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Notation 
 
xd   A feature.  An observed or measured value.  
  

! 

! 
X    A vector of D  features.   
D   The number of dimensions for the vector    

! 

! 
X  

  

! 

{
! 
X m}  

! 

{ym} Training samples for learning.  
M   The number of training samples.  

! 

aj
(l )     The activation output of the jth neuron of the lth layer.  

! 

wij
(l )     The weight from unit i of layer l–1 to the unit j of layer l. 

! 

bj
l      The bias for  unit j of layer l. 

! 

"    A learning rate. Typically very small (0.01). Can be variable. 
L   The number of layers in the network.  

! 

"m
out = am

(L ) # ym( )   Output Error of the network for the mth training sample 

! 

" j,m
(l )    Error  for the jth neuron of layer l, for the mth training sample.  

! 

"wij
(l) = ai

(l#1)$ j
(l)  Update for weight from unit i of layer l–1 to the unit j of layer l.  

! 

"bj
(l) =  # j

(l)   Update for bias for unit j of layer l.  



Artificial Neural Networks  
 

3 

Introduction 
 
Key Equations  
 

 Feed Forward from Layer i to j:  

! 

aj
(l ) = f wij

(l)ai
(l"1) +bj

(l)

i=1

N ( l"1)

#
$ 

% 
& & 

' 

( 
) )  

 Feed Forward from Layer j to k:  

! 

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N ( l )

"
# 

$ 
% % 

& 

' 
( (  

 

 Back Propagation from Layer j to i:  

! 

"i,m
(l#1) =

$f (zi
(l#1) )

$zi
(l#1) wij

(l )" j,m
(l )

j=1

N ( l )

%  

 

 Back Propagation from Layer k to j:  

! 

" j,m
(l ) =

#f (z j
(l) )

#zj
(l ) wjk

(l+1)"k ,m
(l+1)

k=1

N ( l+1)

$  

 
 Weight and Bias Corrections for layer j: 

! 

"wij,m
(l) = ai

(l#1)$ j ,m
(l)  

         

! 

"bj ,m
(l) =  # j,m

(l )  
 
 Network Update Formulas:   

! 

wij
(l ) " wij

(l ) #$ %&wij,m
(l)  

         

! 

bj
(l ) " bj

(l ) #$ %&bj ,m
(l)  
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Artificial Neural Networks  
 
Artificial Neural Networks are computational structures composed a weighted sums 
of “neural” units.  Each neural unit is composed of a weighted sum of input units, 
followed by a non-linear decision function.  The term “neural” is misleading. The 
computational mechanism of a neural network is only loosely inspired from neural 
biology. Neural networks do NOT implement the same learning and recognition 
algorithms as biological systems.  
 
In the 1970s, frustrations with the limits of Artificial Intelligence research based on 
Symbolic Logic led a small community of researchers to explore the perceptron 
based approach. In 1973, Steven Grossberg, showed that a two layered perceptron 
could overcome the problems raised by Minsky and Papert, and solve many problems 
that plagued symbolic AI.  In 1975, Paul Werbos developed an algorithm referred to 
as “Back-Propagation” that uses a distributed form of gradient descent to learn the 
parameters for perceptrons from classification errors with training data.  
 
During the 1980’s, Neural Networks went through a period of popularity with 
researchers showing that Networks could be trained to provide simple solutions to 
problems such as recognizing handwritten characters, recognizing spoken words, and 
steering a car on a highway.  However, results were overtaken by more 
mathematically sound approaches for statistical pattern recognition such as support 
vector machines and boosted learning.  
 
In 1996, Yves LeCun showed that convolutional networks composed from many 
layers could outperform other approaches for recognition problems. Unfortunately 
such networks required extremely large amounts of data and computation.  Around 
2010, with the emergence of cloud-based grid computers combined with planetary-
scale data, training and using networks became practical. Since 2012, Deep Neural 
Networks have been shown to outperform other approaches for recognition tasks 
common to Computer Vision, Speech and Robotics. Training such networks is made 
possible by high-performance parallel computing (using GPUs) using massive scale 
data now available from the World Wide Web. A rapidly growing research 
community currently demonstrated applications for problems such as generation of 
speech, images, video-sequences and robot actions.  When combined with 
reinforcement learning, deep networks have defeated the world champion at Go in 
2016.  
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The Artificial Neuron 
 

 
 
A “neuron” is a computational unit that integrates information from a vector of  
features,   

! 

! 
X ,  to compute the likelihood of an activation, a.  

 
 

! 

a = f (z) 
 
The neuron is composed of a weighted sum of input values   
 
 

! 

z = w1x1 +w2x2 + ...+wDxD +b  
 
 followed by a non-linear “activation” function,   

! 

f (z)   
 
   

! 

a = f ( ! w T
" 
X + b) 

 
Many different activation functions may be used.   
A popular choice for activation function is the sigmoid:  

! 

" (z) =
1

1+ e#z
 

 
 

This function is useful because the derivative is:   

! 

d" (z)
dz

=" (z)(1#" (z)) 

 
This gives a decision function:   IF 

! 

a >  0.5 THEN P ELSE N 
 
Other popular decision functions include the hyperbolic tangent and the softmax. 
 
 The hyperbolic Tangent:  

! 

f (z) = tanh(z) =
ez " e"z

ez + e"z
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The hyperbolic tangent is a rescaled form of sigmoid ranging over [-1,1] 
 
Plot of Sigmoid (red), Hyperbolic Tangent (Blue) and Step Function (Green) 
 

 
 
The softmax function is often used for multi-class networks. For K classes:   
 
 

! 

f (zk ) =
ezk

ezk
k=1

K
"

 

 
The rectified linear function is popular for deep learning because of a trivial 
derivative:  
 
 Relu:  

! 

relu(z) =max(0, z) 
 
While Relu is discontinuous at z=0, for   z > 0 :  

! 

d(relu(z))
dz

=1 

 
Note that the choice of decision function will determine the target variable “y” for 
supervised learning.  
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The Neural Network model 
 
A neural network is a multi-layer assembly of neurons.  For example, this is a 2-layer 
network:  

 
The circles labeled +1 are the bias terms. The circles on the left are the input terms.  
Some authors, notably in the Stanford tutorials, refer to this as Level 1.  
 
We will NOT refer to this as a level (or, if necessary, level L=0).  
 
The rightmost circle is the output layer, also called L.  

The circles in the middle are referred to as a “hidden layer”.  In this example there is 
a single hidden layer and the total number of layers is L=2.  
 
The parameters carry a superscript, referring to their layer.   
We will use the following notation:  
L    The number of layers (Layers of non-linear activations).  
l     The layer index.  l ranges from 0 (input layer) to L (output layer) 
N(l)  The number of  units in layer l.  N(0)=D 

! 

aj
(l )    The activation output of the jth neuron of the lth layer.  

! 

wij
(l )    The  weight  from the unit i of layer l-1 for the unit j of layer l.  

! 

bj
(l )     The bias term for jth unit of the lth layer 

f(z)  A non-linear activation function, such as a sigmoid, tanh, or soft-max 
 
For example:   

! 

a(2) is the activation output of the neuron of the second layer.  

! 

W13
(2) is the weight for neuron 1 from the first level to neuron 3 in the second level.  

 
The above network would be described by:  
 

! 

a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 +b1
(1) )  

 

! 

a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 +b2
(1) )  

 

! 

a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 +b3
(1) )  

 

! 

a(2) = f (w11
(2)a1

(1) +w21
(2)a2

(1) +w31
(2)a3

(1) +b1
(2) ) 

 



Artificial Neural Networks  
 

8 

This can be generalized to multiple layers.  For example:  
 

 
   

! 

! a m
(out) =

! 
h (
! 
X m )  is the vector of network outputs for training sample   

! 

! 
X m    

 
Each unit is defined as follows:  

 
The notation for a multi-layer network is  
   

! 

! a (0) =
! 
X  is the input layer. 

! 

ai
(0) = Xd     

 l is the current layer under discussion.  
 N(l)  is the number of activation units in layer l. N(0)  = D 
 i,j,k Unit indices for layers l-1, l and l+1:   i→j→k 
 

! 

wij
(l ) is the  weight for the unit i of layer l-1 feeding to unit j of layer l.  

 

! 

aj
(l )   is the activation output of the jth unit of the layer  l 

 

! 

bj
(l )   the bias term feeding to unit j of layer l. 

 

! 

zj
(l ) = wij

(l)ai
(l"1) +bj

(l)

i=1

N ( l"1)

#   is the weighted input to jth unit of layer l 

 f(z) is a non-linear decision function, such as a sigmoid, tanh(), or soft-max 
 

! 

aj
(l ) = f (zj

(l ) ) is the activation output for the jth
 unit of layer l 

 
For layer l this gives:  
 

 

! 

zj
(l ) = wij

(l)ai
(l"1)

i=1

N ( l"1)

# +bj
(l)    

! 

aj
(l ) = f wij

(l)ai
(l"1) +bj

(l)

i=1

N ( l"1)

#
$ 

% 
& & 

' 

( 
) )   

 
and then for l+1 :  

 

! 

zk
(l+1) = wjk

(l+1)aj
(l)

j=1

N ( l )

" +bk
(l+1)  

! 

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N ( l )

"
# 

$ 
% % 

& 

' 
( (  
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It can be more convenient to represent the network using vectors:   
 

 

  

! 

! z (l) =

z1
(l )

z2
(l )

"
zN l

(l )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  

  

! 

! a (l) =

a1
(l )

a2
(l )

"
aN l

(l )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
and to write the weights and bias at each level l as a k by j Matrix,  
 

 

  

! 

W (l ) =

w11
(l) ! w1i

(l) ! w1N ( l"1)
(l )

" # " $ "
wj1
(l) ! wji

(l) ! wjN ( l"1)
(l )

" $ " # "
wN ( l ) 1
(l) ! wN ( l )i

(l ) ! wN ( l )N ( l"1)
(l)

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

 

  

! 

! 
b (l ) =

b1
l

"
bi

l

"
bN ( l"1)

l

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

 

 
(note: To respect matrix notation, we have reversed the order of i and j in the 
subscripts. ) 
 
We can see that the weights are a 3rd order Tensor or vector of matrices, with one 
matrix for each layer, The biases are a matrix (vector of vectors) with a vector for 
each level.  
 
   

! 

! z (l) = W (l) ! a (l"1) +
" 
b (l)  and    

! 

! a (l) = f (! z (l) ) = f (W (l )! a (l"1) +
! 
b (l) ) 

 
We can assemble the set of matrices 

! 

W (l )  into an 3rd order Tensor (Vector of 
matrices), W,  and represent   

! 

! a (l),   

! 

! z (l)  and   

! 

! 
b (l )  as matrices (vectors of vectors):  A, Z, 

B.  
 
So how to do we learn the weights W and biases B?   
 
We could train a 2-class detector from a labeled training set   

! 

{
! 
X m} ,

! 

{ym} using gradient 
descent.  For more than two layers, we will need to use the more general “back-
propagation” algorithm.  
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Backpropagation 
Back-propagation is a distributed form of gradient descent for estimating the “best” 
network weights , 

! 

W (l )  and bias   

! 

! 
b (l ) . Back propagation  adjusts the network the 

weights 

! 

wij
(l ) and biases 

! 

bj
(l )  so as to minimize an error function between the network 

output   

! 

! a m
L  and the target value  

! 

! y m  for the M training samples   

! 

{
! 
X m} ,   

! 

{! y m}.  
 
Back-propagation is easily implemented on a SIMD (Single Instruction Multiple 
Data) parallel computer, such as a GPU. 
 
Back-propagation is an iterative algorithm that propagates an error term back through 
the hidden layers and computes a correction for the weights at each layer so as to 
minimize the error term.  
 
This raises two questions:  
1) How do we initialize the weights? 
2) How do we compute the error term for hidden layers? 
 
1) How do we initialize the weights? 
A natural answer for the first question is to initialize the weights to 0.  
 
By experience this causes problems. If the parameters all start with identical values, 
then the algorithm can end up learning the same value for all parameters. To avoid 
this, we initialize the parameters with a small random variable that is near 0, for 
example computed with a normal density with variance ε (typically 0.01).  
 
 

  

! 

"
i, j ,l
wji
(l ) = N (X;0,#) and  

  

! 

"
j,l
bj
(l ) = N (X;0,#) where   

! 

N  is a sample from a normal 

density.  
 
An even better solution is provided by Xavier GLORIOT’s technique (see course 
web site on Xavier normalization). However that solution is too complex for today’s 
lecture.  
 
2) How do we compute the error term? 
Back-propagation propagates the error term back through the layers, using the 
weights.   We will present this for individual training samples. The algorithm can 
easily be generalized to learning from sets of training samples (Batch mode).  
 
Given a training sample,   

! 

! 
X m , we first propagate the   

! 

! 
X m  through the L layers of the 

network (Forward propagation) to obtain a hypothesis   

! 

! 
h (
! 
X m;W ,B) =

! a (L ).  
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We then compute an error term.  In the case, of a multi-class network, this is a vector, 
with k components, one output for each hypothesis. In this case the indicator vector 
would be a vector, with one component for each possible class:  
 
   

! 

! 
" m

out = #
! y m #
! a m
(L )( )     or for each class k:   

! 

"k,m
out = # yk ,m # ak ,m

(L )( )  
 
The error term   

! 

! 
" m
out is the total error for the whole network for sample m.  

 
To keep things simple, let us consider the case of a two class network, so that 

! 

"m
out , 

  

! 

h(
! 
X m ), 

! 

am
(L ) , and 

! 

ym  are scalars. The results are easily generalized to vectors for multi-
class networks.  At the output layer, the “error” for each training sample is: 
 
 

! 

"m
out = # ym # am

(L )( ) = am
(L ) # ym( ) 

 
The error term for layer L is then:  
 

 

! 

"m
(L ) =

#f (zj
(L ) )

#zj
(L ) "m

out  

 
For the hidden units in layers l < L the error 

! 

" j
(l )  is based on a weighted average of the 

error terms for 

! 

"k
(l+1) .  

 
 

We compute error terms, 

! 

" j
(l )  for each unit j in layer l back to  layer l–1 using the sum 

of errors times the corresponding weights times the derivative of the activation 
function.  
 

 

! 

" j,m
(l ) =

#f (z j
(l) )

#zj
(l ) wjk

(l+1)"k,m
(l+1)

k=1

N l+1

$   

 
This error term tells how much the unit j was responsible for differences between the 
activation of the network   

! 

! 
h (! x m;wjk

(l) ,bk
(l ) )  and the target value   

! 

! y m .   
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For the sigmoid activation function, 

! 

" (z) =
1

1+ e#z
 the derivative is:  

 

! 

d" (z)
dz

=" (z)(1#" (z)) 

 

For 

! 

aj
(l ) = f (zj

(l ) ) this gives:  

! 

" j,m
(l ) = aj ,m

(l) (1# aj ,m
(l ) ) $ wjk

(l+1)"k,m
(l+1)

k=1

N ( l+1)

%  

 
This error term can then used to correct the weights and bias terms leading from layer 
j to layer i.  
 
  

! 

"wij,m
(l) = ai

(l#1)$ j ,m
(l)    

   

! 

"bj ,m
(l) =  # j ,m(l)  

 
Note that the corrections 

! 

"wij,m
(l)  and 

! 

"bj ,m
(l)  are NOT applied until after the error has 

propagated all the way back to layer l=1, and that when l=1, 

! 

ai
(0) = xi .  

 
For “batch learning”, the corrections terms, 

! 

"wji,m
(l)  and 

! 

"bj ,m
(l) are averaged over M 

samples of the training data and then only an average correction is applied to the 
weights.  

 

! 

"wij
(l) =

1
M

"wij,m
(l )

m=1

M

#   

! 

"bj
(l) =

1
M

"bj,m
(l )

m=1

M

#  

then  
 
 

! 

wij
(l ) " wij

(l ) #$ %&wij
(l)  

! 

bj
(l ) " bj

(l ) #$ %&bj
(l)  

 
where 

! 

" is the learning rate.  
 
Back-propagation is equivalent to computing the gradient of the loss function for 
each layer of the network.  A common problem with gradient descent is that the loss 
function can have local minimum.  This problem can be minimized by regularization.  
A popular regularization technique for back propagation is to use “momentum”  
 
 

! 

wij
(l ) " wij

(l ) #$ %&wij
(l) +  µ %wij

(l)  
 

! 

bj
(l ) " bj

(l ) #$ %&bj
(l) + µ %bj

(l)  
 
where the terms 

! 

µ "wj
(l )  and 

! 

µ "bj
(l ) serves to stabilize the estimation.   

The back-propagation algorithm may be continued until all training data has been 
used. For batch training, the algorithm may be repeated until all error terms, 

! 

" j,m
(l ) , are 

a less than a threshold.  
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Summary of Backpropagation 
 
The Back-propagation algorithm can be summarized as:  
 
1) Initialize the network and a set of correction vectors:  
 
 

  

! 

"
i, j ,l
wji
(l ) = N (X;0,#)  

    

! 

"
i,l
bj
(l ) = N (X;0,#)  

 

! 

"
i, j ,l
#wji

(l) = 0 
 

! 

"
i,l
#bj

(l) = 0  

 
where   

! 

N  is a sample from a normal density, and 

! 

"  is a small value.  
 
2) For each training sample,   

! 

! x m , propagate   

! 

! x m  through the network (forward 
propagation) to obtain a network activation 

! 

am
(L ) .  Compute the error and propagate 

this back through the network:  
 
 a) Compute the network error term:   

! 

"m
out = am

(L ) # ym( )  
 

 b) Compute the error term at Layer L: 

! 

"m
(L ) =

#f (zj
(l ) )

#zj
(l) "m

out  

 

 c) Propagate the error back from  l=L-1  to l=1:   

! 

" j,m
(l ) =

#f (z j
(l) )

#zj
(l ) wjk

(l+1)"k ,m
(l+1)

k=1

N ( l+1)

$   

 
 d) Use the error at each layer to set a vector of correction weights.  
 
   

! 

"wij,m
(l) = ai

(l#1)$ j ,m
(l)    

! 

"bj ,m
(l) =  # j,m

(l )  
 
3) For all layers, l=1 to L, update the weights and bias using a learning rate,  

! 

" 
 
  

! 

wij
(l ) " wij

(l ) #$ %&wij,m
(l) +  µ %wij

(l)  
  

! 

bj
(l ) " bj

(l ) #$ %&bj ,m
(l) + µ %bj

(l )  
 
Note that this last step can be done with an average correction matrix obtained from 
many training samples (Batch mode), providing a more efficient algorithm.   
 


