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Introduction

Computer Vision Tasks used in ML challenges
Much of the early work on Machine Learning for Vision was focused on
classification of pixels and images. The following is a taxonomy of such problems:

Semantic Classification Object Instance
Classification =~ Segmentation + Localization Detection Segmentation

GTR;ESESS , DOG, DOG, CAT  DOG, DOG, CAT
y , SKY ' ,
Single Object No objects, just pixels Single Object Multiple Object

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecturel1.pdf

Hierarchical Part Detection

1) Image Classification: Does an image (or imagette) contain an instance of a class?
2) Semantic Segmentation: What is the most likely class for each pixel?

3) Single Object Detection: Does the image contain an instances of a class, and if so,
at what position and scale?

4) Multiple Object Detection: Does the image contain instances of several classes,
and if yes, what are the positions and scales for each instance?

5) Hierarchical part detection. Where are the component parts for an object class.

Many (or most) of the widely used Network Architectures were designed specifically
to compete in computer vision challenges, in which competitors compete on
formalized vision tasks using publicly available data sets. The nature of these tasks
and particularly the specification for the Benchmark data sets helps explain many of
the parameters of the architecture designs.
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Benchmark Data Sets Visual Task Challenges

As we saw 1n lesson 11, many of the popular architectures were designed specifically
to address research challenges based on image data sets. Classically, these data sets
were for challenges related to object detection. More recently the challenges
increasingly address other visual tasks.

The ImageNet Challenge for Object Detection

ImageNet was originally concerned with Image Classification: Does an image (or
imagette) contain an instance of a class? Most state-of-the-art object detection
networks pre-train on ImageNet and then rely on transfer learning to adapt the
learned recognition system to a specific domain. The ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) uses a "trimmed" list of only 1000 image
categories or "classes", including 90 of the 120 dog breeds classified by the full
ImageNet schema.

ImageNet crowdsources its annotation process. In 2018 there were more than 14
million images have been hand-annotated by the project to indicate what objects are
pictured and in at least one million of the images, bounding boxes are also provided.
Image-layer annotations indicate the presence or absence of an object class in an
image. Object-layer annotations provide a bounding box around the (visible part of
the) indicated object.

In 2014, more than fifty institutions participated in the ILSVRC, almost exclusively
with different forms of Network Architectures. In 2017, 29 of 38 competing teams in
the ILSVRC demonstrated error rates less than 5% ( better than 95% accuracy).

However, the ILVSRC task is to identify images as belonging to one of a thousand
categories; humans can recognize a larger number of categories, and also (unlike the
programs) can judge the context of an image. More importantly, humans are capable
of MANY other visual tasks involving Spatio-temporal interaction with 3D. In
cognitive psychology, these are referred to as visual competences.

COCO - Common Objects in Context

Microsoft COCO is a large-scale object detection, segmentation, and captioning
dataset created in 2015. Images in the COCO data set display are everyday objects
captured from everyday scenes. This adds some “context” to the objects captured in
the scenes
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COCO contains more than 2.5M instances in 91 object categories, with 5 captions per
image 330K images (200K+ annotated) with 250,000 people with key points.

Data sets for other visual tasks

An extensive (very large) list of publically available benchmark data sets and
research challenges for visual tasks may be found at.
https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research

This list continues to grow rapidly.

There is a growing interest in developing techniques for recognizing actions and
activities from video sequences and multimodal data. The recent emergence of
generative techniques, combined with rapid advances in Robotics and Autonomous
Systems appear likely greatly expand this set of tasks. In particular the recent
progress in Transformers and Attention-based techniques in Natural Language
processing appear likely to enable many new competences for computer vision.

The following are some techniques for multiple object detection and semantic
detection.
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Generative Convolutional Networks

Generating images with deconvolution.

Just as it is possible to generate signals from codes using fully connected generative
networks, it is possible to construct Generative Convolutional Networks for CNNs
using an operation known as deconvolution.

Deconvolution is often used with convolutional networks to determine the location of
a detected pattern in an image. Deconvolution provides a coarse pixel-wise label
map that segments the image into regions corresponding to recognized classes and
can be used for semantic segmentation.

De-convolution treats the learned receptive fields as basis functions, and uses the
activation at level [/ to create a weighted sum of bases at level [+/. The learned
receptive fields are multiplied by the map of activation at level [ to generate
overlapping projections of receptive fields. These are then summed to create an
image at level [+/. In some cases, the boundary is cropped to obtain an image at the
target window size.

Decomvolution

A stride greater than 1 can be used to create a larger image. The stride acts as the
opposite of pooling. For 2x2 average pooling, de-convolution simply projects 4
displaced copies of the receptive field onto a 2 x 2 grid of overlapping receptive
fields. These are then summed to give an image. An example of such a network is
DCGAN architecture.
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DCGAN

A DCGAN (deep convolutional generative adversarial network) takes 100 random
numbers as an input (or code) and outputs an color image of size 64x64x3

1024 —
J—‘—|

Code Project and
reshape Deconv 1

Deconv 3

Deconv 4
Image

The first fully connected layer is a 4 x 4 array of 1024 cells (Depth = 1024). Total
number of cells is 16 K. This layer has 160 K weights and 16 K biases to train. This
first layer is deconvolved into an 8 x 8 by 512 second layer, where deconvolution
projects each of the cells in the 4x4 layer onto an overlapping set of 5x5 receptive
field with a stride of 2. The process is repeated to create a 3rd layer that is
16x16x256 and then a 4th layer that is 32 x 32 by 128. The final output is a Sth layer
with 64 x64 pixels of 3 colors.

The following are some examples of images generated using DCGAN:

-

smiling neutral neutral smiling man
woman woman man

Example smiling man images generated from smiling woman images.

From:
Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep
convolutional generative adversarial networks, ICLR 2016.
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Deconvolution with VGG16
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/ /128 x 28 (XTI XD
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softmax

VGG16 is a convolutional neural network architecture proposed by K. Simonyan and
A. Zisserman from the University of Oxford in the paper “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. VGG16 scored 92.7% top-5 test
accuracy in ImageNet, which is a dataset of over 14 million images belonging to
1000 classes.

VGG16 improves on AlexNet by replacing large kernel-sized filters (11 x 11 and 5 x
5) with a cascade of 3x3 kernel-sized filter. VGG16 was trained for weeks and using
NVIDIA Titan Black GPU’s.

VGG accepts a 224 x 224 RGB image as input. The first 17 layers use 3x3
convolutions, relu and 2x2 max pooling with a stride of 2 after layers 2, 4, 7, 10 and
13. The depths are D=64 (layers 1, 2), D=128 (layers 3, 4), D=256 (layers 5, 6, 7).
D=512 (layers 8 to 13). Layers 14 and 15 are a 1 x 1 convolution with depth 4096.
Layer 16 is 1 x 1 x 1000 likelihood score for 1000 pretrained classes using softmax
activation.

Three Fully-Connected (FC) layers follow a stack of 1x1 convolutional layers. The
first two full-connected layers have 4096 channels each. The third layer has 1000
channels corresponding to the 1000 image classes corresponding to the 1000 image-
net classes used in the ILSVRC (Image-net Large Scale Visual Recognition
Classification) challenge for which it was designed. The final layer uses soft-max
activation to determine the most likely classes in the 224 x 224 input image.
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Normally VGG16 is used by scaling (texture mapping) the input image into a 224 by
224 window, without regard for the scale of the input, and produces only a
probability for 1000 trained classes in the image. However, VGG16 can be adapted
as a multiple object detector using deconvolution. The deconvolution network is a
mirror image, replacing pooling with "un-pooling" and convolution with
"deconvolution". This is often referred to as a U-net encoder-decoder.

224x224

Unpooling

Unpooli
e Unpooling
—u

VGG uses max pooling. With Max pooling, unpooling requires remembering which
unit was selected for each pooling operation. This is done with a "switch Variable"
that records the selected unit. The output is a larger sparse layer in which 3/4 of the
activations are zero.

Swllch £
varaohes 'v‘:l “4ahles .
: [
.« ﬂnut
' ‘ ungocled
map
Pooling Unpooling

The following shows an example with deconvolution of the VGG net of a bicycle. (a)
is the original image. The other images show the results of max-pooling for the
14x14,28x28, 56x56, 112x112, and 224x224 layers
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The output pixels can be used to provide scores for semantic segmentation for each
pixel. Alternatively bounding boxes can be estimated by computing the 1st and 2nd
moments (center of gravity and covariance), with a likelihood provided by the zeroth
moment (sum of pixel class likelihoods) for each class.

For example, the following are multi-class object detection and semantic
segmentation images obtained from deconvolution with VGG taken from Nachwa
Aboubakr's thesis on observation of cooking activities. Her experiments use the 50
Salads data set.

‘Whole cucumber

/ Diced tomato
Q¢

Sliced tomato

Object detection

Whole lettuce

Object label + object location Example of pixel-wise labeling of a scene



Locating Patterns in Images

YOLO: You Only Look Once

YOLO poses object detection as a single regression problem that estimates bounding
box coordinates and class probabilities at the same time directly from image pixels. A
single convolutional network simultaneously predicts multiple bounding boxes and
class probabilities for each box in a single evaluation. The result is a unified
architecture for detection and classification that is very fast.

S x S grid on input F Final detections

r «NEa
| NN

Class probability map

The input image is divided into an S x S grid of cells. Each grid cell predicts B
bounding boxes as well as C class probabilities. The bounding box prediction has 5
components: (X, y, w, h, confidence).

Predicted Tensor

><: (1, Y1, W1, e, Seong1) | (%2, Y2, W2, ha, Seonga)
length : 5B+ C

Fully
connected
(From Kim, J. and Cho, J. Exploring a Multimodal Mixture-Of-YOLOs Framework for Advanced
Real-Time Object Detection. Applied Sciences, 2020, vol. 10, no 2, p. 612.)

The (X, y) coordinates represent the center of the predicted bounding box, relative to
the grid cell location. Width and height (w, h) are predicted relative to the entire
image.

Both the (x, y) coordinates and the window size (w, h) are normalized to a range of
[0,1]. Predictions for bounding boxes centered outside the range [0,1] are ignored. If
the predicted object center (x, y) coordinates are not within the grid cell, then object
is ignored by that cell.

10
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Each grid cell also predicts C class conditional probabilities P(Class, | Object)

These are conditioned on the grid cell containing an object. Only one set of class
probabilities are predicted per grid cell, regardless of the number of boxes.

Confidence is computed as CF = P(Class,)IoU (predicted,True)

This can be evaluated using Bayes rule:

P(Class;)loU(predicted,True) = P(Class, | Object)P(Object)loU (predicted, True)

These predictions are encoded as an S x S x (5B+C) tensor. Where SxS 1is the
number of grid cells, B is the number of Bounding Boxes predicted and C is the
number of image classes. For the Pascal visual Object Classification challenge, S =
7,B =2 and C=20 yielding a 7x7x30 tensor.

These scores encode the probability of a member of class i appearing in a box, and
how well the box fits the object. If no object exists in a cell, the confidence score
should be zero. Otherwise the confidence score should equal the intersection over
union (IOU) between the predicted box and the ground truth.

The Yolo-1 Network

448

n2

33E 56 , -
448 3EQ 28 aﬁ .

56 28 3
| | 7 7
3 192 256 512 1024 1024 1024 4096 30

Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer  Conn. Layer
7x7x64-52 3x3x192 1x1x128 1x1x256 7 4 1x1x512 1,5 3x3x1024
Maxpool Layer ~ Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-s-2 2x2-s-2 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-s-2
Maxpool Layer  Maxpool Layer
2x2-52 2x2-s2
(From: REDMON, J., DIVVALA, S., GIRSHICK, R., et al. You only look once: Unified, real-time
object detection. In : Proceedings of the IEEE conference on computer vision and pattern

recognition. 2016. p. 779-788.)

The network was inspired by GoogleLeNet. The detection network has 24
convolutional layers followed by 2 fully connected layers. Alternating 1 by 1
convolutional layers reduce the features space from preceding layers.

11
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(from: http://datahacker.rs/how-to-peform-yolo-object-detection-using-keras/)

30

The convolutional layers were pretrained on the ImageNet data-set at half the
resolution (224 by 224 input image). Image resolution was then doubled to (448 x
448) for detection.

Layer Name Filters Stride | Output Dimension
Conv 1 7x7x64 2 224 x 224 x 64
Max Pool 1 2x2 2 112 x 112 x 64
Conv 2 3x3x192 1 112 x112x 192
Max Pool 2 2x2 2 56 x 56 x 192
Conv 3 1x1x128 1 56 x 56 x 128
Conv 4 3x3x256 1 56 x 56 x 256
Conv 5 1x1x256 1 56 x 56 x 256
Conv 6 1x1x512 1 56 x 56 x 512
Max Pool 3 2x2 2 28 x 28 x 512
Conv 7 1x1x256 1 28 x 28 x 256
Conv 8 3x3x512 1 28 x 28 x 512
Conv 9 1x1x256 1 28 x 28 x 256
Conv 10 3x3x512 1 28 x 28 x 512
Conv 11 1x1x256 1 28 x 28 x 256
Conv 12 3x3x512 1 28 x 28 x 512
Conv 13 1x1x256 1 28 x 28 x 256
Conv 14 3x3x512 1 28 x 28 x 512
Conv 15 1x1x512 1 28 x 28 x 512
Conv 16 3x3x1024 1 28 x 28 x 1024
Max Pool 4 2x2 2 14 x 14 x 1024
Conv 17 1x1x512 1 14 x 14 x 512

12
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Conv 18 3x3x1024 1 14 x 14 x 1024
Conv 19 1x1x512 1 14 x 14 x 512
Conv 20 3x3x1024 1 14 x 14 x 1024
Conv 21 3x3x1024 1 14 x 14 x 1024
Conv 22 3x3x1024 2 7 x7x1024
Conv 23 3x3x1024 1 7 x7x1024
Conv 24 3x3x1024 1 7 x7x1024
Fully-Connected 1 - - 4096
Fully-Connected 2 - - 7 x7 x30(1470)

Training YOLO

The 20 convolutional layers followed by average pooling and a fully connected layer
were first pre-trained using the ImageNet 1000-class dataset images transformed to a
resolution of 224x224. Training for the full network then continued using the same
images rescaled to 448 by 448, with data augmentation using random scaling and
translations, and randomly adjusting exposure and saturation. The full network was
trained for 135 epochs using a batch size of 64, momentum of 0.9 and decay of
0.0005. Training for the first 75 epochs used a learning rate of 0.01. After 75 epochs
the learning rate was slowly lowered to 0.001

All layers except the final layer use a leaky rectified linear activation function:

f(z) = X if x> 0
0.1x otherwise

The final layer used simple linear activation.

13
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Loss Function for YOLO

The YOLO loss function is based on sum of squared errors. However, to avoid
instability in training due to simultaneous estimation of bounding boxes and classes,
errors in estimation are bounding boxes and classes weighted differently, with the
=5 and A,,,,;=0.5. Rather than estimate w and h directly, the network
estimates the square root of w X h. The resulting loss function is

two terms A

coord

C- s 33102 (-5 ] wwdEEl"b’[(J_ V) (ﬁ‘ﬁ)l

i=0 j-0 i=0 j-0

éil?j’”(q—@f)zMnoobjiili}””’(q—C) El”’fi (P(©)- PO

i=0 j-0 i=0 j-0 cEclasses

where 1 is 1 if an object appears in cell i, and 17" is 1 if the j" bounding box

predictor in cell i is responsible for the prediction of the object. This loss function
only penalizes classification error if an object is present in that grid cell. It also only
penalizes the bounding box coordinate error if that predictor is “responsible” for the
ground truth box.

Training uses dropout with a rate of 0.5 after the first connected layer to avoid over-
fitting. The training data is augmented using random scaling and translations of up to
20%. Saturation and exposure of the color vector are randomly adjusted by up to 1.5
using HSV color-coding.

Limitations of YOLO-1

The first generation of YOLO imposed strong spatial constraints on bounding box
predictions, because each grid cell only predicts two boxes and can only have one
class. This spatial constraint limits the number of nearby objects that our model can

predict. Thus the network struggles with small objects that appear in groups, such as
flocks of birds.

The network has difficulty recognizing objects in new or unusual aspect ratios or
configurations. Our model also uses relatively coarse features for predicting
bounding boxes since our architecture has multiple down-sampling layers from the
input image. Also, the loss function treats errors the same in small bounding boxes
versus large bounding boxes. A small error in a large box is generally benign but a
small error in a small box has a much greater effect on IOU. The main source of error
is incorrect localizations.

14
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YOLO-9000 (YOLOV2)

In 2016, the YOLO team published performance evaluation results and source code
for a new version of YOLO referred to as Yolo-9000. Yolo-9000 employed a number
of innovations, including ideas that had emerged in the machine learning literature
the previous year. These included:

Batch Normalization

Batch normalization provided a significant improvement in convergence while
eliminating the need for other forms of regularization. Batch normalization provided
a 2% improvement in mAP (mean average precision), and made it possible to remove
dropout from the architecture without overfitting.

Higher Resolution Classifier

The original YOLO was first trained with 224x224 images and then with 448x448
images for bounding box detection. For Yolo-2, the classification network was
trained at 448x448 resolution for 10 epochs on ImageNet. Training with higher
resolution network provided an increase of almost 4% mAP.

Convolutional With Anchor Boxes.

YOLO predicts the coordinates of bounding boxes directly using fully connected
layers on top of the convolutional feature extractor. For Yolo-2, the authors removed
the fully connected layers from YOLO and used anchor boxes to predict bounding
boxes. Input images were reduced to 416x416 providing an output feature map of
13x13. The class prediction mechanism is decoupled from spatial location, by
predicting the objectness for each anchor box.

Dimension Clusters.

Anchor box dimensions are initially hand picked. The authors replaced this with k-
means clustering on the training set bounding boxes to automatically find good
priors. The resulting cluster centroids are significantly different than hand-picked
anchor boxes, with fewer short, wide boxes and more tall, thin boxes.

15
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Bounding boxes with dimension priors and location prediction.

Yo0lo-9000 predicts the width and height of the box as offsets from cluster centroids.
The center coordinates of the box are predicted relative to the location of filter
application using a sigmoid function.

Fine-Grained Features

Yo0lo-9000 predicts detections on a 13x13 feature map. While this is sufficient for
large objects, it may benefit from finer grained features for localizing smaller objects.
To correct this, Yolo-9000 includes a pass-through layer that brings features from an
earlier layer at 26x26 resolution.

Multi-Scale Training

Because the network uses only convolutional and pooling layers it can be resized on
the fly. To obtain robustness to scale, the network was trained with images of
different sizes.

During training, the input image size was changed every few iterations. Every 10
batches our network randomly adopted a new image resolution. Because model
down-samples by a factor of 32, the resolutions are multiples of 32 from 320x320 to
608x608. This forces the network to learn to predict well across a variety of input
dimensions. Thus same network can predict detections at different resolutions. The
network runs faster at smaller sizes giving an easy tradeoff between speed and
location accuracy.

At low resolutions YOLOV2 operates as a cheap, fairly accurate detector. At 288x288
it runs at more than 90 FPS. This makes it ideal for smaller GPUs, high framerate

video, or multiple video streams.

At high resolution the network is competitive with the state of the art giving 78.6
mAP on VOC 2007 while still operating above real-time speeds

Code and pre-trained models for Yolo-9000 are available on-line at
http://pjreddie.com/yolo9000/.

Additional incremental improvements have been provided for YOLOv3 and
YOLOv4.
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