Intelligent Systems: Reasoning and Recognition

James L. Crowley

MoSIG M1 Exercise 4 version 3 Winter Semester 2020 (updated 30 march 2020)

Artificial Neural Networks and Backpropagation.

You are presented with a single neuron with two inputs (x_1, x_2) and a single output, computed using a sigmoid, $\sigma(z)$. Your network has been initialized with weights $W_1=0.1$ and $W_2=-0.2$ and b=+0.2. Assume a learning rate of $\eta=0.1$. Use the latest version of the course notes (updated 17 march) Your network should be trained to recognize the following training data:

m	x_l	x_2	y _m
1	0	1	0
2	1	0	0
3	1	1	1
4	0	0	1

- a) Compute z, and a for m=1.
- b) Compute $\delta_m^{(out)} = (a y_m)$ for m = 1.
- c) Compute δ_m for m=1. (δ_m is the error propagating back from the neuron)
- d) Compute ΔW_1 , ΔW_2 , and Δb for m=1.
- e) Update W_1 , W_2 , and b for m=1.
- f) Will your neuron converge for this training data?