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Support Vector Machines

Notation
X, A feature. An observed or measured value.
X A vector of D features.
D The number of dimensions for the vector X
{X,} Training samples for learning.
{v,} The indicator variable for each training sample,
v,,= +1 for examples of the target pattern (class 1)
v,,= —1 for all other examples (class 2)
M The number of training samples.
Wi
W= sz The coefficients for a linear model the model.
WD
b bias so that w'X +b =0 for Class 1 and w'X , +b <0 for Class 2.

IF w'X,+b=0 THENPELSEN
IF y,(#'X,+b)=0 THEN T ELSE F

y=min{y, -(#'X,+b)}  Margin for a classifier
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Support Vector Machines

Linear Classifiers (Linear Discriminant Functions)

A linear model has the form
Y=FX, W) =W X+b=wx, +Wwyx, + ..+ Wpx, +b

Wi
w. _
The vector w= :2 are the “parameters” of the model. The model relates X to y.

Wp

The equation w"X+b =0 is a hyper-plane in a D-dimensional space,

is the normal to the hyperplane and b is a constant term.

For any point, X  if w'X+b>0 then the point is above the hyperplane.
if w'X+b<0 then the point is below the hyperplane.
if w'X+b=0 then the point is on the hyperplane.

If the coefficients are normalized (|w|=1) then d =w"X +b is the signed distance of the
point X from the plane.

ifz=0

. 1
We can use this to build a classifier using the function sgn(z) sgn(z) ={ L ife<0
- 1Iz<

sgn(w'X, +b): IF w'X+b=0 THEN C, else C,
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Support Vector Machines

The Margin for a linear classifier

For a 2-Class classifier, the "margin", vy, is the smallest separation between the two
classes.

Assume a training set of M observations {X,} {y,} where
v,,= +1 for examples of the target class (class 1)
v,,= —1 for all others (class 2)

Consider a linear classifier defined by a vector of weights, w such that |w|=1, a bias
b and a decision function sgn(w'X, +b):

If the training data is separable , then there exists a decision surfaces W with bias b,
such that for all training data, X, , a training sample is correctly classified if:

Y, (WX, +b)=0

The margin, y,,, for each sample, m,is vy, =y, (W%, +b)

n

This is the distance from the decision surface.

The margin for a classifier and a set of training data is the minimum margin of the
training data  y =min{y, -(w'%,, +)}




Support Vector Machines

Support Vector Machines

Support Vector Machines (SVM) are a form of maximum margin classifier, where
the model is defined by a small subset of the training data. SVM are popular for
problems of classification, regression and novelty detection. The selection of the
training samples that define the model corresponds to a convex optimization problem.
SVM's use a minimal subset of the training data (the “support vectors) to define the
“best” decision surface between two classes. We will use the two class problem, K=2,
to illustrate the principle. Multi-class solutions are possible.

The simplest case, the hard margin SVM, require that the training data be completely
separated by at least one hyper-plane. This is generally achieved by using a Kernel to

map the features into a high dimensional space were the two classes are separable.

To illustrate the principle, we will first examine a simple linear SVM where the data
are separable. We will then generalize with Kernels and with soft margins.

We will assume that the training data is a set of M training samples {X’m} with an
indicator variable, {y, }, where ,y, is -1 or +1.

Hard-Margin SVMs - a simple linear classifier.
The simplest case is a linear classifier trained from separable data.
g(X)=w'X+b with the decision rule is: IF g(x)=0 THEN P else N

For a hard margin SVM we assume that the two classes are separable for all of the
training data:

Vm: y W' +b)=0

We will use a subset S of the training samples, {X’S} C {Tcm} composed of M, training

samples to define the “best” decision surface g(x)= W X+b.

The minimum number of support vectors depends on the number of features, D:

M, = D+1
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Support Vector Machines

The M, selected training samples {%,} are called the support vectors. For example, in
a 2D feature space we need only 3 training samples to serve as support vectors.

To define the classifier we will look for the subset if S training samples that
maximizes the margin (y) between the two classes.

Margin: y= min{ Vo (WE, + b)}

Thus we seek a subset of M =D+ training samples, {x,} C{x,} to define a
decision surface and the margin. We will use these samples as support vectors.

The algorithm must choose D+1 training samples {x } from the M training samples
in {x,} such that the margin is a large as possible. This is equivalent to a search for a
pair of parallel surfaces a distance y from the decision surface.

Finding the Support Vectors
Assume that we have M training samples {X, }and their indicator variable {y,},

where, y_is -1 or +1.

The decision surfaces is a hyper plane WX, +b=0

Assume that we have normalized the coefficients of the hyperplane such at
wl-1
Then the distance of any sample point X, from the hyper-plane, W is
d=y,(W'X, +b)
A D dimensional decision surface is defined by at least D points. At least one

additional point is required to define the margin. Thus we seek a subset of M .=D+1
training samples, {Xs} - {Xm} to define a decision surface and is margin.
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Support Vector Machines

Our algorithm must choose D+1 training samples {f(} from the M Training samples
in {Xm} such that the margin is a large as possible. This is equivalent to a search for

a pair of parallel surfaces a distance y from the decision surface.
The margin is the minimum distance
y = min{y, W'X,, +b)}

For the D+1 support vectorsx, €{x,} d, =y
For all other training samples x, €{x,}: d,> v

The scale of the margin is determined by |[w|. To find the support vectors, we can
arbitrarily define the margin as y = I and then renormalize |||=1 once the support
vectors have been discovered.

With y=1, we will look for two separate hyper-planes that “bound” the decision
surface, such that for points on the surfaces: w'x +b=1 and w'x, +b=-1

The distance between these two planes is —

2
[

We will add the constraint that for all support vectors ym(szT?cm +b) =1

while for all other samples:  y, (W%, +b)=1

If we note that minimizing || is equivalent minimizing %||W||2, we can set this up as a

quadratic optimization problem, and use Lagrange Multipliers.

Our problem is to maximize argmin{5||w||2} while minimizing the number of active
w.b

points, M.. (The factor of % is a convenience for analysis.) This can be solved as a
quadratic optimization problem using Lagrange Multipliers.

For a subset of M, = D+1 samples, a,,> 0. These are the support vectors.
For these vectors we seta,=1.
For all other samples a,, <0. Se set these to a,, =0



Support Vector Machines

- - 1 — 12 S —T—
The Lagrangian function is: L(w,b,a)= EHWH - Eam {ym (WX, +D) - 1}
m=1
Setting the derivatives to zero, we obtain:
M
Lo W= 2005, Logm pe S -y,
ow m=l ob s net)

leme

M
The normal of the decision surface is then: W = Ea

m=1
where most of the a,, are zero. The M, nonzero a,, select the support vectors.

and the offset can be found by solving for:

b= L EWT)?,” -y,

S meS
Giving g(X)=w'X+b.

Note that only S=D+1 of the coefficients a, are non-zero. These S non-zero
coefficients select the support vectors from within the complete set of training data.

We use the terms a,, to compose a set {f( S} of M, support vectors.

The formula b=L Ewrim —y, computes b as the average bias for all the support

5 x,ES

vectors (corrected by the indicator variable).

In fact, the bias should the same for any support vector.
Thus we can use any of the support vectors to compute the bias:

b=w'X, -y forany X,e{s}

The solution can be generalized for use with non-linear decision surfaces using
kernels.



Support Vector Machines

SVM with Kernels

Support Vector Machines can be generalized for use with non-linear decision
surfaces using kernel functions. This provides a very general and efficient classifier.

A “kernel” function, ¢(z) = f (?C ), transforms the data into a space where the two
classes are separate.

X F
0\3 X /(_)\
0\ X
o\ X
O

—

Let ¢(z) = J(X),
Instead of a decision surface: g(X)=w'X+b
We use a decision surface g()?) =w' - f()_é) +b

the coefficients w and the bias b are provided by the D+1 support vectors.
For this we need to include the

M
where W= E a,y, f(x)
m=1

is learned from the transformed training data.

As before, S={%} are the support vectors, and q,, is a variable learned from the
training data that is a_, = O for support vectors and O for all others.
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Support Vector Machines

Radial Basis Function Kernels

Radial Basis functions are a popular kernel function: A radial basis function (RBF) is
a real-valued function whose value depends only on the distance from the origin.

2
Z

For Example, the Gaussian function f(2)= e 20°

is a popular Radial Basis Function, and is often used as a kernel for support vector
machines, with radial basis functions: z=llX-%, Il for each support vectors.

We can use a sum of M, radial basis functions to define a discriminant function,
where the support vectors are drawn from the M training samples.
This gives a discriminant function

M

gX)= Y a,y, fU1X-%, )+b,
m=1

The training samples X, for which a, =0 are the support vectors.

Depending on o, this can provide a good fit or an over fit to the data. If o is large
compared to the distance between the classes, this can give an overly flat
discriminant surface. If o is small compared to the distance between classes, this will

over-fit the samples.

A good choice for o will be comparable to the distance between the closest members
of the two classes.
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(images from "A Computational Biology Example using Support Vector Machines",
Suzy Fei, 2009)
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Each Radial Basis Function is a dimension in a high dimensional basis space.
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Support Vector Machines

Kernel Functions for Symbolic Data

Kernel functions can be defined over graphs, sets, strings and text!

Consider for example, a non-vector space composed of a set of words {W}.

We can select a subset of discriminant words {S} C {W}

Now given a set of words (a probe), {A} C {W}

We can define a kernel function of A and S using the intersection operation.

k(A,S) =210l

where | . | denotes the cardinality (the number of elements) of a set.
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