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Introduction 
Computer Vision Tasks used in ML challenges 
Much of the early work on Machine Learning for Vision was focused on 
classification of pixels and images. The following is a taxonomy of such problems:  
 

 

 
Hierarchical Part Detection 

 
1) Image Classification: Does an image (or imagette) contain an instance of a class? 
2) Semantic Segmentation:  What is the most likely class for each pixel? 
3) Single Object Detection:  Does the image contain an instances of a class, and if so, 
at what position and scale?   
4) Multiple Object Detection: Does the image contain instances of several classes, 
and if yes, what are the positions and scales for each instance? 
5) Hierarchical part detection. Where are the component parts for an object class.  
 
Many (or most) of the widely used Network Architectures were designed specifically 
to compete in computer vision challenges, in which competitors compete on 
formalized vision tasks using publicly available data sets. The nature of these tasks 
and particularly the specification for the Benchmark data sets helps explain many of 
the parameters of the architecture designs. 
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Benchmark Data Sets Visual Task Challenges 
 
As we saw in lesson 11, many of the popular architectures were designed specifically 
to address research challenges based on image data sets. Classically, these data sets 
were for challenges related to object detection.  More recently the challenges 
increasingly address other visual tasks.  
 
The ImageNet Challenge for Object Detection 
ImageNet was originally concerned with Image Classification: Does an image (or 
imagette) contain an instance of a class? Most state-of-the-art object detection 
networks pre-train on ImageNet and then rely on transfer learning to adapt the 
learned recognition system to a specific domain.  The ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) uses a "trimmed" list of only 1000 image 
categories or "classes", including 90 of the 120 dog breeds classified by the full 
ImageNet schema.  
 
ImageNet crowdsources its annotation process. In 2018 there were more than 14 
million  images have been hand-annotated by the project to indicate what objects are 
pictured and in at least one million of the images, bounding boxes are also provided. 
Image-layer annotations indicate the presence or absence of an object class in an 
image. Object-layer annotations provide a bounding box around the (visible part of 
the) indicated object.  
 
In 2014, more than fifty institutions participated in the ILSVRC, almost exclusively 
with different forms of Network Architectures. In 2017, 29 of 38 competing teams in 
the ILSVRC demonstrated error rates less  than 5% ( better than 95% accuracy).  
 
However, the ILVSRC task is to identify images as belonging to one of a thousand 
categories; humans can recognize a larger number of categories, and also (unlike the 
programs) can judge the context of an image. More importantly, humans are capable 
of MANY other visual tasks involving Spatio-temporal interaction with 3D. In 
cognitive psychology, these are referred to as visual competences.  
 
COCO - Common Objects in Context  
Microsoft COCO is a large-scale object detection, segmentation, and captioning 
dataset created in 2015.  Images in the COCO  data set display  are everyday objects 
captured from everyday scenes. This adds some “context” to the objects captured in 
the scenes 
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COCO contains more than 2.5M instances in 91 object categories, with 5 captions per 
image 330K images (200K+ annotated) with 250,000 people with key points. 
 

Data sets for other visual tasks 
An extensive (very large) list of publically available benchmark data sets and 
research challenges for visual tasks may be found at.  
https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research 
This list continues to grow rapidly.  
 
There is a growing interest in developing techniques for recognizing actions and 
activities from video sequences and multimodal data. The recent emergence of 
generative techniques, combined with rapid advances in Robotics and Autonomous 
Systems appear likely greatly expand this set of tasks. In particular the recent 
progress in Transformers and Attention-based techniques in Natural Language 
processing appear likely to enable many new competences for computer vision.  
 
The following are some techniques for multiple object detection and semantic 
detection.  
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Generative Convolutional Networks 
Generating images with deconvolution.  
 
Just as it is possible to generate signals from codes using fully connected generative 
networks, it is possible to construct Generative Convolutional Networks for CNNs  
using an operation known as deconvolution.   
 
Deconvolution is often used with convolutional networks to determine the location of 
a detected pattern in an image.   Deconvolution  provides a coarse pixel-wise label 
map that segments the image into regions corresponding to recognized classes and 
can be used for semantic segmentation. 
 
De-convolution treats the learned receptive fields as basis functions, and uses the 
activation at level l to create a weighted sum of bases at level l+1. The learned 
receptive fields are multiplied by the map of activation at level l to generate 
overlapping projections of receptive fields. These are then summed to create an 
image at level l+1.  In some cases, the boundary is cropped to obtain an image at the 
target window size.  
 

   
 
A stride greater than 1 can be used to create a larger image.  The stride acts as the 
opposite of pooling.  For 2x2 average pooling, de-convolution simply projects 4 
displaced copies of the receptive field onto a 2 x 2 grid of overlapping receptive 
fields.  These are then summed to give an image.  An example of such a network is 
DCGAN architecture.  
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DCGAN 
 
A DCGAN (deep convolutional generative adversarial network) takes 100 random 
numbers as an input (or code) and outputs an color image of size 64x64x3 

 
 
The first fully connected layer is a 4 x 4 array of 1024 cells (Depth = 1024). Total 
number of cells is 16 K.  This layer has 160 K weights and 16 K biases to train.  This 
first layer is deconvolved into an 8 x 8 by 512 second layer, where deconvolution 
projects each of the cells in the 4x4 layer onto an overlapping set of 5x5 receptive 
field with a stride of 2.   The process is repeated to create a 3rd layer that is 
16x16x256 and then a 4th layer that is 32 x 32 by 128. The final output is a 5th layer 
with 64 x64 pixels of 3 colors. 
 
The following are some examples of images generated using DCGAN: 
 

 
Example smiling man images generated from smiling woman images. 

From:  
Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep 
convolutional generative adversarial networks, ICLR 2016.  

Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10



Locating Patterns in Images  
 

7 

Deconvolution with VGG16 
  

 
 
VGG16 is a convolutional neural network architecture proposed by K. Simonyan and 
A. Zisserman from the University of Oxford in the paper “Very Deep Convolutional 
Networks for Large-Scale Image Recognition”. VGG16 scored 92.7% top-5 test 
accuracy in ImageNet, which is a dataset of over 14 million images belonging to 
1000 classes.  
 
VGG16 improves on AlexNet by replacing large kernel-sized filters (11 x 11 and 5 x 
5) with a cascade of 3×3 kernel-sized filter. VGG16 was trained for weeks and using 
NVIDIA Titan Black GPU’s. 
 
VGG accepts a 224 x 224 RGB image as input. The first 17 layers use 3x3 
convolutions, relu and 2x2 max pooling with a stride of 2 after layers 2, 4, 7, 10 and 
13.  The depths are D=64 (layers 1, 2), D=128 (layers 3, 4), D=256 (layers 5, 6, 7). 
D=512 (layers 8 to 13). Layers 14 and 15 are a 1 x 1 convolution with depth 4096.  
Layer 16 is 1 x 1 x 1000 likelihood score for 1000 pretrained classes using softmax 
activation.  
 
Three Fully-Connected (FC) layers follow a stack of 1x1 convolutional layers. The 
first two full-connected layers have 4096 channels each. The third layer has 1000 
channels corresponding to the 1000 image classes corresponding to the 1000 image-
net classes used in the ILSVRC (Image-net Large Scale Visual Recognition 
Classification) challenge for which it was designed.  The final layer uses soft-max 
activation to determine the most likely classes in the 224 x 224 input image.  
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Normally VGG16 is used by scaling (texture mapping) the input image into a 224 by 
224 window, without regard for the scale of the input, and produces only a 
probability for 1000 trained classes in the image.  However, VGG16 can be adapted 
as a multiple object detector using deconvolution.  The deconvolution network is a 
mirror image, replacing pooling with "un-pooling" and convolution with 
"deconvolution".  This is often referred to as a U-net encoder-decoder.  
 

 
 
VGG uses max pooling.  With Max pooling, unpooling requires remembering which 
unit was selected for each pooling operation. This is done with a "switch Variable" 
that records the selected unit. The output is a larger sparse layer in which 3/4 of the 
activations are zero. 
 

  
 
The following shows an example with deconvolution of the VGG net of a bicycle. (a) 
is the original image. The other images show the results of max-pooling for the 
14x14, 28x28, 56x56, 112x112, and 224x224 layers 
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The output pixels can be used to provide scores for semantic segmentation for each 
pixel.  Alternatively bounding boxes can be estimated by computing the 1st and 2nd 
moments (center of gravity and covariance), with a likelihood provided by the zeroth 
moment (sum of pixel class likelihoods) for each class.  
 
For example, the following are multi-class object detection and semantic 
segmentation images obtained from deconvolution with VGG taken from Nachwa 
Aboubakr's thesis on observation of cooking activities. Her experiments use the 50 
Salads data set.  
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YOLO: You Only Look Once  
 
YOLO poses object detection as a single regression problem that estimates bounding 
box coordinates and class probabilities at the same time directly from image pixels. A 
single convolutional network simultaneously predicts multiple bounding boxes and 
class probabilities for each box in a single evaluation. The result is a unified 
architecture for detection and classification that is very fast.  
 

 
 
The input image is divided into an S x S grid of cells.  Each grid cell predicts B 
bounding boxes as well as C class probabilities. The bounding box prediction has 5 
components: (x, y, w, h, confidence).  
 

 
(From Kim, J. and Cho, J. Exploring a Multimodal Mixture-Of-YOLOs Framework for Advanced 
Real-Time Object Detection. Applied Sciences, 2020, vol. 10, no 2, p. 612.) 
 
The (x, y) coordinates represent the center of the predicted bounding box, relative to 
the grid cell location.  Width and height (w, h) are predicted relative to the entire 
image.    
 
Both the (x, y) coordinates and the window size (w, h) are normalized to a range of 
[0,1].  Predictions for bounding boxes centered outside the range [0,1] are ignored. If 
the predicted object center (x, y) coordinates are not within the grid cell, then object 
is ignored by that cell.   

making predictions. Unlike sliding window and region
proposal-based techniques, YOLO sees the entire image
during training and test time so it implicitly encodes contex-
tual information about classes as well as their appearance.
Fast R-CNN, a top detection method [14], mistakes back-
ground patches in an image for objects because it can’t see
the larger context. YOLO makes less than half the number
of background errors compared to Fast R-CNN.

Third, YOLO learns generalizable representations of ob-
jects. When trained on natural images and tested on art-
work, YOLO outperforms top detection methods like DPM
and R-CNN by a wide margin. Since YOLO is highly gen-
eralizable it is less likely to break down when applied to
new domains or unexpected inputs.

YOLO still lags behind state-of-the-art detection systems
in accuracy. While it can quickly identify objects in im-
ages it struggles to precisely localize some objects, espe-
cially small ones. We examine these tradeoffs further in our
experiments.

All of our training and testing code is open source. A
variety of pretrained models are also available to download.

2. Unified Detection

We unify the separate components of object detection
into a single neural network. Our network uses features
from the entire image to predict each bounding box. It also
predicts all bounding boxes across all classes for an im-
age simultaneously. This means our network reasons glob-
ally about the full image and all the objects in the image.
The YOLO design enables end-to-end training and real-
time speeds while maintaining high average precision.

Our system divides the input image into an S ⇥ S grid.
If the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object.

Each grid cell predicts B bounding boxes and confidence
scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and
also how accurate it thinks the box is that it predicts. For-
mally we define confidence as Pr(Object) ⇤ IOUtruth

pred . If no
object exists in that cell, the confidence scores should be
zero. Otherwise we want the confidence score to equal the
intersection over union (IOU) between the predicted box
and the ground truth.

Each bounding box consists of 5 predictions: x, y, w, h,
and confidence. The (x, y) coordinates represent the center
of the box relative to the bounds of the grid cell. The width
and height are predicted relative to the whole image. Finally
the confidence prediction represents the IOU between the
predicted box and any ground truth box.

Each grid cell also predicts C conditional class proba-
bilities, Pr(Class

i

|Object). These probabilities are condi-
tioned on the grid cell containing an object. We only predict

one set of class probabilities per grid cell, regardless of the
number of boxes B.

At test time we multiply the conditional class probabili-
ties and the individual box confidence predictions,

Pr(Classi|Object) ⇤ Pr(Object) ⇤ IOUtruth
pred = Pr(Classi) ⇤ IOUtruth

pred (1)

which gives us class-specific confidence scores for each
box. These scores encode both the probability of that class
appearing in the box and how well the predicted box fits the
object.

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S⇥S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S ⇥ S ⇥ (B ⇤ 5 + C) tensor.

For evaluating YOLO on PASCAL VOC, we use S = 7,
B = 2. PASCAL VOC has 20 labelled classes so C = 20.
Our final prediction is a 7⇥ 7⇥ 30 tensor.

2.1. Network Design

We implement this model as a convolutional neural net-
work and evaluate it on the PASCAL VOC detection dataset
[9]. The initial convolutional layers of the network extract
features from the image while the fully connected layers
predict the output probabilities and coordinates.

Our network architecture is inspired by the GoogLeNet
model for image classification [34]. Our network has 24
convolutional layers followed by 2 fully connected layers.
Instead of the inception modules used by GoogLeNet, we
simply use 1⇥ 1 reduction layers followed by 3⇥ 3 convo-
lutional layers, similar to Lin et al [22]. The full network is
shown in Figure 3.

We also train a fast version of YOLO designed to push
the boundaries of fast object detection. Fast YOLO uses a
neural network with fewer convolutional layers (9 instead
of 24) and fewer filters in those layers. Other than the size
of the network, all training and testing parameters are the
same between YOLO and Fast YOLO.
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Each grid cell also predicts C class conditional probabilities P(Classi |Object)  
 
These are conditioned on the grid cell containing an object. Only one set of class 
probabilities are predicted per grid cell, regardless of the number of boxes.  
 
Confidence is computed as CF = P(Classi )IoU(predicted,True)  
 
This can be evaluated using Bayes rule:  
 
P(Classi )IoU(predicted,True) = P(Classi |Object)P(Object)IoU(predicted,True)  
 
These predictions are encoded as an S x S x (5B+C) tensor.  Where SxS is the 
number of grid cells, B is the number of Bounding Boxes predicted and C is the 
number of image classes.  For the Pascal visual Object Classification challenge,  S = 
7, B = 2 and C=20 yielding a 7x7x30 tensor.   
 
These scores encode the probability of a member of class i appearing in a box, and 
how well the box fits the object.  If no object exists in a cell, the confidence score 
should be zero. Otherwise the confidence score should equal the intersection over 
union (IOU) between the predicted box and the ground truth. 
 

The Yolo-1 Network  
 
 

 
(From: REDMON, J., DIVVALA, S., GIRSHICK, R., et al. You only look once: Unified, real-time 
object detection. In : Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2016. p. 779-788.) 
 
The network was inspired by GoogleLeNet. The detection network has 24 
convolutional layers followed by 2 fully connected layers. Alternating 1 by 1 
convolutional layers reduce the features space from preceding layers. 

448

448

3

7

7

Conv. Layer
7x7x64-s-2

Maxpool Layer
2x2-s-2

3
3

112

112

192

3
3
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256

Conn. Layer

4096

Conn. LayerConv. Layer
3x3x192

Maxpool Layer
2x2-s-2

Conv. Layers
1x1x128
3x3x256
1x1x256
3x3x512

Maxpool Layer
2x2-s-2

3
3

28

28

512

Conv. Layers
1x1x256
3x3x512
1x1x512

3x3x1024
Maxpool Layer

2x2-s-2

3
3

14

14

1024

Conv. Layers
1x1x512

3x3x1024
3x3x1024

3x3x1024-s-2

3

3

7

7
1024

7

7
1024

7

7
30

} ×4 } ×2
Conv. Layers
3x3x1024
3x3x1024

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1⇥ 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224⇥ 224 input image) and then double the resolution for detection.

The final output of our network is the 7⇥ 7⇥ 30 tensor
of predictions.

2.2. Training

We pretrain our convolutional layers on the ImageNet
1000-class competition dataset [30]. For pretraining we use
the first 20 convolutional layers from Figure 3 followed by a
average-pooling layer and a fully connected layer. We train
this network for approximately a week and achieve a single
crop top-5 accuracy of 88% on the ImageNet 2012 valida-
tion set, comparable to the GoogLeNet models in Caffe’s
Model Zoo [24]. We use the Darknet framework for all
training and inference [26].

We then convert the model to perform detection. Ren et
al. show that adding both convolutional and connected lay-
ers to pretrained networks can improve performance [29].
Following their example, we add four convolutional lay-
ers and two fully connected layers with randomly initialized
weights. Detection often requires fine-grained visual infor-
mation so we increase the input resolution of the network
from 224⇥ 224 to 448⇥ 448.

Our final layer predicts both class probabilities and
bounding box coordinates. We normalize the bounding box
width and height by the image width and height so that they
fall between 0 and 1. We parametrize the bounding box x

and y coordinates to be offsets of a particular grid cell loca-
tion so they are also bounded between 0 and 1.

We use a linear activation function for the final layer and
all other layers use the following leaky rectified linear acti-
vation:

�(x) =

(
x, if x > 0

0.1x, otherwise
(2)

We optimize for sum-squared error in the output of our

model. We use sum-squared error because it is easy to op-
timize, however it does not perfectly align with our goal of
maximizing average precision. It weights localization er-
ror equally with classification error which may not be ideal.
Also, in every image many grid cells do not contain any
object. This pushes the “confidence” scores of those cells
towards zero, often overpowering the gradient from cells
that do contain objects. This can lead to model instability,
causing training to diverge early on.

To remedy this, we increase the loss from bounding box
coordinate predictions and decrease the loss from confi-
dence predictions for boxes that don’t contain objects. We
use two parameters, �coord and �noobj to accomplish this. We
set �coord = 5 and �noobj = .5.

Sum-squared error also equally weights errors in large
boxes and small boxes. Our error metric should reflect that
small deviations in large boxes matter less than in small
boxes. To partially address this we predict the square root
of the bounding box width and height instead of the width
and height directly.

YOLO predicts multiple bounding boxes per grid cell.
At training time we only want one bounding box predictor
to be responsible for each object. We assign one predictor
to be “responsible” for predicting an object based on which
prediction has the highest current IOU with the ground
truth. This leads to specialization between the bounding box
predictors. Each predictor gets better at predicting certain
sizes, aspect ratios, or classes of object, improving overall
recall.

During training we optimize the following, multi-part
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(from: http://datahacker.rs/how-to-peform-yolo-object-detection-using-keras/) 
 
 The convolutional layers were pretrained on the ImageNet data-set at half the 
resolution  (224 by 224 input image). Image resolution was then doubled to (448 x 
448) for detection. 
 

Layer	
  Name	
   Filters	
   Stride	
   Output	
  Dimension	
  

Conv	
  1	
   7	
  x	
  7	
  x	
  64	
   2	
   224	
  x	
  224	
  x	
  64	
  

Max	
  Pool	
  1	
   2	
  x	
  2	
   2	
   112	
  x	
  112	
  x	
  64	
  

Conv	
  2	
   3	
  x	
  3	
  x	
  192	
   1	
   112	
  x	
  112	
  x	
  192	
  

Max	
  Pool	
  2	
   2	
  x	
  2	
   2	
   56	
  x	
  56	
  x	
  192	
  

Conv	
  3	
   1	
  x	
  1	
  x	
  128	
   1	
   56	
  x	
  56	
  x	
  128	
  

Conv	
  4	
   3	
  x	
  3	
  x	
  256	
   1	
   56	
  x	
  56	
  x	
  256	
  

Conv	
  5	
   1	
  x	
  1	
  x	
  256	
   1	
   56	
  x	
  56	
  x	
  256	
  

Conv	
  6	
   1	
  x	
  1	
  x	
  512	
   1	
   56	
  x	
  56	
  x	
  512	
  

Max	
  Pool	
  3	
   2	
  x	
  2	
   2	
   28	
  x	
  28	
  x	
  512	
  

Conv	
  7	
   1	
  x	
  1	
  x	
  256	
   1	
   28	
  x	
  28	
  x	
  256	
  

Conv	
  8	
   3	
  x	
  3	
  x	
  512	
   1	
   28	
  x	
  28	
  x	
  512	
  

Conv	
  9	
   1	
  x	
  1	
  x	
  256	
   1	
   28	
  x	
  28	
  x	
  256	
  

Conv	
  10	
   3	
  x	
  3	
  x	
  512	
   1	
   28	
  x	
  28	
  x	
  512	
  

Conv	
  11	
   1	
  x	
  1	
  x	
  256	
   1	
   28	
  x	
  28	
  x	
  256	
  

Conv	
  12	
   3	
  x	
  3	
  x	
  512	
   1	
   28	
  x	
  28	
  x	
  512	
  

Conv	
  13	
   1	
  x	
  1	
  x	
  256	
   1	
   28	
  x	
  28	
  x	
  256	
  

Conv	
  14	
   3	
  x	
  3	
  x	
  512	
   1	
   28	
  x	
  28	
  x	
  512	
  

Conv	
  15	
   1	
  x	
  1	
  x	
  512	
   1	
   28	
  x	
  28	
  x	
  512	
  

Conv	
  16	
   3	
  x	
  3	
  x	
  1024	
   1	
   28	
  x	
  28	
  x	
  1024	
  

Max	
  Pool	
  4	
   2	
  x	
  2	
   2	
   14	
  x	
  14	
  x	
  1024	
  

Conv	
  17	
   1	
  x	
  1	
  x	
  512	
   1	
   14	
  x	
  14	
  x	
  512	
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Conv	
  18	
   3	
  x	
  3	
  x	
  1024	
   1	
   14	
  x	
  14	
  x	
  1024	
  

Conv	
  19	
   1	
  x	
  1	
  x	
  512	
   1	
   14	
  x	
  14	
  x	
  512	
  

Conv	
  20	
   3	
  x	
  3	
  x	
  1024	
   1	
   14	
  x	
  14	
  x	
  1024	
  

Conv	
  21	
   3	
  x	
  3	
  x	
  1024	
   1	
   14	
  x	
  14	
  x	
  1024	
  

Conv	
  22	
   3	
  x	
  3	
  x	
  1024	
   2	
   7	
  x	
  7	
  x	
  1024	
  

Conv	
  23	
   3	
  x	
  3	
  x	
  1024	
   1	
   7	
  x	
  7	
  x	
  1024	
  

Conv	
  24	
   3	
  x	
  3	
  x	
  1024	
   1	
   7	
  x	
  7	
  x	
  1024	
  

Fully-­‐Connected	
  1	
   -­‐	
   -­‐	
   4096	
  

Fully-­‐Connected	
  2	
   -­‐	
   -­‐	
   7	
  x	
  7	
  x	
  30	
  (1470)	
  

 

Training YOLO 
 
The 20 convolutional layers followed by average pooling and a fully connected layer 
were first pre-trained using the ImageNet 1000-class dataset  images transformed to a 
resolution of 224x224.   Training for the full network then continued using the same 
images rescaled to 448 by 448, with data augmentation using random scaling and 
translations, and randomly adjusting exposure and saturation.  The full network was 
trained for 135 epochs using a batch size of 64, momentum of 0.9 and decay of 
0.0005.  Training for the first 75 epochs used a learning rate of 0.01.  After 75 epochs 
the learning rate was slowly lowered to 0.001 
 
All layers except the final layer use a leaky rectified linear activation function:  
 

 

 
The final layer used simple linear activation.  
 

f(z) = x if x > 0
0.1x otherwise

!
"
#
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Loss Function for YOLO 
The YOLO loss function is based on sum of squared errors. However, to avoid 
instability in training due to simultaneous estimation of bounding boxes and classes, 
errors in estimation are bounding boxes and classes weighted differently, with the 
two terms λcoord= 5 and λnoobj=0.5. Rather than estimate w and h directly, the network 
estimates the square root of w x h. The resulting loss function is 
 

C = λcoord 1ij
obj xi − x̂i( )2 + yi − ŷi( )2"
#

$
%

j−0

B

∑
i=0

S2

∑ +λcoord 1ij
obj wi − ŵi( )

2
+ hi − ĥi( )

2"

#
'

$

%
(

j−0

B

∑
i=0

S2

∑

+ 1ij
obj Ci − Ĉi( )

2

j−0

B

∑
i=0

S2

∑ +λnoobj 1ij
noobj Ci − Ĉi( )

2

j−0

B

∑
i=0

S2

∑ + 1i
obj pi (c)− p̂i (c)( )2

c∈classes

B

∑
i=0

S2

∑
 

  
where 1iobj  is 1 if an object appears in cell i, and 1ijobj  is 1 if the jth bounding box 
predictor in cell i is responsible for the prediction of the object.  This loss function 
only penalizes classification error if an object is present in that grid cell. It also only 
penalizes the bounding box coordinate error if that predictor is “responsible” for the 
ground truth box. 
 
Training uses dropout with a rate of 0.5 after the first connected layer to avoid over-
fitting.  The training data is augmented using random scaling and translations of up to 
20%.  Saturation and exposure of the color vector are randomly adjusted by up to 1.5 
using HSV color-coding.  
 

Limitations of YOLO-1  
The first generation of YOLO imposed strong spatial constraints on bounding box 
predictions, because each grid cell only predicts two boxes and can only have one 
class. This spatial constraint limits the number of nearby objects that our model can 
predict. Thus the network struggles with small objects that appear in groups, such as 
flocks of birds. 
 
The network has difficulty recognizing objects in new or unusual aspect ratios or 
configurations. Our model also uses relatively coarse features for predicting 
bounding boxes since our architecture has multiple down-sampling layers from the 
input image. Also, the loss function treats errors the same in small bounding boxes 
versus large bounding boxes. A small error in a large box is generally benign but a 
small error in a small box has a much greater effect on IOU. The main source of error 
is incorrect localizations. 
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YOLO-9000 (YOLOv2) 
 

 
 
 
In 2016, the YOLO team published performance evaluation results and source code 
for a new version of YOLO referred to as Yolo-9000. Yolo-9000 employed a number 
of innovations, including ideas that had emerged in the machine learning literature 
the previous year.  These included:  
 
Batch Normalization 
Batch normalization provided a significant improvement in convergence while 
eliminating the need for other forms of regularization. Batch normalization provided 
a 2% improvement in mAP (mean average precision), and made it possible to remove 
dropout from the architecture without overfitting. 
 
Higher Resolution Classifier 
The original YOLO was first trained with 224x224 images and then with 448x448 
images for bounding box  detection. For Yolo-2, the classification network was 
trained at  448x448 resolution for 10 epochs on ImageNet. Training with higher 
resolution network provided an increase of almost 4% mAP. 
 
Convolutional With Anchor Boxes.  
YOLO predicts the coordinates of bounding boxes directly using fully connected 
layers on top of the convolutional feature extractor. For Yolo-2, the authors removed  
the fully connected layers from YOLO and used anchor boxes to predict bounding 
boxes. Input images were reduced to 416x416 providing an output feature map of 
13x13. The class prediction mechanism is decoupled from spatial location, by 
predicting the objectness for each anchor box.  
 
Dimension Clusters.  
Anchor box dimensions are initially hand picked. The authors replaced this with k-
means clustering on the training set bounding boxes to automatically find good 
priors.  The resulting cluster centroids are significantly different than hand-picked 
anchor boxes, with fewer short, wide boxes and more tall, thin boxes. 
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Abstract
We introduce YOLO9000, a state-of-the-art, real-time

object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOv2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
faster. Finally we propose a method to jointly train on ob-
ject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don’t have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

1. Introduction
General purpose object detection should be fast, accu-

rate, and able to recognize a wide variety of objects. Since
the introduction of neural networks, detection frameworks
have become increasingly fast and accurate. However, most
detection methods are still constrained to a small set of ob-
jects.

Current object detection datasets are limited compared
to datasets for other tasks like classification and tagging.
The most common detection datasets contain thousands to
hundreds of thousands of images with dozens to hundreds
of tags [3] [10] [2]. Classification datasets have millions
of images with tens or hundreds of thousands of categories
[20] [2].

We would like detection to scale to level of object clas-
sification. However, labelling images for detection is far
more expensive than labelling for classification or tagging
(tags are often user-supplied for free). Thus we are unlikely

Figure 1: YOLO9000. YOLO9000 can detect a wide variety of
object classes in real-time.
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Bounding boxes with dimension priors and location prediction.  
Yolo-9000 predicts the width and height of the box as offsets from cluster centroids. 
The center coordinates of the box are predicted relative to the location of filter 
application using a sigmoid function.  
 
Fine-Grained Features 
Yolo-9000 predicts detections on a 13x13 feature map. While this is sufficient for 
large objects, it may benefit from finer grained features for localizing smaller objects. 
To correct this, Yolo-9000 includes a pass-through layer that brings features from an 
earlier layer at 26x26 resolution. 
 
Multi-Scale Training 
Because the network uses only convolutional and pooling layers it can be resized on 
the fly. To obtain robustness to scale,  the network was trained with images of 
different sizes.  
 
During training, the input image size  was changed every few iterations. Every 10 
batches our network randomly adopted a new image resolution. Because model 
down-samples by a factor of 32, the resolutions are multiples of 32 from 320x320 to 
608x608.   This forces the network to learn to predict well across a variety of input 
dimensions. Thus same network can predict detections at different resolutions. The 
network runs faster at smaller sizes giving an easy tradeoff between speed and 
location accuracy. 
 
At low resolutions YOLOv2 operates as a cheap, fairly accurate detector. At 288x288 
it runs at more than 90 FPS. This makes it ideal for smaller GPUs, high framerate 
video, or multiple video streams. 
 
At high resolution the network is competitive with the state of the art giving 78.6 
mAP on VOC 2007 while still operating above real-time speeds 
 
Code and pre-trained models for Yolo-9000  are available on-line at 
http://pjreddie.com/yolo9000/. 
 
Additional incremental improvements have been provided for YOLOv3 and 
YOLOv4.  


