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Notation 
 
xd    A feature.  An observed or measured value.  
  

€ 

! 
X     A vector of D  features.   
D    The number of dimensions for the vector    

€ 

! 
X  

  

€ 

! y     A dependent variable to be estimated.  
a = f ( !wT

!
X + b)   A (neural) model that predicts  a from 

!
X .   

!w,b     The parameters of the model.  
  

€ 

{
! 
X m}  

€ 

{ym}  Training samples for learning the model. 
M    The number of training samples.  
Cm =

1
2
(am − ym )

2   The Loss (or cost) for the function for computing am = f (
!wT
!
Xm + b)  

!
∇Cm =

∂Cm

∂
!w

  The gradient (vector derivative) of the Loss (or cost).  
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Perceptrons 
 

History 
The Perceptron is an incremental learning algorithm for linear classifiers invented by 
Frank Rosenblatt in 1956. The approach was first proposed by Warren McCullough 
and Walter Pitts in 1943 as a possible universal computational model. During the 
1950’s, Frank Rosenblatt developed the idea to provide a trainable machine for 
pattern recognition.  The first Perceptron was a room-sized analog computer that 
implemented Rosenblatz’s learning function for recognition. However, it was soon 
recognized that both the learning algorithm and the resulting recognition algorithm 
are easily implemented as computer programs.  
 

The Perceptron Classifier 
The perceptron is an on-line learning algorithm that learns a linear decision boundary 
(hyper-plane) for separable training data.  As an "on-line" learning algorithm, new 
training samples can be used at any time to update the recognition algorithm.  
However, if the training data is non-separable, the method will not converge, and 
must be stopped after a certain number of iterations.  
 
The Perceptron algorithm uses errors in classifying the training data to iteratively 
update the hyper-plane decision boundary. Updates may be repeated until no errors 
exist.  
 
Assume a training set of M observations  

€ 

{
! 
X m}  of D features, with indicators variables, 

€ 

{ym} where 
 

 

  

€ 

! 
X m =

x1m

x2m

"
xDm

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 and  ym  = {–1, +1} 

 
The indicator variable, 

€ 

{ym},  tells the class label for each sample.  
For binary pattern detection,  
 ym =  +1 for examples of the target class (class 1) 
 ym =  –1 for all others (class 2) 
 
The Perceptron will learn the coefficients, 

!w,b ,  for a linear boundary  
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€ 

! w =

w1

w2

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  and b 

 

Such that for all training data, ,  
 
    

€ 

! w T
" 
X m + b  ≥ 0 for Class 1 and !wT "Xm +b  < 0 for Class 2.  

 
Note that   

€ 

! w T
" 
X m + b ≥ 0  is the same as    

€ 

! w T
" 
X m ≥   −b .  

Thus b can be considered as a threshold on the product:   

€ 

! w T
" 
X m  

 

The decision function is the sgn() function:  

€ 

sgn(z) =
1 if z ≥ 0
−1 if z < 0
$ 
% 
& 

  

Where z =
!wT "Xm + b  

 
A training sample is correctly classified if:  
 
    

€ 

ym ⋅
! w T
" 
X m + b( ) ≥ 0    

 
The algorithm requires a learning rate,  η.  Typically set to a very small number such 
as η = 10-3
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The Perceptron Learning Algorithm  
 
The algorithm will continue to loop through the training data until it makes an entire 
pass without a single misclassified training sample. If the training data are not 
separable then it will continue to loop forever.  
 
Algorithm:  
   

€ 

! w (0) ← 0; 

€ 

b (i )← 0,  i← 0 ; set η (for example η = 10-3) 
WHILE update DO 

  update ← FALSE; 
  FOR m = 1 TO  M  DO  
   IF  

  

€ 

ym ⋅
! w (i)T
" 
X m + b(i)( ) < 0  THEN  

    update ← TRUE 
    !w(i+1) ← !w(i ) −η⋅ ym ⋅

!
Xm  

    b(i+1) ← b(i ) −η⋅ ym  
    i ← i + 1  
   END IF 
  END FOR 
 END WHILE.  
 
Notice that the weights are a linear combination of training data that were incorrectly 
classified.  
 
The final classifier is:     if    

€ 

! w (i)T
" 
X m + b(i) ≥ 0  then P else N.   

 
If the data is not separable, then the Perceptron will not converge, and will continue 
an infinite loop. Thus it is necessary to have a limit the number of iterations.  
 
In 1969, Marvin Minsky and Seymour Papert of MIT published a book entitled 
“Perceptrons”, that claimed to document the fundamental limitations of the 
perceptron approach.  Notably, they claimed that a linear classifier could not be 
constructed to perform an “exclusive OR”. While this is true for a one-layer 
perceptron, it is not true for multi-layer perceptrons.  
 
The fact that the algorithm requires separable training data WAS a major weakness. 
This limitation was later overcome by reformulating the algorithm using a soft 
decision surface and Gradient descent.  
The result was promoted as a form of "Artificial Neural Network".  
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Artificial Neural Networks 
 
In the 1970s, frustrations with the limits of Artificial Intelligence research based on 
Symbolic Logic led a small community of researchers to explore the perceptron 
based approach. In 1973, Steven Grossberg, showed that a two layered perceptron 
could overcome the problems raised by Minsky and Papert, and solve many problems 
that plagued symbolic AI.  In 1975, Paul Werbos developed an algorithm referred to 
as “Back-Propagation” that uses gradient descent to learn the parameters for 
perceptrons from classification errors with training data. Back-propagation is a 
parallel form of Gradient descent easily implemented on a SIMD parallel computer.  
 
Artificial Neural Networks are computational structures composed a weighted sums 
of “neural” units.  Each neural unit is composed of a weighted sum of input units, 
followed by a non-linear decision function.   

x1 

… 

xD 

+1 
Layer 1 

Layer 2 

Layer 0 

+1 

a1
(1) 

a2
(1) 

a3
(1) 

w11 
(1) 

w11 
(2) 

b1 
(1) b1 

(2) 

a1
(2) a 

 
 
Note that the term “neural” is misleading. The computational mechanism of a neural 
network is only loosely inspired from neural biology. Neural networks do NOT 
implement the same learning and recognition algorithms as biological systems.  
 
During the 1980’s, Neural Networks went through a period of popularity with 
researchers showing that Networks could be trained to provide simple solutions to 
problems such as recognizing handwritten characters, recognizing spoken words, and 
steering a car on a highway. However, results were overtaken by more 
mathematically sound approaches for statistical pattern recognition based on 
Bayesian learning.  These, were, in turn overtaken by techniques such as boosted 
learning, support vector machines and kernel methods.  
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The Artificial Neuron 
 
The simplest possible neural network is composed of a single neuron.  

 
A “neuron” is a computational unit that integrates information from a vector of  
features,   

€ 

! 
X ,  to compute the likelihood of an activation, a.  

 
 

€ 

a = f (z) 
 
The neuron is composed of a weighted sum of input values   
 
 

€ 

z = w1x1 +w2x2 + ...+wDxD +b  
 
 followed by a non-linear “activation” function,   

€ 

f (z)   
 
 a = f (z) = f ( !wT

!
X + b)  

A popular choice for activation function is the sigmoid:  

€ 

σ (z) =
1

1+ e−z
 

 
 

The sigmoid is useful because the derivative is:   

€ 

dσ (z)
dz

=σ (z)(1−σ (z)) 

 
For the sigmoid, the target function is ym ∈ 0,1{ } , enabling easy generalization to 
multi-class decisions.   This can give a decision function:   
 
  if f ( !wT "X + b) ≥ 0.5  the P else N 
 
We will use Gradient descent to learn the best weights and bias for a training set of M 
samples 

!
Xm{ }  with indicator variables ym{ } .   
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Homogeneous Coordinate Notation 
 
We would like to be able to treat the bias, b, as one of the coefficients of the function 
f ( !wT "X + b) .  We can do this using homogeneous coordinates.  

 
With homogeneous coordinates, we add an additional constant term to the input 
feature vector   

€ 

! 
X . This allows us to include the bias in the model vector  

€ 

! w .  
 

 

  

€ 

! 
X =

x1
"

xD

1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 and  

  

€ 

! w =

w1

"
wD

b

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
In this case,  b is simply the D+1th coefficient of 

!w , and the linear model is expressed 
as: z =

!wT
!
X  

 z = !wT
!
X = w1 " wD b( )

x1
!
xD
1

!

"

#
#
#
##

$

%

&
&
&
&&

 

 
We use Gradient Descent to estimate the coefficients 

!w . 
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Gradient Descent 
Gradient descent is a first-order iterative optimization algorithm for finding the local 
minimum of a differentiable function. Gradient descent is a popular algorithm for 
estimating parameters for a large variety of models.    
 
The gradient of a scalar-valued differentiable function of several variables, f (

!
X)  is 

vector derivatives:  
 

!
∇f (
"
X) = ∂ f (

"
X)

∂
"
X

=

∂ f (
"
X)

∂x1
∂ f (
"
X)

∂x2
#

∂ f (
"
X)

∂xD

"

#

$
$
$
$
$
$
$
$
$$

%

&

'
'
'
'
'
'
'
'
''

 

 
The gradient of a function f (

!
X)at a point 

!
X is the direction and rate of change for the 

greatest slope of a surface. The direction of the gradient is the direction of greatest 
slope, the magnitude is the gradient is the rate of change in that direction.  
 
To find a local minimum of a function using gradient descent, we iteratively update 
the function by subtracting corrections proportional to the gradient of the function at 
the current point.  To use this to determine the parameters for a perceptron (or neural 
unit), we must introduce the notion of a Loss or cost for an error.  
 

Loss (Cost) Function 
The Loss (or cost) function is the cost of an error for classifying a data sample 

!
Xm  

with ground truth ym using with network parameters !w .  Assume M samples of 
training data 

!
Xm  with indicator variables  ym. The vector,

!
Xm , has D dimensions. The 

indicator ym, gives the expected result for the vector.  Suppose that the neural unit 
uses a vector of weights, 

!w  and a bias, b, to estimate ym from 
!
Xm . 

 
am = f (zm ) = f (

!wT
!
Xm +b)  

 
The cost (or Loss)  for using the weights and biases   

€ 

! w  to discriminate
!
Xm  is Cm  

 
 Cm =

1
2
am − ym( )2

	
  
Where we have multiplied by "1/2" to simplify the algebra. 



Perceptrons and Gradient Descent  
 

10 

The gradient of the cost with respect to each of the parameters tells us how much 
each parameter contributed to the error.  We will use these to define a vector of 
correction factors for each parameter. 
 

 
!
∇Cm =

∂Cm

∂
!w
=

∂Cm

∂w1
!

∂Cm

∂wD

∂Cm

∂b

"

#

$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'

=

∆ w1
!

∆ wD

∆ b

"

#

$
$
$
$$

%

&

'
'
'
''

 

 
In order to evaluate these derivatives, we use the chain rule. Each gradient term can 
provides a correction term for the function parameters.  For a single neural unit:  
 
 ∆ w1 =

∂Cm

∂w1
=
∂Cm

∂am
⋅
∂am
∂zm

⋅
∂zm
∂w1  

 
To correct the network, we will subtract a fraction of this change from each of the 
network parameters.  Because the training data typically contains many unmodelled 
phenomena (noise), the correction is weighted by a (very small) learning rate “η” to 
stabilize learning 
 
   

€ 

! w (i) =
! w (i−1) −ηΔ ! w m  

 
The fraction, η, is referred to as the Learning rate.  Typical values for η are from 
η=0.01 to  η=0.001.  

 
(Drawing recovered from the internet - Source unknown) 

 
The "optimum" coefficients are the coefficients that provide the smallest loss. To 
determine the optimum coefficients, we iteratively refine the model to reduce the 
errors, by subtracting a part of the derivative from the model parameters. 
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Ideally for the optimum parameters, both the loss and the gradient are zero.   For all 
other parameters, the loss increases. With real data, this will rarely be obtained 
because of noise in the training data.   
    
Noise (unmodeled phenomena) will drive individual updates in random directions. A 
small learning rate is used to limit noise from driving the parameters too far from the 
optimum.  
 
Warning:  If you evaluate gradient descent by hand with real data, do not expect to 
easily see a path to convergence.  Typically, arriving at the optimum requires a LOT 
of training data and MANY passes through the training data.  Each pass through the 
training data is referred to as an “epoch”. Gradient descent may require many epochs 
to reach an optimal (minimum loss) model.  
 

Feature Scaling 
For a training set   

€ 

{
! 
X m}  of M training samples with D values, if the individual features 

do not have a similar range of values, than large values will dominate the gradient.  
Small errors in this dimension are magnified.  
 
One way to assure sure that features have similar ranges is to normalize the training 
data.   A simple technique is to normalize the range of sample values.  
 

For example,   ∀m=1
M : xdm :=

xdm −min(xd )
max(xd )−min(xd )

 

 
 

  

 

 
 
After estimating the model, use max(xd )  and min(xd )  to project the data back to the 
original space.  
 
Note that the 2D surface shown here would correspond to two parameters, for 
example w, b for a single neural unit with a scalar input x. The actual surface is 
hyper-dimensional and not easy to visualize.  
 

Local Minima 
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Gradient descent assumes that the loss function is convex.  However, the loss 
function depends on real data   

€ 

! 
X m   with unmodeled phenomena (noise).  

 
 Cm =

1
2
am − ym( )2

	
  
 
Noise in the training samples {  

€ 

! 
X m }  can create a non-convex loss with  local minima.  

 

 
(Drawing recovered from the internet - Source unknown) 

 
In fact the gradient has MANY parameters, and the Loss function is evaluated in a 
very high dimensional space. It is helpful to see the data as a hyper-dimensional 
cloud descending (flowing over) a complex hyper-dimensional surface.  
 

 
(Drawing recovered from the internet - Source unknown) 
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Batch mode 
 
Individual training samples will send the model in arbitrary directions.  While, 
updating with each sample will eventually converge, this tends to be costly. A more 
efficient approach is to correct the model with the average of a large set of training 
samples. The training data is typically divided into “folds” and the model is updated 
with the average of each fold.    
 
This is called  “batch mode”.  
 

 Δ
!w = 1

M
Δ
!wm

m=1

M

∑ =
1
M

!
∇Cm

m=1

M

∑  

 
The model is then updated with the average error.      
 
   

€ 

! w (i) =
! w (i−1) −ηΔ ! w  

 

Stochastic Gradient Descent 
 
Batch gradient descent often efficiently converges to a local minimum and becomes 
stuck.  This can be avoided with stochastic gradient descent.  With Stochastic 
gradient descent, a single training sample is randomly selected and used to update the 
model. This will send the model in random directions, that eventually flow to the 
global minima. While much less efficient than batch mode, this is less likely to 
become stuck in local minima.  
 


