

Pattern Recognition and Machine Learning

James L. Crowley

ENSIMAG 3 - MMIS Fall Semester 2019
Lessons 8 8 Jan 2020

Artificial Neural Networks
Outline

Notation...2

Introduction ...3
Key Equations .. 3
Artificial Neural Networks ... 4
The Artificial Neuron ... 5
The Neural Network model .. 7
Backpropagation .. 10
Summary of Backpropagation .. 13

Artificial Neural Networks

2

Notation

xd A feature. An observed or measured value.

!

!
X A vector of D features.
D The number of dimensions for the vector

!

!
X

!

{
!
X m}

!

{ym} Training samples for learning.
M The number of training samples.

!

aj
(l) The activation output of the jth neuron of the lth layer.

!

wij
(l) The weight from unit i of layer l–1 to the unit j of layer l.

!

bj
l The bias for unit j of layer l.

!

" A learning rate. Typically very small (0.01). Can be variable.
L The number of layers in the network.

!

"m
out = am

(L) # ym() Output Error of the network for the mth training sample

!

" j,m
(l) Error for the jth neuron of layer l, for the mth training sample.

!

"wij
(l) = ai

(l#1)$ j
(l) Update for weight from unit i of layer l–1 to the unit j of layer l.

!

"bj
(l) = # j

(l) Update for bias for unit j of layer l.

Artificial Neural Networks

3

Introduction

Key Equations

 Feed Forward from Layer i to j:

!

aj
(l) = f wij

(l)ai
(l"1) +bj

(l)

i=1

N (l"1)

#
$

%
& &

'

(
))

 Feed Forward from Layer j to k:

!

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N (l)

"

$
% %

&

'
((

 Back Propagation from Layer j to i:

!

"i,m
(l#1) =

$f (zi
(l#1))

$zi
(l#1) wij

(l)" j,m
(l)

j=1

N (l)

%

 Back Propagation from Layer k to j:

!

" j,m
(l) =

#f (z j
(l))

#zj
(l) wjk

(l+1)"k ,m
(l+1)

k=1

N (l+1)

$

 Weight and Bias Corrections for layer j:

!

"wij,m
(l) = ai

(l#1)$ j ,m
(l)

!

"bj ,m
(l) = # j,m

(l)

 Network Update Formulas:

!

wij
(l) " wij

(l) #$ %&wij,m
(l)

!

bj
(l) " bj

(l) #$ %&bj ,m
(l)

Artificial Neural Networks

4

Artificial Neural Networks

Artificial Neural Networks are computational structures composed a weighted sums
of “neural” units. Each neural unit is composed of a weighted sum of input units,
followed by a non-linear decision function. The term “neural” is misleading. The
computational mechanism of a neural network is only loosely inspired from neural
biology. Neural networks do NOT implement the same learning and recognition
algorithms as biological systems.

In the 1970s, frustrations with the limits of Artificial Intelligence research based on
Symbolic Logic led a small community of researchers to explore the perceptron
based approach. In 1973, Steven Grossberg, showed that a two layered perceptron
could overcome the problems raised by Minsky and Papert, and solve many problems
that plagued symbolic AI. In 1975, Paul Werbos developed an algorithm referred to
as “Back-Propagation” that uses a distributed form of gradient descent to learn the
parameters for perceptrons from classification errors with training data.

During the 1980’s, Neural Networks went through a period of popularity with
researchers showing that Networks could be trained to provide simple solutions to
problems such as recognizing handwritten characters, recognizing spoken words, and
steering a car on a highway. However, results were overtaken by more
mathematically sound approaches for statistical pattern recognition such as support
vector machines and boosted learning.

In 1996, Yves LeCun showed that convolutional networks composed from many
layers could outperform other approaches for recognition problems. Unfortunately
such networks required extremely large amounts of data and computation. Around
2010, with the emergence of cloud-based grid computers combined with planetary-
scale data, training and using networks became practical. Since 2012, Deep Neural
Networks have been shown to outperform other approaches for recognition tasks
common to Computer Vision, Speech and Robotics. Training such networks is made
possible by high-performance parallel computing (using GPUs) using massive scale
data now available from the World Wide Web. A rapidly growing research
community currently demonstrated applications for problems such as generation of
speech, images, video-sequences and robot actions. When combined with
reinforcement learning, deep networks have defeated the world champion at Go in
2016.

Artificial Neural Networks

5

The Artificial Neuron

A “neuron” is a computational unit that integrates information from a vector of
features,

!

!
X , to compute the likelihood of an activation, a.

!

a = f (z)

The neuron is composed of a weighted sum of input values

!

z = w1x1 +w2x2 + ...+wDxD +b

 followed by a non-linear “activation” function,

!

f (z)

!

a = f (! w T
"
X + b)

Many different activation functions may be used.
A popular choice for activation function is the sigmoid:

!

" (z) =
1

1+ e#z

This function is useful because the derivative is:

!

d" (z)
dz

=" (z)(1#" (z))

This gives a decision function: IF

!

a > 0.5 THEN P ELSE N

Other popular decision functions include the hyperbolic tangent and the softmax.

 The hyperbolic Tangent:

!

f (z) = tanh(z) =
ez " e"z

ez + e"z

Artificial Neural Networks

6

The hyperbolic tangent is a rescaled form of sigmoid ranging over [-1,1]

Plot of Sigmoid (red), Hyperbolic Tangent (Blue) and Step Function (Green)

The softmax function is often used for multi-class networks. For K classes:

!

f (zk) =
ezk

ezk
k=1

K
"

The rectified linear function is popular for deep learning because of a trivial
derivative:

 Relu:

!

relu(z) =max(0, z)

While Relu is discontinuous at z=0, for z > 0 :

!

d(relu(z))
dz

=1

Note that the choice of decision function will determine the target variable “y” for
supervised learning.

Artificial Neural Networks

7

The Neural Network model

A neural network is a multi-layer assembly of neurons. For example, this is a 2-layer
network:

The circles labeled +1 are the bias terms. The circles on the left are the input terms.
Some authors, notably in the Stanford tutorials, refer to this as Level 1.

We will NOT refer to this as a level (or, if necessary, level L=0).

The rightmost circle is the output layer, also called L.

The circles in the middle are referred to as a “hidden layer”. In this example there is
a single hidden layer and the total number of layers is L=2.

The parameters carry a superscript, referring to their layer.
We will use the following notation:
L The number of layers (Layers of non-linear activations).
l The layer index. l ranges from 0 (input layer) to L (output layer)
N(l) The number of units in layer l. N(0)=D

!

aj
(l) The activation output of the jth neuron of the lth layer.

!

wij
(l) The weight from the unit i of layer l-1 for the unit j of layer l.

!

bj
(l) The bias term for jth unit of the lth layer

f(z) A non-linear activation function, such as a sigmoid, tanh, or soft-max

For example:

!

a(2) is the activation output of the neuron of the second layer.

!

W13
(2) is the weight for neuron 1 from the first level to neuron 3 in the second level.

The above network would be described by:

!

a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 +b1
(1))

!

a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 +b2
(1))

!

a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 +b3
(1))

!

a(2) = f (w11
(2)a1

(1) +w21
(2)a2

(1) +w31
(2)a3

(1) +b1
(2))

Artificial Neural Networks

8

This can be generalized to multiple layers. For example:

!

! a m
(out) =

!
h (
!
X m) is the vector of network outputs for training sample

!

!
X m

Each unit is defined as follows:

The notation for a multi-layer network is

!

! a (0) =
!
X is the input layer.

!

ai
(0) = Xd

 l is the current layer under discussion.
 N(l) is the number of activation units in layer l. N(0) = D
 i,j,k Unit indices for layers l-1, l and l+1: i→j→k

!

wij
(l) is the weight for the unit i of layer l-1 feeding to unit j of layer l.

!

aj
(l) is the activation output of the jth unit of the layer l

!

bj
(l) the bias term feeding to unit j of layer l.

!

zj
(l) = wij

(l)ai
(l"1) +bj

(l)

i=1

N (l"1)

is the weighted input to jth unit of layer l

 f(z) is a non-linear decision function, such as a sigmoid, tanh(), or soft-max

!

aj
(l) = f (zj

(l)) is the activation output for the jth
 unit of layer l

For layer l this gives:

!

zj
(l) = wij

(l)ai
(l"1)

i=1

N (l"1)

+bj
(l)

!

aj
(l) = f wij

(l)ai
(l"1) +bj

(l)

i=1

N (l"1)

#
$

%
& &

'

(
))

and then for l+1 :

!

zk
(l+1) = wjk

(l+1)aj
(l)

j=1

N (l)

" +bk
(l+1)

!

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N (l)

"

$
% %

&

'
((

Artificial Neural Networks

9

It can be more convenient to represent the network using vectors:

!

! z (l) =

z1
(l)

z2
(l)

"
zN l

(l)

"

$
$
$
$

%

&

'
'
'
'

!

! a (l) =

a1
(l)

a2
(l)

"
aN l

(l)

"

$
$
$
$

%

&

'
'
'
'

and to write the weights and bias at each level l as a k by j Matrix,

!

W (l) =

w11
(l) ! w1i

(l) ! w1N (l"1)
(l)

" # " $ "
wj1
(l) ! wji

(l) ! wjN (l"1)
(l)

" $ " # "
wN (l) 1
(l) ! wN (l)i

(l) ! wN (l)N (l"1)
(l)

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

!

!
b (l) =

b1
l

"
bi

l

"
bN (l"1)

l

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

(note: To respect matrix notation, we have reversed the order of i and j in the
subscripts.)

We can see that the weights are a 3rd order Tensor or vector of matrices, with one
matrix for each layer, The biases are a matrix (vector of vectors) with a vector for
each level.

!

! z (l) = W (l) ! a (l"1) +
"
b (l) and

!

! a (l) = f (! z (l)) = f (W (l)! a (l"1) +
!
b (l))

We can assemble the set of matrices

!

W (l) into an 3rd order Tensor (Vector of
matrices), W, and represent

!

! a (l),

!

! z (l) and

!

!
b (l) as matrices (vectors of vectors): A, Z,

B.

So how to do we learn the weights W and biases B?

We could train a 2-class detector from a labeled training set

!

{
!
X m} ,

!

{ym} using gradient
descent. For more than two layers, we will need to use the more general “back-
propagation” algorithm.

Artificial Neural Networks

10

Backpropagation
Back-propagation is a distributed form of gradient descent for estimating the “best”
network weights ,

!

W (l) and bias

!

!
b (l) . Back propagation adjusts the network the

weights

!

wij
(l) and biases

!

bj
(l) so as to minimize an error function between the network

output

!

! a m
L and the target value

!

! y m for the M training samples

!

{
!
X m} ,

!

{! y m}.

Back-propagation is easily implemented on a SIMD (Single Instruction Multiple
Data) parallel computer, such as a GPU.

Back-propagation is an iterative algorithm that propagates an error term back through
the hidden layers and computes a correction for the weights at each layer so as to
minimize the error term.

This raises two questions:
1) How do we initialize the weights?
2) How do we compute the error term for hidden layers?

1) How do we initialize the weights?
A natural answer for the first question is to initialize the weights to 0.

By experience this causes problems. If the parameters all start with identical values,
then the algorithm can end up learning the same value for all parameters. To avoid
this, we initialize the parameters with a small random variable that is near 0, for
example computed with a normal density with variance ε (typically 0.01).

!

"
i, j ,l
wji
(l) = N (X;0,#) and

!

"
j,l
bj
(l) = N (X;0,#) where

!

N is a sample from a normal

density.

An even better solution is provided by Xavier GLORIOT’s technique (see course
web site on Xavier normalization). However that solution is too complex for today’s
lecture.

2) How do we compute the error term?
Back-propagation propagates the error term back through the layers, using the
weights. We will present this for individual training samples. The algorithm can
easily be generalized to learning from sets of training samples (Batch mode).

Given a training sample,

!

!
X m , we first propagate the

!

!
X m through the L layers of the

network (Forward propagation) to obtain a hypothesis

!

!
h (
!
X m;W ,B) =

! a (L).

Artificial Neural Networks

11

We then compute an error term. In the case, of a multi-class network, this is a vector,
with k components, one output for each hypothesis. In this case the indicator vector
would be a vector, with one component for each possible class:

!

!
" m

out = #
! y m #
! a m
(L)() or for each class k:

!

"k,m
out = # yk ,m # ak ,m

(L)()

The error term

!

!
" m
out is the total error for the whole network for sample m.

To keep things simple, let us consider the case of a two class network, so that

!

"m
out ,

!

h(
!
X m),

!

am
(L) , and

!

ym are scalars. The results are easily generalized to vectors for multi-
class networks. At the output layer, the “error” for each training sample is:

!

"m
out = # ym # am

(L)() = am
(L) # ym()

The error term for layer L is then:

!

"m
(L) =

#f (zj
(L))

#zj
(L) "m

out

For the hidden units in layers l < L the error

!

" j
(l) is based on a weighted average of the

error terms for

!

"k
(l+1) .

We compute error terms,

!

" j
(l) for each unit j in layer l back to layer l–1 using the sum

of errors times the corresponding weights times the derivative of the activation
function.

!

" j,m
(l) =

#f (z j
(l))

#zj
(l) wjk

(l+1)"k,m
(l+1)

k=1

N l+1

$

This error term tells how much the unit j was responsible for differences between the
activation of the network

!

!
h (! x m;wjk

(l) ,bk
(l)) and the target value

!

! y m .

Artificial Neural Networks

12

For the sigmoid activation function,

!

" (z) =
1

1+ e#z
 the derivative is:

!

d" (z)
dz

=" (z)(1#" (z))

For

!

aj
(l) = f (zj

(l)) this gives:

!

" j,m
(l) = aj ,m

(l) (1# aj ,m
(l)) $ wjk

(l+1)"k,m
(l+1)

k=1

N (l+1)

%

This error term can then used to correct the weights and bias terms leading from layer
j to layer i.

!

"wij,m
(l) = ai

(l#1)$ j ,m
(l)

!

"bj ,m
(l) = # j ,m(l)

Note that the corrections

!

"wij,m
(l) and

!

"bj ,m
(l) are NOT applied until after the error has

propagated all the way back to layer l=1, and that when l=1,

!

ai
(0) = xi .

For “batch learning”, the corrections terms,

!

"wji,m
(l) and

!

"bj ,m
(l) are averaged over M

samples of the training data and then only an average correction is applied to the
weights.

!

"wij
(l) =

1
M

"wij,m
(l)

m=1

M

!

"bj
(l) =

1
M

"bj,m
(l)

m=1

M

then

!

wij
(l) " wij

(l) #$ %&wij
(l)

!

bj
(l) " bj

(l) #$ %&bj
(l)

where

!

" is the learning rate.

Back-propagation is equivalent to computing the gradient of the loss function for
each layer of the network. A common problem with gradient descent is that the loss
function can have local minimum. This problem can be minimized by regularization.
A popular regularization technique for back propagation is to use “momentum”

!

wij
(l) " wij

(l) #$ %&wij
(l) + µ %wij

(l)

!

bj
(l) " bj

(l) #$ %&bj
(l) + µ %bj

(l)

where the terms

!

µ "wj
(l) and

!

µ "bj
(l) serves to stabilize the estimation.

The back-propagation algorithm may be continued until all training data has been
used. For batch training, the algorithm may be repeated until all error terms,

!

" j,m
(l) , are

a less than a threshold.

Artificial Neural Networks

13

Summary of Backpropagation

The Back-propagation algorithm can be summarized as:

1) Initialize the network and a set of correction vectors:

!

"
i, j ,l
wji
(l) = N (X;0,#)

!

"
i,l
bj
(l) = N (X;0,#)

!

"
i, j ,l
#wji

(l) = 0

!

"
i,l
#bj

(l) = 0

where

!

N is a sample from a normal density, and

!

" is a small value.

2) For each training sample,

!

! x m , propagate

!

! x m through the network (forward
propagation) to obtain a network activation

!

am
(L) . Compute the error and propagate

this back through the network:

 a) Compute the network error term:

!

"m
out = am

(L) # ym()

 b) Compute the error term at Layer L:

!

"m
(L) =

#f (zj
(l))

#zj
(l) "m

out

 c) Propagate the error back from l=L-1 to l=1:

!

" j,m
(l) =

#f (z j
(l))

#zj
(l) wjk

(l+1)"k ,m
(l+1)

k=1

N (l+1)

$

 d) Use the error at each layer to set a vector of correction weights.

!

"wij,m
(l) = ai

(l#1)$ j ,m
(l)

!

"bj ,m
(l) = # j,m

(l)

3) For all layers, l=1 to L, update the weights and bias using a learning rate,

!

"

!

wij
(l) " wij

(l) #$ %&wij,m
(l) + µ %wij

(l)

!

bj
(l) " bj

(l) #$ %&bj ,m
(l) + µ %bj

(l)

Note that this last step can be done with an average correction matrix obtained from
many training samples (Batch mode), providing a more efficient algorithm.

