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The Intelligent Agent  
 

General Problem Solver and Means Ends Analysis.   
In the early years of AI (1960s and 1970s), researchers posed the problem of 
intelligence as the ability to solve problems. In the late 1950s. Newell and Simon 
attempted to formalize problem solving with an algorithm known as the "General 
Problem Solver" (GPS) using "Means-Ends Analysis" (MEA).    
 
The General Problem Solver was a goal-based problem solving technique in which 
the solution to a problem can be described as finding a sequence of actions that lead 
to a desirable goal.  Means-Ends Analysis (MEA) is a strategy to control search in 
problem-solving formulating goals (ends) as states, and possible actions as state 
transitions (means).  
 
With Means-Ends Analysis, given a current state and a goal state, a set of possible 
actions are listed for the current state and an action is chosen which will reduce the 
difference (or distance) between the current state and the goal state. The selected 
action is performed on the current state to produce a new state, and the process is 
recursively applied to this new state and the goal state.   GPS and MEA are still 
taught as part of curriculum in business management in some business schools.  
 
This established planning and problem solving as an important area of artificial 
intelligent in the 1970s and 1980s, and lead to the notion of defining Intelligence as 
rationality.  
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The Rationality Principle 
 
In his 1980 Turing Award, A. Newell proposed the Intelligent Agent as a 
fundamental concept for formalizing intelligence.  

 
 

A, B, C       

 
 
The Intelligent Agent is an abstract concept composed of 3 components: (A, B, C) 
A) Actions:  The ability to act; The ability to change the state of the universe.  
B) Goals.  Desired states.  
C) Knowledge; The ability to choose actions to accomplish goals. 
 
Newell claimed that to be considered as intelligent, the agent must have three 
abilities:   
1) The agent must be able to act; able to change the state of the universe (embodied) 
2) The agent must have goals, (desired states).   
3) The agent must be able to choose its actions to accomplish goals (choose actions to 
bring and hold the current state to a goal state).  
 
This was formulated as the principal of Rationality. The principle of rationality was 
widely used in Economics and only abandoned in favor or Behavioral Economics 
over the last 20 years. 
 
The "Principal of Rationality states that an intelligent agent chooses its actions to 
accomplish its goals.  
 
Knowledge is what enables the intelligent agent to choose actions. 
 
Knowledge = Competence:  The ability to act to bring the world to a desired state.  
 
This paradigm leads to development of a series of frameworks and algorithms for 
planning and problems solving that remain widely used in robotics and other areas. 
The fundamental concept is the notion formalizing planning as search through a state 
space.  
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Planning as Search 
 

Problem Spaces  
Planning is formalized using a state space referred to as a "Problem Space".  
A problem space is defined as 
 1) A set of states {U} (the Universe),  
 2) A set of operators for changing states {A} (Operations or Actions).  
  
A state is defined using a conjunction of predicates (possibly negated - a negated 
predicate is a predicate).  Disjunctions give rise to separate states, allowing for 
resolution by theorem proving, using, for example, Horn Clauses.  
 
A problem is defined as a problem space ({U}, {A}) plus  
 an initial state i ∈ {U}, and 
 a set of Goal States {G} ⊂ {U} 
 
A plan creates a sequence of actions A1, A2, A3, A4,… ∈ {A} that lead from the 
initial state i to one of the states g ∈ {G} 
 
With this approach, planning is formalized as the search for a sequence of actions 
leading from an initial state to a goal state.  
 
The core concept here is the notion of "State".  A state is a "partial" description of the 
environment represented as a conjunction of predicates.  
 

State: A conjunction of predicates (truth-valued functions) over entities.  
 
A state is defined as a conjunction of predicates.  Predicates are truth functions which 
represent relations between entities (perceived phenomena). Relations associate 
entities, typically based on properties.  
 
Predicates express relations (spatial, temporal, part-of, category inclusion, etc) that 
associate entities.   The basic principles are illustrated by Blocks world, formalized 
by Nils Nilsson in his 1980 text-book "Artificial Intelligence".  
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Blocks World 
 
Blocks world is an abstract, toy world for exploring problems of reasoning and 
intelligence. We will use Blocks world to illustrate different principals and 
techniques concerning knowledge representation.  
 
Blocks world is composed of:  

• A table 
• A set of blocks 
• An agent (robot hand) that can act on (move) the blocks 

 
The blocks, tables and hand are the primitive concepts that make up a blocks world. 
They are primitive because they are directly perceivable. 
 
Classic Definition:  
1) A universe composed of a set of cubic blocks and a table 
2) Blocks are mobile, the table is immobile 
3) The agent is a mobile hand,  
4) A block can sit on a table, on another block, or in the hand.  
5) There cannot be more than one block on another block 
6) The table is large enough for all blocks to be on the table.  
7) The hand can move only one block at a time.  
 
The state of the universe is formalized using predicates.  
Blocks are represented by Capital Letters {A, B, C, …} 
Variables (lower case letters) represent sets of blocks  
This are specified by Quantifiers:  for-all x (∀x), There-exists y: (∃y) 
 

Predicates 
Typical predicates used to define states in blocks world are 
  On(y, x)  O(y,x) Block x is on Block y 
  OnTable(x) OT(x) Block x is on the table. 
  Held(x)  H(x)  Block x is in the hand. 
  Free(x)   F(x)  No block is On x :  
       ¬∃y: (On(x, y)) or  ∀y: (¬On(x, y)) 
  HandFree() HF()  The hand is empty, or ¬∃x (H(x))  
 
Free() and HandFree() are complex concepts that build on the primitive concepts.  
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For example:  HF  ^ OT(A)  ^ OT(B) ^ On(B,C) ^ F(C) ^ F(A) 

BA

C

 
 
This is an example of a situation and can be expressed with Situation Modeling. 
 

Actions 
The system can move from one state to another by performing actions.  
Actions, {A},  are represented as rules:  IF <condition> THEN DO <action>.  
 
Both  <condition> and <action> are partial state descriptions using the same 
predicates that we used to define the problem space.  
Rules can be used in forward chaining manner, matching <condition> to the 
predicates in the current state, or backward chaining,  by matching the predicates 
made true by the action to the goal state.  
 
Actions are be defined by Arguments, Preconditions, and Post-conditions.  
 
Action (<blocks>) 
 Preconditions: Predicates that must be true to execute the action   
 Post-conditions: Predicates that are made true or false by the action 
 
To solve a problem we search for a path through the state space from an initial state 
to a target state.  
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We can use blocks world to illustrate various concepts and techniques. It is also 
useful for homework problems and exam questions!  
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Nilsson defined four actions for blocks world.  
 
Grasp(x):  
 Precondition:  HF() ^ F(x) ^ OT(x)   
 Postcondition: ¬HF()  ^ ¬OT(x) ^ H(x) 
 
Pose(x):  
 Precondition: H(x) 
 Postcondition: ¬H(x) ^ HF() ^ OT(x)  
 
Stack(x, y):    Stack block x on block y 
 Precondition: H(x) ^ F(y) 
 Postcondition: ¬H(x) ^ ¬F(y) ^ F(x) ^ O(y, x) ^ HF() 
 
Unstack (x, y)    
 Precondition: F(x) ^ O(y, x) ^ HF()  
 Postcondition:  ¬O(y, x) ^ ¬HF() ^ H(x) ^ F(y)  
 
With some clever tricks, Nilsson was able to define a version of actions for Blocks 
World where all precondition predicates are rendered false by execution of an action. 
However, this is not true of most formulations, or in most problem domains.  
 

Comments on Blocks World and Search  
 
Note that Nilsson's version of blocks world is a "Closed" world. It has a finite number 
of states.  Real problems tend to be open, with a very large branching factor (possible 
actions) and an infinite number of states.  
 
Nilsson's definition led to some very elegant solutions in rule based programming 
systems, such as Prolog, but was not generalizable.  It was considered to be a "toy 
problem".  Even this simple "toy" problem revealed some fundamental problems with 
formulating planning as search and looking for a least cost plan with a minimum 
effort for search.  
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Algorithms for Planning as Search 
The general paradigm for planning, as shown with MEA,  is  "Generate and Test".  
Planning is the generation of a sequence of actions to transform i to a state g ∈ {G} 
Planning requires search for a path through a graph of states.  
 
Nilsson defined a taxonomy of graph search algorithms includes the following  
1) Breadth first search  
2) Depth first search 
3) Heuristic Search 
4) Hierarchical Search 
Nilsson unified Depth-First, Breadth First and Heuristic Search a single algorithm 
named GRAPHSEARCH.     
 
The GRAPHSEARCH algorithm requires maintaining a list of "previously visited" 
states {C} (Closed list) and a list of available states to explore {O} (Open list). 
As each state is tested, its neighbors are generated and added to the open list. 
The state is then added to the closed list.   
 
GRAPHSEARCH:  
{O}←intial state 
WHILE {O} ≠ empty DO 

Extract a new state s from {O} 
IF s ∈ {G} THEN halt ELSE add s to {C} 
Generate all neighbor states {N} of s. 
∀ n ∈ {N} IF n ∉ {C} THEN add n to open states {O}.  

 
Breadth-first, depth-first and heuristic search are all variations on the same 
GRAPHSEARCH algorithm, depending on whether the Open list is a stack, queue or 
sorted.   
 
1) Breadth first search - The Open list {O} is a Queue (First In, First Out) 
2) Depth first search - The Open list {O} is a Stack (First In, Last Out) 
3) Heuristic Search - The open list {O} is sorted by a Cost f(s) = g(s) + h(s) 
 

Algorithmic Complexity of Search  
 
Algorithm complexity is expressed with the order operator O().  
Order of complexity is equivalent for all linear functions.  O(AN+B) = O(N) 
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The algorithm complexity of graph search depends on two factors: b and d.  
  b: The branching factor; The average number of actions {A} possible in a state. 
  b = E{card({A})}  (E{} is expectation, or average) 
 d: Depth. The minimum number of actions from an initial state to a goal state.  
 
Breadth First search:  the open list, {O} is a queue (FIFO) 
For breadth first search, finding the optimal path requires exhaustive search.  
 Computation Cost  O(bd), memory O(bd). 
 
This is a problem for humans, because human cognition has an important 
physiological limit: The size of working memory.   To use breadth first planning a 
human must use a memory aid, such as a note pad.  Human's use something more 
clever: Chunking,  leading to hierarchical search discussed below. 
 
Depth First search:  The open list {O} is a stack (LIFO).  
For depth first search, finding the optimal path requires exhaustive search, however 
 Computation Cost  O(bd), memory O(d).  
 
This can be done by humans for limited depth problems. (d ≤ 7) 
However, limiting depth first requires setting a maximum depth dmax. which can cause 
the search to fail.  
 
Most importantly, a cost of O(bd) is not acceptable for most real world problems.  
 
Heuristic search:  {O} is sorted based on the cost f(s) of a path through the state. 
 
For Heuristic search, we reduce the order by reducing the branching factor:  
This give computation and memory costs of O(cd) where  c ≤ b. 
 
Heuristic Search is NOT exhaustive.  The search avoids unnecessary branches.  
 
For heuristic search, the cost of path through a state is f(s) = g(s) + h(s) where 
where g(s) is the cost of a path from the start state to the state s (easily calculated) 
and h(s) is the cost of a path from the state to the goal state (unknown) 
 
 f(s) = g(s) + h(s) 
 
Because h(s) is not known, it must be approximated with an estimate.  
Optimality requires that the estimate for h(s) meet the "optimality conditions".  
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Nilsson’s Conditions for Optimal Search 
 
In 1968, Nilsson demonstrated the conditions under which a heuristic search 
algorithm is guaranteed to be optimal. That is: the first plan found is the cheapest 
plan to execute. 
 
Notation :  
 i : initial state 
 g : goal state g ∈ {G} 
 k(si, sj) :  the minimal theoretical cost between states  si and sj 
 g*(s) = k(i, s)   :  The true cost of the shortest path from i to s.   
 h*(s) = k(s, g)   : The true cost of the shortest path from s to g ∈ {G}.   
  
f*(s)  =  g*(s)  +  h*(s)   The true cost of the shortest path from i to g passing by s.  
This is the cost of the path that we would like to discover. 
 
Problem:   If we do not know the shortest path, how can we know  h*(s)? 
Solution:  Approximate costs with an estimation function.   
 
Define:  
 g(s) :  estimated cost from  i et s. 
 h(s) :  estimated cost from s to g   
 f(s)  =  g(s)  +  h(s)  estimated total cost of a path through s 
 
Nilsson showed that whenever the estimated cost f(s) ≤ f*(s),  
the first path that is found from s1 to s2 will always be the shortest.   
Thus g(s)=g*(s) because the first path from i to s has the least cost.  
 
  h(s) ≤ h*(s) requires two conditions:  
 
Condition 1:  that the heuristic UNDER-ESTIMATES the true cost.  
 h(s) ≤ h*(s) 
 
Condition 2:  that estimate h(s) is "monotonic".  That is :   
 h(si)  –  h(sj)   ≤   k(si, sj) 
 
Condition 2  is almost always true whenever h(s) ≤ h*(s)  !! 
 
Nilsson called this the A* condition.   
A* is "optimal" because the first path found is the path with least-cost. 
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Cost and Optimality of Heuristic Search 
 
A key problem is defining heuristic search is the concept of numerical "cost" for 
executing an action.   
 
Cost, k(si, sj), can be any numerical value, but must respect the optimality conditions 
for GRAPHSEARCH to be optimal. 
 
A* is widely used for robot path planning, where cost is a formulated as a linear 
function of Euclidean distance. Examples of cost:  distance, time, Euros, risk, 
number of actions. 
 
Whenever the cost metric is proportional to the length of the path, then Euclidean 
distance to the goal provides an "optimal" heuristic!  
 
This is true for scalar multiples of distance, for example, time traveled or risk or cost 
or energy expended.    (assuming constant speed,  time = distance x 1/speed )   
 

Cost of Search vs Optimality of Result 
Note that there are TWO notions of cost!  
 
1) Algorithmic complexity of the search (computational cost).  
2) Cost of executing the resulting plan. 
 
“Optimal” search means that the resulting plan is the cheapest possible plan.  
 
Nilsson's A* algorithm provided both. Nilsson demonstrated that when the conditions 
for optimality of A* are met, the first plan discovered with A* (lowest computational 
cost) would be the least expensive plan (least cost execution.) 
 
Note that for h(s) = 0,  h(s) meets the optimality condition because h(s) ≤ h*(s)!!   
 
In this case A* reduces to  Dijkstra's algorithm (1956), used for network routing.   
 
For Blocks world, the usual cost is the number of actions. However, there is no 
admissible heuristic.  The optimal solution is found by simply setting h(s) to 0.  Even 
in this case, the algorithm reverts to a form of Dijkstra's algorithm, and the first 
solution found is always the best solution.     
 
Lesson: Having an admissible heuristic for A* search reduces the cost of search over 
Dijkstra, but does not change the cost of the final, least-cost path.  
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Hierarchical Planning, Subgoals and Chunking 
 
For many real problem domains, the cost of search is MORE EXPENSIVE than the 
cost of executing the resulting plan.  H. Simon won the Nobel Prize in economics for 
demonstrating that in solving problems, humans sacrifice optimality to reduce the 
effort required for planning. He called this "satisficing".  
 
A key technique for satisficing is hierarchical planning using known subgoals.  
Hierarchical planning sacrifices optimality in order to greatly extend the space of 
possible problems that can be solved by planning.  
 

Subgoals 
 
Subgoals can strongly reduce the algorithmic complexity search for a path through a 
network.  A "Subgoal" is an abstract state that represents a set of states.  
 
For example, to plan a route from campus to the train station.  
1) Plan a route from Campus to the Quai d'Isere 
2) Plan a route from the Quai d'Isere to the train station.  
 
Define:  
 d : the minimal number for actions from the start state, i,  to a goal state, g. 
 dis: the minimal number for actions from the start state, i,  to a subgoal s. 
 dsg: the minimal number for actions from the subgoal s,  to a goal state. 
  
The subgoal divides the problem into two smaller subproblems: Plan a path from it to 
s, and plan a path from s to g.   
  
 O( bdis + bdsg) =  O( bmax{dis, dsb}) 
 
if  max{dis, dsb} < d, then the complexity is reduced.  
 
Hierarchical search sacrifices autonomy for scope.  
Hierarchical search provides solutions to more complex problems, but there is no 
guarantee that the resulting solution is "optimal".   
 
Two possible approaches to hierarchical planning are  
1) Build a hierarchy of super-states 
2) Define a hierarchy of operators. (meta-operators) 
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Hierarchy of states 
 
An obvious approach is to group adjacent states together to form Super states.  

 
Korf set this up as an optimisation problem and found that an "optimal" size for 
super-states was "e" (2.71828...) 
 
Possible ways to group states 
 
1) Group sets of states connected by a single action to a privileges state 
2) Define arbitrary connected sets of states 
3) Group states by eliminative predicates.  
 
A state is a conjunction of predicates   P1() ^ P2() ^ P3() ^ P4() 
 
The state P1() ^ P2() represents the states P1() ^ P2() ^ P3()  AND P1() ^ P2() ^ ¬P3() 
 
We can group states by deleting predicates and divide states into substates by adding 
predicates.   
 
Sussman tried this with Blocks world and found that it was dependent on which 
states were eliminated.  For example replacing  
 
 On(B,C) ^ On(A,B) ^ OT(A)    with   On(B,C)  is not helpful.  
 

Operators 
A more effective means is to group sequences of states and actions into "operators" 
 
S1 – A12 → S2 – A23→ S3 – A34 → S4 
 
Is an operator to go from S1 to  S4 
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The States translate to perceptual actions P() to verify the results of each action and 
to verify the pre-condition for the next action.  
 
Operator (S1, S4) = P(S1) – A12 → P(S2) – A24→ P(S4) 
 

 
 

Human's do this to reduce the load on short term working memory.  Simon called this 
"Chunking".  
 
Operators are composed hierarchically, as needed, to accommodate the limits of 
human working memory. This is clearly demonstrated by chess experts solving chess 
problems and can be explained using Johnson Laird's situation modeling.  
 

Chunking 
To speed up search and to overcome limits to short term memory, humans use a 
technique called "chunking".   
 
Chunking is a process by which individual pieces of information are bound together 
into a meaningful whole. A chunk is a concept that represents a collection of 
concepts.  
 
Chunking states into sets of states enables hierarchical planning.  
Chunking can be applied hierarchically, with groups of states at each level 
represented by a single at the next level. 
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Example: Travel Planning 
 
Consider the problem of planning a trip to Oxford.  
First we choose whether to go by plane, train or bus.  
Choosing plane, we select company and flights :  Air France LYS-CDG-LHR 
Then we plan the trip to  Lyon Airport:  Bus, Train or car 
Then we plan the trip from Heathrow:  Bus, Train or car 
Then we plan the trip to the train station to catch the bus to LYS, etc.  
 
 


