

2πσ 2 e
−
(x2+y2 )
2σ 2 =

1
2πσ

e
−
x2

2σ 2 ∗
1
2πσ

e
−
y2

2σ 2

 

 
The convolution reduces to a product because the two components are orthogonal. 
(Different free variables.) 
 
This means that a convolution with a 2D Gaussian (O(N2) operations) can be 
computed a sequence of 2 convolutions with 1D Gaussians  O(N operations).  
 
Scale property:  G(x, y,σ )∗G(x, y,σ ) =G(x, y, 2σ )  

In General  G(x, y,σ1)∗G(x, y,σ 2 ) =G(x, y, σ1
2 +σ 2

2 )  
 
The convolution of a two Gaussians yields a scaled Gaussian.   
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Derivatives:   

€ 

∂G(x, y,σ )
∂x

= – x
σ 2 G(x, y,σ ) =Gx (x, y,σ ) 

   

€ 

∂G(x, y,σ )
∂y

= – y
σ 2 G(x, y,σ ) =Gy(x, y,σ )  

   

€ 

∂ 2G(x, y,σ )
∂x2

=
x2 −σ 2

σ 4 G(x, y,σ ) =Gxx (x, y,σ ) 

   

€ 

∂ 2G(x, y,σ )
∂x∂y

=
xy
σ 4 G(x, y,σ ) =Gxy(x, y,σ ) 

   

€ 

∂ 3G(x, y,σ )
∂x3

=
x3 − xσ 2

σ 6 G(x, y,σ ) =Gxxx (x, y,σ ) 

 
The Laplacian of the Gaussian:   

€ 

∇2G(x, y,σ ) =Gxx (x, y,σ )+Gyy(x, y,σ )  
 

The Diffusion Equation:    

€ 

∇2G(x, y,σ ) =
∂ 2G(x, y,σ )

∂x2
+
∂ 2G(x, y,σ )

∂y2
=
∂G(x, y,σ )

∂σ
 

 
As a consequence:   

€ 

∇2G(x, y,σ ) ≈ G(x, y,σ1) –G(x, y,σ 2 )( )  
 
This is called a Difference of Gaussian (DoG) and typically requires   σ1≥ 1.4 σ2 
It is common to use:  

€ 

∇2G(x, y,σ ) ≈ G(x, y, 2σ )−G(x, y,σ ) 
 
But note that from the scale property:   

€ 

G(x, y, 2σ ) ≈ G(x, y,σ )*G(x, y,σ )  
 
so that  

€ 

∇2G(x, y,σ ) ≈ G(x, y,σ )*G(x, y,σ )−G(x, y,σ ) 
 
(note - this requires that G(x,y,σ) to be normalized to sum to 1. 
 
We can use these functions to create a basis set of receptive fields for appearance 
 
  G = (Gx, Gy, Gxx, Gxy, Gyy, Gxxx, Gxxy, Gxyy, Gyyy)  
 

    
 

    
The Gaussian receptive fields Gx, Gy, Gxx, Gxy, Gyy, Gxxx, Gxxy, Gxyy, Gyyy. 
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2.4. Sampled Gaussian Derivative Filters in 1D. 
 
To work with images on a computer we need sampled Gaussians.  
We can do this by replacing the continuous variable x by a discrete integer n.  
Attention. THIS has consequences that we will see below!!!   
 
The sampled Gaussian and its derivatives are:  

 

€ 

G(n,σ ) = e
−
n 2

2σ 2  
 

 

€ 

Gx (n,σ ) = – n
σ 2 G(n,σ ) = – n

σ 2 e
−
n2

2σ 2
  

 

 

€ 

Gxx (n,σ ) =
n2 −σ 2

σ 4 G(n,σ ) =
n2 −σ 2

σ 4 e
−
n2

2σ 2  

  

 

€ 

Gxxx (n,σ ) = – n
3 − nσ 2

σ 6 G(n,σ ) = – n
3 − nσ 2

σ 6 e
−
n2

2σ 2  

 
Note that there is only one parameter: σ. This determines the limit of the resolution 
for the position of a contrast point.  
 
Note the scale parameter σ determines the "resolution" of the derivatives.  
You MUST specify σ. The smallest σ is not always the best.  
Many computer vision algorithms give unpredictable results because the researchers 
forget to specify the scale σ at which the algorithm was validated. 
 
2.5. The 2D Sampled Gaussian Function  

The 2D Gaussian Receptive Field is : 

€ 

G(i, j,σ ) =
1
B
WN (i, j) ⋅ e

−
(i2+ j 2 )
2σ 2  

where 

 

€ 

wN (i, j) =
1     for - R ≤ i ≤ R and – R ≤ j≤ R
0    otherwise                                 
# 
$ 
% 

 

 
 Finite window, wN(i, j)  has  N2 = (2R+1)2 coefficients 
 
 Typically:   for R should be ≥ 3σ . Recommend R=4σ  
 

 The normalization factor  

€ 

B =
x=−R

R

∑ e
−
(i2+ j 2 )
2σ 2

y=−R

R

∑ ≈ 2πσ  
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2.6. Using the Gaussian to compute image derivatives 
 
For an image p(i,j), the derivatives can be approximated by convolution with 
Derivatives of Gaussians.   
 
 

€ 

∂p(i, j)
∂x

*G(x, y) =
∂
∂x
* p(i, j)*G(x, y) =

∂
∂x
*G(x, y)* p(i, j) =

∂G(x, y)
∂x

* p(i, j)  

 
Thus we can approximate an image derivative as px (i, j) ≈Gx * p(i, j)  
By substituting (i,j) for (x,y). (Note that the derivative order is x). 
 
px (i, j) ≈ p*Gx (i, j) = p(i, j)*Gx (i, j) =Gx * p(i, j)  
 
IMPORTANT: To compute Gx, it is NECESSARY to specify σ.   
This determines the "resolution" of the derivative. 
 
Small σ is not necessarily best.     
  
 px (i, j,σ ) ≈Gx (x, y,σ )* p(i, j) =Gx (σ )* p(i, j)  
 
Similarly:  py (i, j,σ ) ≈Gy (σ )* p(i, j)  
  pxx (i, j,σ ) ≈Gxx (σ )* p(i, j)  
  pxy (i, j,σ ) ≈Gxy (σ )* p(i, j)  
  pyy (i, j,σ ) ≈Gyy (σ )* p(i, j)  
 
The Gradient of the image   

€ 

! 
∇ p(i, j) is calculated by 

!
∇G(σ )* p(i, j)    

 

where  
  

€ 

! 
∇ G(σ ) =

Gx (σ )
Gy(σ )
$ 

% 
& 

' 

( 
)     This gives:  

 

Gradient: 
  

€ 

! 
∇ p(i, j,σ ) =

px (i, j,σ )
py(i, j,σ )
$ 

% 
& 

' 

( 
) ≈
! 
∇ G(σ )* p(i, j) =

Gx (σ )
Gy(σ )
$ 

% 
& 

' 

( 
) * p(i, j) 

  
Laplacien:  
 
 

€ 

∇2p(i, j,σ ) =∇2G(σ )* p(i, j) = pxx (i, j,σ )+pyy(i, j,σ ) ≈ Gxx (σ )* p(i, j)+Gyy(σ )* p(i, j) 
 
To use Gaussian functions to describe images we need to sample the Gaussian and 
limit its extent. That is, we must define Gaussian Filters.  
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3. Image Description Using Gaussian Derivatives  
 
3.1. Multi-Resolution Image Gradient 
 
The Gradient of the image   

€ 

! 
∇ p(i, j) is calculated by   

€ 

! 
∇ G(σ )* p(i, j)   

 

where  
  

€ 

! 
∇ G(σ ) =

Gx (σ )
Gy(σ )
$ 

% 
& 

' 

( 
)      

 

The gradient of the image is:   
  

€ 

! 
∇ p(i, j,σ ) =

px (i, j,σ )
py(i, j,σ )
$ 

% 
& 

' 

( 
) ≈
! 
∇ G(σ )* p(i, j) =

Gx (σ )* p(i, j)
Gy(σ )* p(i, j)
$ 

% 
& 

' 

( 
)  

  
The second derivative of the image (the Laplacien) is:  
 

€ 

∇2p(i, j,σ ) =∇2G(σ )* p(i, j) = pxx (i, j,σ )+pyy(i, j,σ ) ≈ Gxx (σ )* p(i, j)+Gyy(σ )* p(i, j) 
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3.2. Steerability of Gaussian Derivatives.  
 
It is possible to synthesize an oriented derivative at any point as a weighted sum of 
derivatives in perpendicular directions. The weights are given by sine and cosine 
functions. The weights are given by sine and cosine functions.  
 
 

€ 

Gx
θ (x, y,σ ) = cos(θ ) ⋅Gx (x, y,σ )+  sin(θ) ⋅Gy(x, y,σ ) 

 
Higher order derivatives can also be steered.  
 
Thus:  
 
1st order 

€ 

px
θ (i, j,σ ) =Cos(θ )px (i, j,σ )+ Sin(θ )py(i, j,σ ) 

2nd order 

€ 

pxx
θ (i, j,σ ) =Cos(θ )2 pxx (i, j,σ )+ 2Cos(θ )Sin(θ)pxy(i, j,σ )+ Sin(θ)

2 pyy(i, j,σ ) 
3rd order 
 

€ 

pxxx
θ (i, j,σ ) =Cos(θ)3 pxxx (i, j,σ )+ 3 ⋅Cos(θ )

2Sin(θ)pxxy(i, j,σ )+ 3 ⋅Cos(θ)Sin(θ )
2 pxyy(i, j,σ )+ Sin(θ )

3 pyyy(i, j,σ )
 
By steering the derivatives to the local orientation, we obtain an "invariant" measure 
of local contrast. We can also "steer" in scale to obtain invariance to size.  
 
Note, we can NOT steer the mixed derivatives, i.e   pxy(i, j, σ) 
 
3.3. Intrinsic Orientation  
 
For each pixel, one can calculate the orientation of maximal gradient. This orientation 
is equivariant with rotation. One can use this as an "intrinsic" orientation to normalize 
the receptive fields at any point in the image. 
 

Local orientation: 

€ 

θi(x,y,σ ) = Tan−1(
Gy ⋅ P(x,y,σ)
Gx ⋅ P(x,y,σ)

)  

 
Note that local orientation depends on σ! 
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3.4. The Laplacian of the Gaussian and the DoG 
    
The Laplacian of Gaussian is a scalar value:  
 
  

€ 

∇2G(x, y,σ ) =Gxx (x, y,σ )+Gyy(x, y,σ ) =
∂G(x, y,σ )

∂σ
  

 
Because it is the derivative with respect to s, it can be approximated by a difference 
of Gaussians  (DoG):  
 
  

€ 

∇2G(x, y,σ ) ≈ G(x, y,σ1) –G(x, y,σ 2 ) 
 
This is called a Difference of Gaussian and typically requires   σ1≥ 1.4 σ2 
 
It is common to use:  

€ 

∇2G(x, y,σ ) ≈ G(x, y, 2σ )−G(x, y,σ ) 
Because of the scale property:   

€ 

G(x, y, 2σ ) ≈ G(x, y,σ )*G(x, y,σ )  
 
We can easily compute a DoG as   
 
   

€ 

∇2G(x, y,σ ) ≈ G(x, y,σ )*G(x, y,σ )−G(x, y,σ ) 
 
In 1D:  
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4. Using the Gaussian function as a low-pass digital filter 
(Optional advanced subject) 
 
Computers represent image as 2D sampled digitized signals. Because they are 
sampled, processing requires convolution with a sampled filter.  
 
To verify the properties of a Digital (sampled) Gaussian we will need its Fourier 
Tranform:  

Fourier Transform:     

€ 

F{e
−
x2+y2

2σ 2 } =
π
2σ 2 e

−
1
2
σ 2 (u2+v2 )

 

 
To obtain a digital Gaussian filter we must perform two operations: 
1) Sample the spatial axis x, y at a rate of ∆x, and ∆y 
2) Limit the spatial extent with a window WN(x,y)  
 
 

€ 

G(x, y;σ )→G(i, j;σ ) ≡WN (i, j)G(iΔx, jΔy;σ ) 
 
Thus there are 2 parameters to Control:  
1) Sample Distance ∆x 
2) Window size, N = 2R+1 
 
These are both determined by “scale” parameter of the Gaussian: σ  
 
Sample Distance:  Easy answer – Let ∆x = 1 and control σ.  
This is valid, provided that  σ ≥ ∆x   or that σ/∆x ≤ 1 
 
Window Size:   R ≥ 3σ  Thus  N ≥  6σ+1 
 
Note that R =  3σ is a lower limit that can leave some windowing noise in the 
function. 
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4.1. Sampling  (Optional advanced subject) 
 
Let us consider the case of a 1-D Gaussian.  
 

  

€ 

G(x,σ ) = e
−
x2

2σ 2  
 
To sample we replace x with n∆x.  
 

 

€ 

G(nΔx,σ ) = e
−
(nΔx)2

2σ 2  
 
This is modeled as multiplication by an infinite pulse chain.  
 

 
where:  

 

€ 

δΔx (x) = δΔx (nΔx)
n=−∞

∞

∑  

So that  
 

 

€ 

G(n) =G(x) ⋅ ΔxδΔx (x) = G(x) ⋅δΔx (x − nΔx)
n=−∞

∞

∑  

 
Multiplication in Space is a Convolution in Frequency.  The Fourier transform of the 
sampling function is: 
 

 

€ 

F(δΔx (x)) = Δx δ (nfΔx )
n=−∞

∞

∑   

 

The ideal sample function is a   

X(f)

f
–fe 0 fe 2fe–2fe  

 
Where f∆x is the "Nyquist" frequency  

€ 

fΔx =
1
2Δx
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In the Frequency domain, sampling converts the Fourier Transform of the Gaussian 
into an  infinite sequence of Gaussians.   
 
Transform of the Gaussian is  

 

€ 

F{e
−
x2

2σ 2 } =G(ω,σ ) = 2π σ e
−

1
2
σ 2ω 2

 
 
Sampling creates multiple copies intervals of G(ω) at intervals of f∆x = ½∆x 
 
The tail of the Gaussian beyond f∆x = ½∆x   will be converted to noise.  
We need to insure that the integral from fn to infinite is small.  
 
Rule of thumb: assure that  σ ≥€∆x 
 
We can define the sample size to be ∆x=1.   This gives a sampled function 
 

 

€ 

G(n,σ ) = e
−
n2

2σ 2  
 
 
4.2. Setting the Window Size (Optional advanced subject) 
 
To represent this in a computer we must also specify the spatial extent (number of 
samples), N of the filter.   We set N = 2R + 1 where R is the "radius" of the function.  
 
This gives us 2 parameters to control:  
 
 1) The scale of the Gaussian σ/∆x 
 2) the size of the support N = 2R+1 
 
Truncating a function to a finite support is equivalent to multiply by a window WN(n) 
 
When we limit G(x,σ) to a finite support, we multiply by a window 
  

 G(n, σ) = G(n, σ) · wN(n) where 

€ 

wN (n) =
1     for - R ≤ n ≤ R
0    otherwise        
# 
$ 
% 

 

 
(note N = 2R+1). Multiplying by a finite window is equivalent to convolving with the 
Fourier transform of the finite window:  
 
 

€ 

F{G(n,σ ) ⋅ wN (n)} =G(ω,σ ) *WN (ω) 
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where    

€ 

WN (ω) =
sin(ωN 2)
sin(ω 2)

     and     

€ 

G(ω,σ ) = 2π  σ e
−

1
2
σ 2ω 2

 

 

    
 
For N <  7, the ripples in WN(w) dominate the spectrum and corrupt the resulting 
Gaussian. 
 
At N=7 the effect is tolerable but significant.  
 
At N≥ 9 the effect becomes minimal 
  
In addition for  σ/∆x < 1, the phenomenon of aliasing folds a significant amount of 
energy at the Nyquist frequency, corrupting the quality (and the invariance) of the 
Gaussian function.  
 
Finally, it is necessary to assure that the "gain" of the Gaussian filter is 1. This can be 
assured by normalizing so that the sum of the coefficients is 1. If the Gaussian were 
infinite in extent, then 
 

 

€ 

e
−
x2

2σ 2

x=−∞

∞

∑ = 2πσ    

 
However, because we truncate the Gaussian to an size n ±R, we must calculate the 
sum of the coefficients, A:  
 

  

€ 

A = e
−
n2

2σ 2

n=–R

R

∑  

 
The Gaussian filter is thus normalized by dividing by A to give a unit gain Receptive 
Field.  

 

€ 

G(n,σ ) =
1
A
e
−
n2

2σ 2

 

 


