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Notation 
xd   A feature or attribute.  An observed or measured value.  
   For discrete features, the values can be labeled with integers  [1,  Nd].  
!
X    A vector of D  features.   
D   The number of dimensions for the vector   
 S:  

€ 

{
! 
X m}  

€ 

{ym} A set of training samples (observations) and their indicator variables. 
M   The number of training samples.  
Ck   The class k 
k   Class index (Natural number from 1 to K) 
K   Total number of classes 

Mk   Number of examples for the class k.  

€ 

M = Mk
k=1

K

∑  

P(Ck )   The probability distribution for the indicator variables of  the training 

samples.  P(Ck ) ≡ P(
!
Xm ∈Ck ) = P(ym =Ck ) =

Mk

M
 

H(S)   The entropy of a set of class labels for a set S of training samples. 

 H (S) = − P(Ck )log2 P(Ck )( )
k=1

K

∑  

H(S|xd)  Conditional entropy of dividing a set into D subsets using the values 
for  attribute xd 

IG(S, xd )   Information gain for dividing a set into D subsets using the values for 
attribute xd   IG(S, xd ) = H (S)−H (S | xd )  

IG (P(Ck ))   The Gini Impurity index  for a set S.   IG (P(Ck )) = P(Ck ) 1−P(Ck )( )
k=1

K

∑  
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Decision Trees 
A decision tree is a data structure for estimating a function ŷ← f (

!
X ) . The function 

may be used to estimate a numerical value for a feature vector (regression), or may be 
used to estimate the most likely class label ŷ ∈ [1,k]  from a set of K possible labels 
(Classification).   
 
Decision Trees were developed in the 1980s as a form of inductive learning for 
symbolic reasoning and for exploring the theoretical limits to machine learning. 
Decision trees are among a fairly small family of machine learning models that are 
easily interpreted to provide Explainable AI have thus recently received renewed 
attention. Two families of supervised learning techniques for decision trees were 
invented at about the same time: Dichotomizers and CART methods.  
 
Dichotomizers, such as ID3, C4.5, C5.0 and their successors, are multi-branch 
decision trees that that apply a series of multiple-choice questions to determine the 
most likely class or most likely value for a feature vector. Dichotomizers are typically 
used with qualitative values. Dichotomizers are most appropriate for classification of 
feature vectors with symbolic or qualitative values for which the attributes have a 
small number of, possibly unordered, symbolic values.  Dichotomizers may be used 
with unordered symbolic labels values, such as colors or nationalities. 
 
Classification and Regression Tree (CART) are more appropriate for observations 
(feature vectors) with numerical values or symbolic values with an intrinsic order.  
CART methods apply a series of binary predicates  (true-false tests) to progressively 
partition a feature space into rectangular cuboid volumes that are populated with  
relatively uniform examples from the training set.  CART trees are  invariant under 
scaling and various other transformations of feature values.   
 
When used for classification, the resulting cuboids should ideally be populated with 
training samples that are  predominately from a single class. We will usea measure 
called Gini Impurity to measure this. When used for regression (functional 
approximation), the cuboid regions should contain examples that permit an easy and 
accurate functional approximation, such as an average or a linear interpolation.  
 
Both Dichotomizers and CART Trees are robust to missing or irrelevant features, and 
can be used to construct explanations for automatic reasoning.   Both classes of 
decision tree will determine automatically which of the possible features are the most 
informative.  
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Aggregations (large sets) of decision trees,  known as random forests,  have recently 
been shown to provide classification performance similar to multi-layer perceptrons 
for many practical  problems.  Unfortunately, random forests obtain this performance 
at the cost of loss of interpretability, and can not easily be interpreted to provide 
explanations.  

 
Ensemble techniques, such as random forests, construct more than one decision tree. 
A random forest classifier is a specific type of bootstrap aggregating tree learning 
algorithm that uses multiple decision trees constructed by repeatedly resampling 
training data with replacement. The output is a consensus obtained by voting.  This is 
sometimes called a committee of classifiers.    
Boosted learning can be used with random forests to provide arbitrarily good 
classifiers. Boosted trees incrementally building an ensemble (committee) of 
classifiers by training each new instance to emphasize the training instances 
mismodelled by previously constructed trees.   

 
A rotation forest is a tree-learning algorithm that first applies principal component 
analysis on a random subset of the input features, and then learns decision rules on 
the principle axes.  
 
Algorithms for constructing decision trees generally work top-down, by choosing a 
feature or attribute of the training data  at each step that best splits the training data 
into subsets. The feature space is thus divided by a sequence of simple tests,  
corresponding to the path from the root to a leaf of a tree.  While traversing the tree,  
each node provides a decision that further divides the feature space.  Such processes 
are similar to K-nearest neighbors, and a variant of decision trees,  K-D trees,  are 
often used to implement KNN.   
 
Different algorithms use different metrics for measuring "best". These generally 
measure the homogeneity of the target variable within the subsets.  The choice of 
metric tends to depend on the nature of the features (discrete or continuous) and the 
desired function (classification or regression).  
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Some Background from Information Theory  
 
Dichotomisers, CART trees and Random Forests rely on information theory to 
determine the order in which to test the attributes of an observation.  In this section 
we review some basic concepts from information theory.  We will then define the 
Information Gain for using the values of an attribute to divide a set, and the Gini 
impurity for the number of different classes in a set.  
 
As in previous lectures, we will assume a labeled training set, S, of M samples of 
feature vectors (observations)

!
Xm{ } , each with D features, along with indicator 

variables 

€ 

ym{ }.  Each component, xd of {
!
Xm}  is assumed to have Nd possible discrete 

values. For simplicity, these may be normalized to the first N natural numbers, x: 
[1,Nd]. 

  
!
X =

x1
x2
"
xD

!

"

#
#
#
#
#

$

%

&
&
&
&
&  

In the literature on decision trees, the features of the vector 
!
X are often referred to as 

attributes. We will use the term attribute and feature interchangeably.   
 
For classification, every training sample must belong to one and only one class from 
the set of K classes {Ck}.  The class indexes, k,  are taken from the natural numbers in 
the range [1, K]. In this case, the indicator variable, ym,  represents an integer index, 
k, for the target class, Ck.   In the case of a regression, the target variable, ym, will be a 
numerical value.  
 

Entropy and Information Gain 
Dichotomizers are most appropriate when the attributes, xd, can take on a discrete set 
of Nd possible values. We will identify these values with Nd natural numbers in the 
range  xd ∈ [1,  Nd].  
 
For a set S of M training samples, of which Mk belong to class k, the probability that a 
sample belongs to class Ck, P(

!
Xm ∈Ck )  is often written simply as P(Ck).   As we saw 

in lecture 3:  
 
 P(Ck ) ≡ P(Xm ∈Ck ) = P(ym = k) =

Mk

M
 

The tree bar symbol,  ≡ , indicates definition.  
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We can use the probability density of class labels to compute the entropy, H(S), of 
the set S as  
 

 H (S) = − P(Ck )log2 P(Ck )( )
k=1

K

∑  

This is also valid for any subset of S.  Suppose we use of the Nd values of the attribute 
(or feature) xd   to divide the set S into Nd subsets, with one subset for each of the Nd 
values of xd. We will refer to these Nd  subsets as Sn.  We note that the union of these 
subsets is S. Let Mn represent the number of samples  in the subset Sn. 
 

 S = Sn
n=1

Nd

∪   and M = Mn
n=1

Nd

∑  

 
The entropy of each subset, H(Sn), computed as explained above for H(S). The 
probability that any training sample, 

!
Xm , of S will be in subset Sn is equivalent to the 

probability that an attribute xd of a vector 
!
Xm  from S will take on value n.  

 
 P(

!
Xm ∈ Sn ) = P(xd = n) =

Mn

M
 

 
We can use this to define the conditional entropy, H(S|xd), for using the values of the 
attribute xd to divide the set S into Nd subsets, Sn:  
 

  H (S | xd ) = P(xd = n)
n=1

ND

∑ H (Sn )  

 
The information gain of dividing S into Nd subsets using xd is thus defined as:  
 
 IG(S, xd ) = H (S)−H (S | xd )  
 
ID3 uses the information gain for each feature, xd, with respect to the current subset 
of the training data to select the next feature, xd, to be used to divide the training set 
into Nd Subsets.  
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GINI index or Gini Impurity 
 
CART (classification and regression tree) algorithms use the Gini index or Gini 
impurity to select the order of features for dividing a set S into subsets.   This is 
similar to the Gini coefficient used in economics to measure of the distribution of 
income across a population, proposed by Corrado Gini in 1912. However, Gini 
Impurity is not the same as the Gini coefficient used in economics. Gini impurity 
measures how often an element from a set would be incorrectly labeled if it were 
labeled using a random value taken from the distribution of labels from the set.  The 
Gini index is differentiable and can thus be used for learning using gradient descent. 
 
As before, we will assume a labeled training set, S, of M samples of feature vectors 
(observations)

!
Xm{ } , each with D features, along with indicator variables 

€ 

ym{ }, where 
the indicator variable is an integer index, k, for the target class, Ck, from the natural 
numbers in the range [1, K].  In the case of CART the attributes may be Discrete or 
continuous.  In the case of a regression tree, the target variables will be a numerical 
values. 
 
Let ŷ  be the output from a Discrimination function (Classifier) that maps a D 
dimensional feature vector, 

!
X  into one of K classes {Ck} 

 
 ŷ = D(

!
X)  

 
The Gini index captures the effect of basing the predicted class on the probability 
distribution of target variables from the training set, independent of the actual feature 
vector.  In this case  P(ŷm ) = P(Ck ) .  
 
The Gini index is computed from the probability distribution of the classes.  
 

 IG (P(Ck )) = P(Ck ) 1−P(Ck )( )
k=1

K

∑  

 
This reaches zero when all cases in the node fall into a single target category.  CART 
methods provide a decision tree that successively divides the training data into 
uniform classes (or target values) by minimizing the Gini index.  
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Comparison of Entropy, Gini , and Classification Error 
 
Hastie et al, 2001, contains discusses a comparison of the use of Entropy, Gini Index 
and Misclassification error (Sum of Squared Errors) as a loss function for learning 
decision trees. This graph shows the value of Entropy, Gini Index and 
Misclassification error as a function of the Probability distribution, P(Ck) for a K=2 
class decision with class labels (P, N). The entropy, Gini index, and Misclassification 
error as a function of probability that a sample is Negative would be 
 
 P(CN ) ≡ P(Xm ∈ N ) = P(ym = N )   
 

 
Node Impurity measures for two-class classification, as a function of the proposition p in class 2.  

Taken from T. Hastie, R. Tibshirani and J. Friedman, Elements of Statistical Learning, Springer, 2001 
 
We can note that all three have similar values, with all three having maximal values 
when the data is completely balanced (50/50), zero when the training set is pure (all P 
or all N). 
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Iterative Dichotomizers 
 

 
(source unknown) 

 
Dichotomizers are multi-branch decision trees that that apply a series of multiple-
choice questions to determine the most likely category (class) for an observation. 
Dichotomizers are most appropriate for classification of observations (feature 
vectors) with symbolic or qualitative values, particularly when the attributes have a 
small number of possibly unordered  symbolic values  such as colors or nationalities. 
The  ID3 (Iterative Dichotomiser 3) algorithm was proposed by Ross Quinlan in 1979 
as a formalization for induction tree learning algorithms.   
 

The ID3 Algorithm 

 
By Acoggins38 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49453541 

 
The ID3 algorithm uses a top-down greedy approach to build a decision tree.  The 
ID3 algorithm begins with the original set of M training samples{

!
Xm}  with target 

variables{ym}  as the root node.   
 
The algorithm uses the information gain of the individual features from the current 
training set to compose a tree of multivalued decision functions. As described above, 
information gain is the reduction in entropy obtained by dividing a set into disjoint 
subsets based on the values of a particular feature or attribute.  Information gain is 
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calculated by comparing the entropy of the dataset before and after a division into 
subsets. 
 
On each iteration, the algorithm iterates through the unused features of the current 
subset, S,  and calculates the conditional entropy, H(S | xd),  for dividing the set S into 
Nd subsets, using the values of each feature xd .  The feature, xd, with the largest 
information gain is then used to construct a multi-valued test, and the current subset 
of the data is partitioned into Nd subsets, according to the values of the selected 
feature. The algorithm continues recursively with each subset, considering only 
features that have not been previously selected for a test. 
 
Recursion on a subset will stop if one of the following cases occurs: 

1) Every element in the subset has the same indicator variable (or target value); in 
this case, the node is turned into a leaf node and labeled with the class given by 
the indicator variable. 

2) There are no more attributes to be selected. In this case, the node is made a leaf 
node and labeled with the most frequent indicator variables of the samples in 
the subset. 

3) There are no training samples in the subset, which can happen when no sample 
in the subset set was found to match a specific value of the selected attribute.  
An example could be the absence of a person among the population with from 
a specific country. In this case, a leaf node is created and labeled with the most 
common class of the examples in the parent node's set. 

 
Throughout the algorithm, the decision tree is constructed with each non-terminal 
node (internal node) representing the selected attribute on which the data was split, 
and terminal nodes (leaf nodes) representing the class label of the final subset of this 
branch. 
 
The resulting path through the tree can interpreted with a natural language 
explanation for the decision.  An example for such an explanation would be:  
 
<X> is likely to be Danish because he is tall, has blond hair and blue eyes.  
 
The ID3 algorithm will produce errors when there are examples in the training data 
from different target classes that have identical feature vectors. When training on 
identical feature vectors with different target values, the algorithm will select the 
most likely target vector as a response.  
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Summary of ID3:  
1) Calculate the entropy for each attribute xd of with respect to the current subset of 

training data. 
2) Partition ("split") the current set  into Nd subsets using the attribute for which the 

information gain is greatest. 
3) Create a decision tree node using the selected attribute as a test with one branch 

for each possible value of the attribute. 
4) Recursively repeat on the above steps using the remaining attributes for each 

subset. 
 
ID3 uses a greedy strategy by selecting the locally best attribute to split the dataset. 
This does not guarantee an optimal solution and can converge to local optima.  The 
algorithm's optimality can be improved by using backtracking during the search for 
the optimal decision tree at the cost of possibly taking longer. 
 
ID3 will generally over-fit the training data. To avoid over-fitting, smaller decision 
trees should be preferred over larger ones leading to the idea of an ensemble of trees 
(a forest).  
 
In order to use ID3 with continuous features it is necessary to partition the features 
into a small set of bins such that the partition provides best information gain.  
Determining the "best" split is generally expensive procedure for which there is no 
established method.  
 

Improved ID3: The C4.5 algorithm 
 
The C4.5 algorithm is an extension of ID3.  C4.5 builds decision trees from a set of 
training data in the same way as ID3, using the information gain to select the most 
informative features to test.  However, C4.5 improves on ID3 in the following 
manner:  
• C4.5 can accommodate continuous features by creating a threshold that defines a 

predicate for dividing the training set.  
• C4.5 allows can this accommodate features with missing values. Missing attribute 

values are simply not used in the entropy calculations or for defining tests. 
• C4.5 can use the cost of computing an attribute to prefer less expensive attributes, 

for use in on-line data discovery techniques. 
• Pruning: Once the tree has been created, C4.5 goes back through the tree and 

attempts to remove branches that do not help by replacing them with leaf nodes. 
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As with ID3, C4.5 chooses the attribute of the data that most effectively splits its set 
of samples into subsets enriched in one class or the other. The splitting criterion is the 
normalized information gain (difference in entropy). The attribute with the highest 
normalized information gain is chosen to make the decision. The C4.5 algorithm is 
then recalled recursively on the partitioned subsets of training data.  
 
As with ID3, C4.5 has a few base cases. 
• If all the samples in the list belong to the same class, C4.4 creates a leaf node for 

the decision tree saying to choose that class. 
• If none of the features provide any information gain, C4.5 creates a decision node 

higher up the tree using the expected value of the class. 
• If instances of a previously-unseen class are encountered,  C4.5 creates a decision 

node higher up the tree using the expected value. 
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Classification and Regression Trees (CART) 
 
The Classification and Regression Tree methodology, also known as the CART, was 
proposed in 1984 by Leo Breiman et al.  CART methods are commonly used for 
regression as well as classification, and operate on features with continuous values 
over an infinite range. 
 
When used for classification, CART produces a decision tree that transforms a 
feature vector, 

!
X , into a target label ŷ  from a finite set of K discrete target classes, 

{Ck}.  CART can also be used to estimate (or learn) a function that estimates a 
numerical value (regression) from an observation.  When used for regression the tree 
acts as a function ŷ = f (

!
X ) , that maps a feature vector, X into an estimated numerical 

value  ( ŷ ∈ R).   
 
CART constructs a binary tree, where each node is a binary predicate that makes a 
yes/no (or T/F) decision by applying a threshold to one of the attributes. This requires 
choosing the best feature and determining the best threshold, and can be performed 
by exhaustively testing the features and computing the best threshold for the current 
subset.  This works much like the bias in an ROC curve, and "best" can be minimum 
classification error or can depend on the constraints TN and TP imposed by the 
problem.  
 
The predicate splits the available set of the training data into two subsets. These 
subsets are then passed to the next level of the tree where they are further divided 
until a target "impurity" criteria is met for the remaining subset.  When the resulting 
subset is sufficiently pure, a leaf node is created that returns the most likely target 
variable from the subset.  
 
When the feature values (attributes) are real numbers, then the tree of binary 
decisions can be seen as successively partitioning the D dimensional feature space 
into cuboid volumes using thresholds.  In the case of D=2 features, this can be easily 
seen as dividing a plane into ever smaller rectangular regions.  
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For example, in the figure shown above node 1 would compare feature x1 with the 
threshold T1.   IF x1 < T1 then it would apply node 2 else it would apply node 3, etc. 
For classification, the most likely class from each region would be returned. For 
regression, the average value of the target variables can be returned or some other 
form of interpolation can be used.  
  
The resulting tree can be interpreted as a list of rules.  For example:  

 
If Height > 180 cm Then Male 
If Height <= 180 cm AND Weight > 80 kg Then Male 
If Height <= 180 cm AND Weight <= 80 kg Then Female 
 
The tree can also be interpreted with an explanation such as 
 
The gender subject <X> is most likely male because the height is > 180cm.  
 

Classifying observations CART Models 
 
As with Dichotomizers, learning a CART tree involves choosing the best features to 
divide the data. Exhaustive search can be prohibitively expensive.  The search is 
typically performed using a recursive procedure which scans a subset of the data to 
determine the best features and best split point (threshold) for each attribute. Unlike 
ID3, CART uses a cost (or loss) function to determine which feature and threshold 
value to use to split the data into two subsets.  
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For regression  problems, where the objective is to approximate a numerical estimate,  
the  the sum of squared errors can be used as a loss function.   For a CART tree, f(), 
the loss for a training set S of M samples would be:  
 

 L( f (−) | S) = ( f (
!
Xm )− ym )

2

m=1

M

∑  

 
For classification, CART uses the most likely indicator variable from a subset to label 
samples from the subset and uses the GINI index  to choose the attribute to be used to 
progressively divide the training set into subset. Given a subset S of M samples 
 

 L( f (−) | S) = IG (P(Ĉk )) = P(Ĉk ) 1−P(Ĉk )( )
m=1

M

∑  

 
where Ĉk = f (

!
Xm )  is the predicted class provided by the decision tree.  

 
As discussed above, for a set S composed of M samples of which Mk samples 
belonging to each of K classes, the probability distribution of class labels is P(Ck), 
and the GINI index for the subset S under consideration by the current node of the 
tree is  
 

 IG (P(Ck ) | S) = P(Ck ) 1−P(Ck )( )
k=1

K

∑  

 
The CART learning Algorithm 
 
Classification and Regression Tree learning is a form of greedy recursive splitting of 
the training data.  Given a set, S, composed of M training samples, {

!
Xm} with  {ym} 

indicator (or target) variables.  
 
Given a subset S of the training data 
 For each feature xd, in {

!
Xm}, from d=1 to D,  

1. Test the stopping Condition.   If the stopping condition is not met then,  
2. Determine a threshold value for xd that minimizes a cost function for two 

subsets, S1, and S2  (S1 U S2  = S).   
3. Select the feature  xd with the lowest Cost, and use the threshold value to define 

a the test for the node.  Then divide the training set S into two subset and call 
the algorithm recursively with each of the subsets.  
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The most common stopping procedure is to use a minimum count on the number of 
training samples in the remining subset. If the number of samples is less than some 
minimum then the split is not accepted and the node is taken as a leaf node. 
 
The stopping criteria is tuned to the problem and dataset, with typical values ranging 
from 5 or 10, as we saw with histograms.  
 
This minimum number of samples per leaf node defines how specific to the training 
data the tree should be. If the number is too small, then the tree is too specific, and 
the model will over-fit the training data and likely have poor performance on the test 
set.  
 
For classification, an alternative stopping condition for a classification tree is when 
the Gini index is 0 (all of the samples are from the same class).  For a regression tree, 
and equivalent condition would be that the variance if of the target values are zero (or 
very small).  
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Random Forests 
 
Random forests are an ensemble learning method for classification, regression and 
other tasks. Random forest learning operates by constructing a large number of 
decision trees, and  correct for the tendency of decision trees to over-fit to the training 
set. Random forests generally outperform decision trees, and are frequently used as 
blackbox models for data-mining in businesses, as they can be used to generate 
reasonable predictions across a wide range of data while requiring little configuration 
(and minimal understanding).  
 
Deep decision trees tend to learn highly irregular patterns: they over-fit their training 
sets. Random forests are a way of averaging multiple deep decision trees, trained on 
different parts of the same training set, with the goal of reducing the over fit. This 
comes at the loss of interpretability, but generally greatly boosts the performance in 
the final model.  
 
Assume a training set {

!
Xm}  of M samples with indicator variables {ym}  where the 

indicator variables are coded as the integer indices for K target classes. Bagging 
repeatedly (B times) selects a random sample {

!
X s}  of the training samples with 

indicator variables {ys}  from the training set and fits trees to these S samples.  
 
 fb(

!
X )⇐ DT ({

!
X s},{ys})  

 
After training, the predicted class for a new observation, 

!
X , can be determined by 

voting over the B trees:  
 Allocate a table h(k) of K cells initially 0.  
 ∀

b
:  h( fb(

!
X ))← h( fb(

!
X ))+1  

 ŷ = arg−max
k

{h(k)}  

 
A probability distribution table for the K classes can be obtained using soft-max over 
the h(k) predictions.  
 
In the case of a regression forest, the predicted estimated value, ŷ , is determined 
averaging the predictions from all the individual regression trees on the observation !
X .  

 
 ŷ = 1

B
fb

b=1

B

∑ (
!
X )  


