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Notation 
 
xd   A feature.  An observed or measured value.  

   A vector of D  features.   
D   The number of dimensions for the vector   

  

! 

{
! 
X m}    Training samples for learning.  

! 

{ym}     The indicator variable for each training sample,  
   ym =  +1 for examples of the target pattern (class 1) 
   ym =  –1 for all other examples (class 2) 
M   The number of training samples.  

  

! 

! w =

w1

w2

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  The coefficients for a linear model the model.  

b  bias so that     

! 

! w T
" 
X m + b  ≥ 0 for Class 1 and   

! 

! w T
" 
X m + b  < 0 for Class 2.  

 
  IF      

! 

! w T
" 
X m + b " 0    THEN P ELSE N  

  IF    

! 

ym
! w T
" 
X m + b( ) " 0   THEN T ELSE F 

 
    

! 

" =min ym #
! w T
" 
X m + b( ){ } Margin for a classifier 
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Linear Classifiers (Linear Discriminant Functions) 
 
A linear model has the form  
 
   

! 

ˆ y = f (
! 
X , " w ) = " w T

! 
X + b = w1x1 + w2x2 + ...+ wDxD + b 

 

The vector 

  

! 

! w =

w1

w2

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 are the “parameters” of the model. The model relates    

! 

! 
X  to 

! 

ˆ y .  

 
The equation   

! 

! w T
" 
X + b = 0 is a hyper-plane in a D-dimensional space,  

 

  

! 

! w =

w1

w2

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  is the normal to the hyperplane and b is a constant term.  

 
For any point,   

! 

! 
X    if   

! 

! w T
" 
X + b > 0  then the point is above the hyperplane.  

     if   

! 

! w T
" 
X + b < 0  then the point is below the hyperplane.  

     if   

! 

! w T
" 
X + b = 0  then the point is on the hyperplane.  

 
If the coefficients are normalized (  

! 

! w =1) then   

! 

d =
! w T
" 
X + b  is the signed distance of the 

point   

! 

! 
X  from the plane.  

 

We can use this to build a classifier using the function sgn(z) 

! 

sgn(z) =
1 if z " 0
#1 if z < 0
$ 
% 
& 

 

 
 sgn(  

! 

! w T
" 
X m + b):   IF   

! 

! w T
" 
X + b " 0 THEN C1 else C2 
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The Margin for a linear classifier 
 
For a 2-Class classifier, the "margin", γ, is the smallest separation between the two 
classes.    
 
Assume a training set of M observations  

! 

{
! 
X m}

! 

{ym} where   
 ym =  +1 for examples of the target class (class 1) 
 ym =  –1 for all others (class 2) 
 
Consider a linear classifier defined by a vector of weights,   

! 

! w  such that   

! 

! w =1,  a bias 

! 

b  and a decision function  sgn(  

! 

! w T
" 
X m + b):  

 

If the training data is separable , then there exists a decision surfaces   

! 

! w  with bias b, 
such that for all training data,   

! 

! 
X m ,  a training sample is correctly classified if:   

 
    

! 

ym "
! w T
" 
X m + b( ) # 0    

 
The margin, γm,  for each sample, m, is     

! 

"m = ym #
! w T ! x m + b( ) 

This is the distance from the decision surface.  
 
The margin for a classifier and a set of training data is the minimum margin of the 
training data    

! 

" =min ym #
! w T ! x m + b( ){ } 

 
 

! 
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Support Vector Machines 
 
Support Vector Machines (SVM) are a form of maximum margin classifier, where 
the model is defined by a small subset of the training data. SVM are popular for 
problems of classification, regression and novelty detection.  The selection of the 
training samples that define the model corresponds to a convex optimization problem.    
 
SVM's use a minimal subset of the training data (the “support vectors) to define the 
“best” decision surface between two classes. We will use the two class problem, K=2, 
to illustrate the principle. Multi-class solutions are possible. 
 
The simplest case, the hard margin SVM, require that the training data be completely 
separated by at least one hyper-plane.  This is generally achieved by using a Kernel to 
map the features into a high dimensional space were the two classes are separable.  
 
To illustrate the principle, we will first examine a simple linear SVM where the data 
are separable. We will then generalize with Kernels and with soft margins.  
 
We will assume that the training data is a set of M training samples   

! 

! x m{ } with an 
indicator variable, 

! 

ym{ }, where , ym is -1 or +1. 
 

Hard-Margin SVMs - a simple linear classifier. 
 
The simplest case is a linear classifier trained from separable data. 
 
   

! 

g(! x ) =
! w T ! x + b  with the decision rule is:   IF   

! 

g(! x ) " 0 THEN P else N 
 
For a hard margin SVM we assume that the two classes are separable for all of the 
training data:  
 
   

! 

"m :   ym ( ! w T ! x m + b) # 0 
 
We will use a subset S of the training samples,   

! 

! x s{ }" ! x m{ } composed of Ms training 
samples to define the “best” decision surface   

! 

g(! x ) =
! w T ! x + b .  

 
The minimum number of support vectors depends on the number of features, D:  
 
 Ms = D+1  
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The Ms selected training samples   

! 

! x s{ } are called the support vectors. For example, in 
a 2D feature space we need only 3 training samples to serve as support vectors.  
  
To define the classifier we will look for the subset if S training samples that 
maximizes the margin (

! 

" )  between the two classes.   
 
Margin:     

! 

" =min ym #
! w T ! x m + b( ){ } 

 

! 

 
 
 Thus we seek a subset of Ms=D+1  training samples,    

! 

{! x s}" {
! x m} to define a 

decision surface and the margin. We will use these samples as support vectors. 
 
The algorithm must choose  D+1 training samples   

! 

{! x s} from the  M  training samples 
in   

! 

{! x m} such that the margin is a large as possible.  This is equivalent to a search for a 
pair of parallel surfaces a distance γ from the decision surface.  
 

Finding the Support Vectors 
Assume that we have M training samples   

! 

! 
X m{ }and their indicator variable 

! 

ym{ }, 
where,  ym is -1 or +1.    
 
The decision surfaces is a hyper plane   

! 

! 
W T
! 
X m + b = 0  

Assume that we have normalized the coefficients of the hyperplane such at  
 
   

! 

! 
W =1 

 
Then the distance of any sample point   

! 

! 
X m  from the hyper-plane,   

! 

! 
W is 

 
   

! 

d =  ym (
! 

W T
! 
X m + b) 

 
A D dimensional decision surface is defined by at least D points.  At least one 
additional point is required to define the margin. Thus we seek a subset  of Ms=D+1  
training samples,    

! 

! 
X s{ }"

! 
X m{ } to define a decision surface and is margin. 
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Our algorithm must choose  D+1 training samples   

! 

! 
X s{ } from the  M Training samples 

in   

! 

! 
X m{ }  such that the margin is a large as possible.  This is equivalent to a search for 

a pair of parallel surfaces a distance γ from the decision surface.  
 
The margin is the minimum distance  
 
   

! 

" =min{yn (
! 

W T
! 
X m + b)}  

 
For the D+1 support vectors  

! 

! x s " {
! x s}  ds = γ 

For all other training samples   

! 

! x m " {
! x s}:  dm ≥ γ 

 
The scale of the margin is determined by   

! 

! w .  To find the support vectors, we can 
arbitrarily define the margin as γ = 1 and then renormalize   

! 

! w =1 once the support 
vectors have been discovered.  
 
With  γ = 1,  we will look for two separate hyper-planes that “bound” the decision 
surface, such that for points on the surfaces:    

! 

! w T ! x m + b =1  and   

! 

! w T ! x m + b = "1 
 
The distance between these two planes is 

  

! 

2
! w 

 

 
We will add the constraint that for all support vectors    

! 

ym
! w T ! x m + b( ) =1   

 
while for all other samples:      

! 

ym
! w T ! x m + b( ) "1 

 
If we note that minimizing   

! 

! w  is equivalent minimizing 
  

! 

1
2
! w 2 , we can set this up as a 

quadratic optimization problem, and use Lagrange Multipliers.  
 
Our problem is to maximize 

  

! 

argmin
! w ,b

1
2
! w 2

" 
# 
$ 

% 
& 
' 
 while minimizing the number of active 

points, Ms. (The factor of ½ is a convenience for analysis.)  This can be solved as a 
quadratic optimization problem using Lagrange Multipliers. 
 
For a subset of Ms ≥ D+1 samples,  am > 0.  These are the support vectors.  
For these vectors we set am=1.  
For all other samples am ≤ 0.   Se set these to am = 0 
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The Lagrangian function is:  
  

! 

L( ! w ,b, ! a ) =
1
2
! w 2 " am ym (

! w T ! x m + b)"1{ }
m=1

M

#  

 
Setting the derivatives to zero, we obtain:  
 

  
  

! 

"L
"
! w 

= 0#  
  

! 

! w = am ym

" 
X m

m=1

M

"    

! 

"L
"b

= 0#  
  

! 

b =
1

M s

! w T
! 
X s

xs"{xs}
# $ ys  

 

The normal of the decision surface is then: 
  

! 

! 
W = am ym

! 
X m

m=1

M

"    

 
where most of the am are zero. The Ms nonzero am select the support vectors.  
 
and the offset can be found by solving for:  
 

 
  

! 

b =
1

M S

! 
W T
! 
X m " ym

m#S
$  

 
Giving    

! 

g(
! 
X ) =

! w T
! 
X + b . 

 
Note that only S=D+1 of the coefficients am  are non-zero.    These S non-zero 
coefficients select the support vectors from within the complete set of training data. 
 
We use the terms am to compose a set   

! 

! 
X S{ } of Ms support vectors.  

 

The formula 
  

! 

b =
1

M s

! w T
! 
X m

xm"S
# $ ym  computes b as the average bias for all the support 

vectors (corrected by the indicator variable).  
 
In fact, the bias should the same for any support vector.  
Thus we can use any of the support vectors to compute the bias:  
 
   

! 

b =
! w T
! 
X s " ys   for any    

! 

! 
X S " S{ } 

 
The solution can be generalized for use with non-linear decision surfaces using 
kernels. 
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SVM with Kernels 
 
Support Vector Machines can be generalized for use with non-linear decision 
surfaces using kernel functions. This provides a very general and efficient classifier.  
 
A  “kernel” function, φ(z) =   

! 

! 
f (! x ) ,  transforms the data into a space where the two 

classes are separate.   
 

 
 
Let φ(z) =   

! 

! 
f (! x ) ,   

 
Instead of a decision surface:   

! 

g(! x ) =
! w T ! x + b  

 
We use a decision surface   

! 

g(! x ) =
! w T "
! 
f (! x )+ b  

 
the coefficients   

! 

! w  and the bias b are provided by the D+1 support vectors.   
For this we need to include the  
 

where  
  

! 

! w = am ym

! 
f (! x m

m=1

M

" )  

 
 is learned from the transformed training data.  
 
As before,   

! 

S =
! x s{ } are the support vectors, and am is a variable learned from the 

training data that is am ≥ 0 for support vectors and 0 for all others.  
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Radial Basis Function Kernels  
 
Radial Basis functions are a popular kernel function:  A radial basis function (RBF) is 
a real-valued function whose value depends only on the distance from the origin.  
 

For Example, the Gaussian function    

! 

f (z) = e
"
z 2

2# 2   
 
is a popular Radial Basis Function, and is often used as a kernel for support vector 
machines, with radial basis functions:    

! 

z =||
! 
X " ! x s ||  for each support vectors.  

 
We can use a sum of Ms radial basis functions to define a discriminant function, 
where the support vectors are drawn from the M training samples.  
This gives a discriminant function 
 

  

! 

g(
! 
X ) = am ym f (||

! 
X " ! x m ||)+ b

m=1

M

# , 

 
 The training samples   

! 

! 
X m  for which 

! 

am " 0  are the support vectors.  
 
Depending on σ, this can provide a good fit or an over fit to the data.   If σ is large 
compared to the distance between the classes, this can give an overly flat 
discriminant surface.  If σ is small compared to the distance between classes, this will 
over-fit the samples.   
 
A good choice for σ will be comparable to the distance between the closest members 
of the two classes.  
 

 
(images from "A Computational Biology Example using Support Vector Machines", 
Suzy Fei, 2009) 
 
Each Radial Basis Function is a dimension in a high dimensional basis space.  
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Kernel Functions for Symbolic Data 
 
Kernel functions can be defined over graphs, sets, strings and text! 
 
Consider for example, a non-vector space composed of a set of words {W}.  
We can select a subset of discriminant words {S} ⊂ {W} 
 
Now given a set of words (a probe), {A} ⊂ {W} 
 
We can define a kernel function of A and S using the intersection operation.  
 
 

! 

k(A,S) = 2 A"S    
 
where | . | denotes the cardinality (the number of elements)  of a set.  
 


