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The MNIST Digits Dataset 
 

 
 
 

The MNIST (Modified National Institute of Standards and Technology) dataset is a 
large collection of handwritten digits composed of 60,000 training images and 10,000 
test images.  The database was created by "re-mixing" samples of digits from NIST's 
original datasets taken from American Census Bureau employees and American high 
school students as part of the 1990 US Census.  The black and white images from 
NIST were normalized to fit into a 28x28 pixel bounding box and anti-aliased, which 
introduced gray-scale levels. 
 
Your task is to design and evaluate neural network architectures that can recognize 
hand-drawn digits using the gray-scale MNIST images.  Your networks can consist 
of convolution layers, fully connected layers, an auto-encoder, or any combination of 
these or other neural network techniques. You may use weights that are pre-trained  
on a different dataset or trained from scratch. Your must provide objective 
performance evaluation, using metrics such as error rates,  ROC curves, accuracy, 
precision and recall.  It is recommended that you use Keras with the tensorflow 
backend libraries running in a minconda environment to help you in completing this 
exercise. However, you may use any software tools and framework that you wish.  
 
This project should be performed by teams of 3 students, and should be described by 
a written report with descriptions and analysis of performance evaluation results for 
the techniques that are tested. Reports may be written in French or English.  
Programming teams are given freedom in their choice of techniques to evaluate. The 
following is an indicative barometer for grading. Actual grades will depend on a 
subjective appreciation for the amount of effort deployed and the depth of 
understanding displayed in the results, and the clarity of the report. Creativity is 
encouraged and will be rewarded! Reports are due on the Monday 12 April 2021.  
 
 



Grade Example of Criteria  (Max grade is 20) 
8 Construct and describe a fully connected multi-layer network to recognize 

MNIST digits.  Divide the MNIST training data into a training set (80%), 
an evaluation set (10%) and a test set (10%). Use the training set to train 
your network over multiple epochs while displaying accuracy for your 
training set and your evaluation set. Stop training when the accuracy scores 
diverge. Present results for Accuracy, Precision, Recall, F1, AUC for ROC 
curves, using  the test set.  

+1 to +4 Using your initial network as a baseline technique, demonstrate the effects 
of changing the number of layers (+1) and the number of units per layer 
(+1), learning with different learning rates (+1) and using different 
optimization techniques, by providing Accuracy, Precision, Recall, F1, and 
AUC for ROC curves for each network.  

8 Implement a multi-layer Convolutional network to recognize MNIST digits 
similar to the network provided as an example on the course web site, or 
similar to LeNet5. Use the training set to train your network over multiple 
epochs while displaying accuracy for your training set and your evaluation 
set. Stop training when the accuracy scores diverge. Present results for 
Accuracy, Precision, Recall, F1, AUC for ROC curves, using the test set.  

+1 to +4 Using your initial convolution network as a baseline technique, demonstrate 
the effects of changing the number of convolutional layers (+1) and the 
number of filters per layer (+1), different types and sizes of pooling layers 
(+1), and number of fully connected layers (+1), by providing Accuracy, 
Precision, Recall, F1, and AUC for ROC curves for each network.  

+1 Demonstrate the effects for different values of dropout.  
+2 Document the performance of a published network (LeNet5, VGG, Yolo, 

etc) for recognizing MNIST Digits.  
+2 to +6 Use your best network to build a real time system to recognize your own 

hand written digits.  



Installing a miniconda Programming  Environment.  
 
This lab exercise can be done in any programming environment. However, we 
recommend using Jupyter Notebooks with Keras in a MiniConda installation of 
Python.  
 
Python 
 
Python is an interpreted, high-level programming language that is widely used in 
machine learning research. Python was created in the late 1980s  by Guido van 
Rossum at  the CWI reseach center in the Netherlands as a language that emphasizes 
code readability. Its language constructs and object-oriented approach are intended to 
help programmers write clear, logical code for small and large-scale projects. Python 
is ideal for rapid protyping of software. 
 
Python 3.0 was released in 2008 and was a major revision of the language that is not 
completely backward-compatible with Python 2.  
 
Python uses whitespace indentation, rather than curly brackets or keywords, to 
delimit blocks. An increase in indentation comes after certain statements; a decrease 
in indentation signifies the end of the current block.  Thus, the program's visual 
structure accurately represents the program's semantic structure.  This feature is 
sometimes termed the off-side rule, which some other languages share, but in most 
languages indentation does not have semantic meaning.   
 
You can find many on-line tutorials and MOOCs on the web.  
For example, https://www.python.org/about/gettingstarted/ 
 
Conda Python 
 
Conda is an open source environment    and package management system that runs 
on Windows, Apple macOS and Linux. Conda quickly installs, runs and updates 
packages and their dependencies. Conda can easily be used to create, save, load and 
switch between environments on your a computer. It was created for Python 
programs, but can package and distribute software for any language including C and 
HTML. 
 
As a package manager, conda makes it easy to find and install packages. If you need 
a package that requires a different version of Python, you do not need to switch to a 
different environment manager, because conda is also an environment manager. With 
just a few commands, you can set up a totally separate environment to run a different 
version of Python, while continuing to run your usual version of Python in your 
normal environment. 



 
In its default configuration, conda can install and manage the thousands of packages 
available at repo.anaconda.com that are built, reviewed and maintained by Anaconda.  
 
We will use a simple minimal version referred to as miniconda.   
 
Installing MiniConda 
 
MiniConda install packages are available Linux, Apple MacOS, or MS Windows.  
Installer packages for full anaconda can be found at 
https://www.anaconda.com/download/ 
The installer packages for miniconda are at (https://conda.io/miniconda.html) 
 
The following is my personal installation guide for 2020, that is adapted for computer 
vision using OpenCV. 
 
Installation of MiniConda on an Apple Macintosh  
 
Miniconda can be installed from a .pkg file   
(Miniconda3-latest-MacOSX-x86_64.pkg)  
or using bash with a .sh file  
(Miniconda3-latest-MacOSX-x86_64.sh).  
Both are available at https://conda.io/miniconda.html 
 
For a bash installation,   
1) navigate to https://docs.conda.io/en/latest/miniconda.html 
2) download Miniconda3-latest-MacOSX-x86_64.sh  
3) open a terminal and navigate to the directory where the .sh may found  and run: 
$ bash Miniconda3-latest-MacOSX-x86_64.sh 
 
Installation of MiniConda on Linux: 
 
For installation on a Linux system.  
1) navigate to https://docs.conda.io/en/latest/miniconda.html 
2) download Miniconda3-latest-Linux-x86_64.sh to and run: 
3) open a terminal and navigate to the directory you downloaded  to and run: 
$ bash Miniconda3-latest-Linux-x86_64.sh 
 
After installation,  create and activate a Python environment.  I use Python 3.7 for 
compatibility with OpenCV. If you are not using OpenCV you may use the latest 
Python release.  
 
Create and activate a Python conda environment. For example, the following creates 
an environment named SIRR  



$ conda create -n SIRR python=3.7 
$ source activate SIRR 
 
Numpy 
 
Install the Numpy library   (http://www.numpy.org/)  
 
NumPy is an open source project intended to enable numerical computing with 
Python. Numpy was created in 2005, building on the existing Numeric and Numarray 
libraries. Numpy is extremely useful and widely used for machine learning.  
 
The latest version is  numpy=1.20. For OpenCV it is useful to use an older (1.16.4) 
version of Numpy to avoid warnings of impending changes in syntax.  
 
Numpy is directly available in MiniConda.  
 
 $ conda install numpy=1.16.4 
 
Matplotlib  
 
Matplotlib  (https://matplotlib.org/) is a comprehensive library for creating static, 
animated, and interactive visualizations in Python.  
 
Matplotlib is directly available in MiniConda. Type:  
 
$ conda install matplotlib 
 
Jupyter Notebooks.  
 
Install Jupyter Notebooks (http://jupyter.org/) 
 
Jupyter notebooks are widely used for collaborative machine learning.  
 
A Jupyter Notebook is an open-source web application that allows creation and 
sharing of documents that contain live code, equations, visualizations, HTML 
markups and narrative text. Jupyter notebooks provide a browser-based tool for 
interactive authoring of documents that may combine explanatory text, mathematics, 
computations and their rich media output.  
 
Jupyter notebooks provide:  
• In-browser editing for code, with automatic syntax highlighting, indentation, and 

tab completion/introspection. 
• The ability to execute code from the browser, with the results of computations 

attached to the code which generated them. 



• Displaying the result of computation using rich media representations, such as 
HTML, LaTeX, PNG, SVG, etc.   

• In-browser editing for rich text using the Markdown markup language, which can 
provide commentary for the code, is not limited to plain text. 

• The ability to easily include mathematical notation within markdown cells using 
LaTeX, and rendered natively by MathJax. 

 
To install Jupyter Notebooks with miniconda, type:  
 
$ conda install jupyter notebook 
 
 



Keras 
 
Keras is a deep learning API written in Python, created by Francois Chollet at Google 
for running experiments with the Google machine learning platform TensorFlow. 
Keras offers consistent and simple APIs. Keras minimizes the number of user actions 
required for common use cases, and attempts to provide clear and actionable 
feedback for user errors. 
 
TensorFlow is an end-to-end, open-source machine-learning platform. You can think 
of it as an infrastructure layer for differentiable programming. It combines four key 
abilities: 
• Efficiently executing low-level tensor operations on CPU, GPU, or TPU. 
• Computing the gradient of arbitrary differentiable expressions. 
• Scaling computation to many devices  
• Exporting programs to external runtimes such as servers, browsers, mobile and 

embedded devices. 
 
Keras is the high-level API of TensorFlow 2: an approchable, highly-productive 
interface for solving machine learning problems, with a focus on modern deep 
learning. It provides essential abstractions and building blocks for developing and 
shipping machine learning solutions with high iteration velocity. 
 
Keras allows engineers and researchers to take advantage of the scalability and cross-
platform capabilities of TensorFlow 2. Keras can be run on TPU or on large clusters 
of GPUs, and it is possible to export networks trained with Keras to run in the 
browser or on a mobile device.   See: https://keras.io/about/ 
 
The core data structures of Keras are layers and models. The simplest type of model 
is the Sequential model, a linear stack of layers. For more complex architectures, you 
can use the Keras functional API, which allows to build arbitrary graphs of layers, or 
write models entirely from scratch via subclasssing. 
 
Keras is available directly in miniconda.  To install keras, type:  
 
$ conda install keras 
 
This should also install tensorflow 
  
It is strongly recommended that you review the tutorial at 
https://keras.io/getting_started/intro_to_keras_for_engineers/ 
  
 



Keras Code Examples   
 
You can create a simple fully connected network in Keras as a set of layers  
using constructors from the Keras  "sequential model".  
The MNIST data set is directly available using the mnist library.  
 
import numpy as np 
import tensorflow as tf 
from tensorflow import  keras 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.datasets import mnist 
 
The following creates a network with 2 layers.  
The first layer has 784 units, with relu activation.  
The second layer has 10 units and uses softmax activation.  
 
model = Sequential([ 
 Dense(32, input_shape=(784,),activation='relu') 
 Dense(10,activation='softmax') 
]) 
  
You can compile this model, using categorical crossentropy loss function and the 
adam (adaptive moment) optimisation with   
 
# Compile with Adam optimizer and categorical Cross entropy 
 
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 
 
We can train a model using model.fit.  
 
history=model.fit(trainingSet, trainingLabel, validation_split=0.30, epochs=5, 
batch_size=128) 
 
# to list all data in history 
print(history.history.keys()) 
 
Assigning the results to history allows us to plot the evolution of the model as it is 
trained over 5 epochs.  
 
Keras offers a variety of activation functions, loss functions and optimizers.  
See the Keras documentation for descriptions and examples.  
 
 
A number of classic CNN architectures can be found in the Keras Libraries.  
These include VGG16, VGG19 and ResNet50.  
 



For example, VGG16 is a classic CNN architecture that is very useful for transfer 
learning. (we will study this next lecture).  
 
To obtain a VGG 16 network that has been pre-trained  with the imagenet dataset:  
   
From keras.applications.vgg16 import VGG16. 
 
Model=VGG16(weights='imagenet', include_top=True).  
 
Keras also contains a library for data augmentation to increase the size of a training 
set by deforming the training data with affine transformations or color 
transformation.  
 
Some useful links:  
Miniconda:   https://docs.conda.io/en/latest/miniconda.html 
Keras:   https://anaconda.org/conda-forge/keras 
Keras documentation: https://keras.io/ 
MNIST Dataset:  http://yann.lecun.com/exdb/mnist/ 
 



A Simple Example of an MLP for MNIST digits 
 
This is a simple MLP for recognizing MNIST Digits that was provided by one of the 
MOSIG M1 teams from the 2019/2020 academic year. .  
The jupyter notebook for this example can be downloaded from the course web site.  
 
# import environmental variables.  
 
import tensorflow as tf 
from keras import layers 
from keras.datasets import mnist 
from keras.models import Sequential 
 
import matplotlib.pyplot as plt 
import math 
from keras.layers import Dense 
import tensorflow.keras.backend as K 
from keras.utils import to_categorical 
 
import os 
import keras 
from keras.callbacks import Callback 
import matplotlib.pyplot as plt 
import numpy as np 
# from scikitplot.metrics import plot_confusion_matrix, plot_roc 
 
# for history  
from glob import glob 
 
# Load the MNIST Digits 
# Keras provide a command to directly load the MNIST digits 
 
(trainingSet, trainingLabel), (testSet, testLabel) = mnist.load_data() 
 
# Define a 3 layer MLP 
# Flattent the 28x28 MNIST digits to a 784 coefficient vector.  
# add 2 dense layers with 784 units and relu activation,  
# followed by an output layer with 10 units and softmax.  
 
model = Sequential() 
model.add(layers.Dense(784, activation='relu', input_shape=(28 * 28,))) 
model.add(layers.Dense(784, activation='relu', input_shape=(28 * 28,))) 
model.add(layers.Dense(10, activation='softmax')) 
 
# show the model 
 
model.summary() 
 
# Compile with Adam optimizer and categorical Cross entropy 
 
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 



 
trainingSet = trainingSet.reshape((60000, 28 * 28)) 
trainingSet = trainingSet.astype('float32') / 255 
testSet = testSet.reshape((10000, 28 * 28)) 
testSet = testSet.astype('float32') / 255 
 
# Train the model and save teh history 
trainingLabel = to_categorical(trainingLabel) 
testLabel = to_categorical(testLabel) 
history=model.fit(trainingSet, trainingLabel, validation_split=0.30, epochs=5, 
batch_size=128) 
 
test_loss, test_acc = model.evaluate(testSet, testLabel) 
print('test_acc:', test_acc, 'test_loss', test_loss) 
 
# list all data in history 
print(history.history.keys()) 
 
# summarize history for accuracy 
plt.plot(history.history['accuracy']) 
plt.plot(history.history['val_accuracy']) 
plt.title('model accuracy') 
plt.ylabel('accuracy') 
plt.xlabel('epoch') 
plt.legend(['train', 'test'], loc='upper left') 
plt.show() 
 
 



Keras Example:  a simple CNN for MNIST Digits 
 
Here is a simple example of Keras code to load the MNIST Digits, and train a model.  
 
# Make sure images have shape (28, 28, 1) 
 
x_train = np.expand_dims(x_train, -1) 
x_test = np.expand_dims(x_test, -1) 
 
print("x_train shape:", x_train.shape) 
print(x_train.shape[0], "train samples") 
print(x_test.shape[0], "test samples") 
 
# convert class vectors to binary class matrices 
 
y_train = keras.utils.to_categorical(y_train, num_classes) 
y_test = keras.utils.to_categorical(y_test, num_classes) 
 
# A model for a 2 layer CNN with 3x3 kernels followed by 2x2 pooling 
 
model = keras.Sequential( 
    [ 
        keras.Input(shape=input_shape), 
        layers.Conv2D(32, kernel_size=(3, 3), activation="relu"), 
        layers.MaxPooling2D(pool_size=(2, 2)), 
        layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), 
        layers.MaxPooling2D(pool_size=(2, 2)), 
        layers.Flatten(), 
        layers.Dropout(0.5), 
        layers.Dense(num_classes, activation="softmax"), 
    ] 
) 
 
model.summary() 
 
batch_size = 128 
epochs = 15 
 
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) 
 
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1) 
 
 


