
Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2 Winter Semester 2021
Lesson 7 3 March 2021

Perceptrons and Gradient Descent
Outline

Notation ... 2	

Perceptrons .. 3	

History .. 3	

The Perceptron Classifier ... 3	

The Perceptron Learning Algorithm ... 5	

Artificial Neural Networks .. 6	

The Artificial Neuron ... 7	

Homogeneous Coordinate Notation ... 8	

Gradient Descent ... 9	

Loss (Cost) Function .. 9	

Feature Scaling ... 11	

Local Minima ... 11	

Batch mode ... 13	

Stochastic Gradient Descent ... 13	

Perceptrons and Gradient Descent

2

Notation

xd A feature. An observed or measured value.

€

!
X A vector of D features.
D The number of dimensions for the vector

€

!
X

€

! y A dependent variable to be estimated.
a = f (!wT

!
X + b) A (neural) model that predicts a from

!
X .

!w,b The parameters of the model.

€

{
!
X m}

€

{ym} Training samples for learning the model.
M The number of training samples.
Cm =

1
2
(am − ym)

2 The Loss (or cost) for the function for computing am = f (
!wT
!
Xm + b)

!
∇Cm =

∂Cm

∂
!w

 The gradient (vector derivative) of the Loss (or cost).

Perceptrons and Gradient Descent

3

Perceptrons

History
The Perceptron is an incremental learning algorithm for linear classifiers invented by
Frank Rosenblatt in 1956. The approach was first proposed by Warren McCullough
and Walter Pitts in 1943 as a possible universal computational model. During the
1950’s, Frank Rosenblatt developed the idea to provide a trainable machine for
pattern recognition. The first Perceptron was a room-sized analog computer that
implemented Rosenblatz’s learning function for recognition. However, it was soon
recognized that both the learning algorithm and the resulting recognition algorithm
are easily implemented as computer programs.

The Perceptron Classifier
The perceptron is an on-line learning algorithm that learns a linear decision boundary
(hyper-plane) for separable training data. As an "on-line" learning algorithm, new
training samples can be used at any time to update the recognition algorithm.
However, if the training data is non-separable, the method will not converge, and
must be stopped after a certain number of iterations.

The Perceptron algorithm uses errors in classifying the training data to iteratively
update the hyper-plane decision boundary. Updates may be repeated until no errors
exist.

Assume a training set of M observations

€

{
!
X m} of D features, with indicators variables,

€

{ym} where

€

!
X m =

x1m

x2m

"
xDm

"

$
$
$
$

%

&

'
'
'
'

 and ym = {–1, +1}

The indicator variable,

€

{ym}, tells the class label for each sample.
For binary pattern detection,
 ym = +1 for examples of the target class (class 1)
 ym = –1 for all others (class 2)

The Perceptron will learn the coefficients,

!w,b , for a linear boundary

Perceptrons and Gradient Descent

4

€

! w =

w1

w2

"
wD

"

$
$
$
$

%

&

'
'
'
'

 and b

Such that for all training data, ,

€

! w T
"
X m + b ≥ 0 for Class 1 and !wT "Xm +b < 0 for Class 2.

Note that

€

! w T
"
X m + b ≥ 0 is the same as

€

! w T
"
X m ≥ −b .

Thus b can be considered as a threshold on the product:

€

! w T
"
X m

The decision function is the sgn() function:

€

sgn(z) =
1 if z ≥ 0
−1 if z < 0
$
%
&

Where z =
!wT "Xm + b

A training sample is correctly classified if:

€

ym ⋅
! w T
"
X m + b() ≥ 0

The algorithm requires a learning rate, η. Typically set to a very small number such
as η = 10-3

Perceptrons and Gradient Descent

5

The Perceptron Learning Algorithm

The algorithm will continue to loop through the training data until it makes an entire
pass without a single misclassified training sample. If the training data are not
separable then it will continue to loop forever.

Algorithm:

€

! w (0) ← 0;

€

b (i)← 0, i← 0 ; set η (for example η = 10-3)
WHILE update DO

 update ← FALSE;
 FOR m = 1 TO M DO
 IF

€

ym ⋅
! w (i)T
"
X m + b(i)() < 0 THEN

 update ← TRUE
 !w(i+1) ← !w(i) −η⋅ ym ⋅

!
Xm

 b(i+1) ← b(i) −η⋅ ym
 i ← i + 1
 END IF
 END FOR
 END WHILE.

Notice that the weights are a linear combination of training data that were incorrectly
classified.

The final classifier is: if

€

! w (i)T
"
X m + b(i) ≥ 0 then P else N.

If the data is not separable, then the Perceptron will not converge, and will continue
an infinite loop. Thus it is necessary to have a limit the number of iterations.

In 1969, Marvin Minsky and Seymour Papert of MIT published a book entitled
“Perceptrons”, that claimed to document the fundamental limitations of the
perceptron approach. Notably, they claimed that a linear classifier could not be
constructed to perform an “exclusive OR”. While this is true for a one-layer
perceptron, it is not true for multi-layer perceptrons.

The fact that the algorithm requires separable training data WAS a major weakness.
This limitation was later overcome by reformulating the algorithm using a soft
decision surface and Gradient descent.
The result was promoted as a form of "Artificial Neural Network".

Perceptrons and Gradient Descent

6

Artificial Neural Networks

In the 1970s, frustrations with the limits of Artificial Intelligence research based on
Symbolic Logic led a small community of researchers to explore the perceptron
based approach. In 1973, Steven Grossberg, showed that a two layered perceptron
could overcome the problems raised by Minsky and Papert, and solve many problems
that plagued symbolic AI. In 1975, Paul Werbos developed an algorithm referred to
as “Back-Propagation” that uses gradient descent to learn the parameters for
perceptrons from classification errors with training data. Back-propagation is a
parallel form of Gradient descent easily implemented on a SIMD parallel computer.

Artificial Neural Networks are computational structures composed a weighted sums
of “neural” units. Each neural unit is composed of a weighted sum of input units,
followed by a non-linear decision function.

x1

…

xD

+1
Layer 1

Layer 2

Layer 0

+1

a1
(1)

a2
(1)

a3
(1)

w11
(1)

w11
(2)

b1
(1) b1

(2)

a1
(2) a

Note that the term “neural” is misleading. The computational mechanism of a neural
network is only loosely inspired from neural biology. Neural networks do NOT
implement the same learning and recognition algorithms as biological systems.

During the 1980’s, Neural Networks went through a period of popularity with
researchers showing that Networks could be trained to provide simple solutions to
problems such as recognizing handwritten characters, recognizing spoken words, and
steering a car on a highway. However, results were overtaken by more
mathematically sound approaches for statistical pattern recognition based on
Bayesian learning. These, were, in turn overtaken by techniques such as boosted
learning, support vector machines and kernel methods.

Perceptrons and Gradient Descent

7

The Artificial Neuron

The simplest possible neural network is composed of a single neuron.

A “neuron” is a computational unit that integrates information from a vector of
features,

€

!
X , to compute the likelihood of an activation, a.

€

a = f (z)

The neuron is composed of a weighted sum of input values

€

z = w1x1 +w2x2 + ...+wDxD +b

 followed by a non-linear “activation” function,

€

f (z)

 a = f (z) = f (!wT

!
X + b)

A popular choice for activation function is the sigmoid:

€

σ (z) =
1

1+ e−z

The sigmoid is useful because the derivative is:

€

dσ (z)
dz

=σ (z)(1−σ (z))

For the sigmoid, the target function is ym ∈ 0,1{ } , enabling easy generalization to
multi-class decisions. This can give a decision function:

 if f (!wT "X + b) ≥ 0.5 the P else N

We will use Gradient descent to learn the best weights and bias for a training set of M
samples

!
Xm{ } with indicator variables ym{ } .

Perceptrons and Gradient Descent

8

Homogeneous Coordinate Notation

We would like to be able to treat the bias, b, as one of the coefficients of the function
f (!wT "X + b) . We can do this using homogeneous coordinates.

With homogeneous coordinates, we add an additional constant term to the input
feature vector

€

!
X . This allows us to include the bias in the model vector

€

! w .

€

!
X =

x1
"

xD

1

"

$
$
$
$

%

&

'
'
'
'

 and

€

! w =

w1

"
wD

b

"

$
$
$
$

%

&

'
'
'
'

In this case, b is simply the D+1th coefficient of

!w , and the linear model is expressed
as: z =

!wT
!
X

 z = !wT
!
X = w1 " wD b()

x1
!
xD
1

!

"

#
#
#
##

$

%

&
&
&
&&

We use Gradient Descent to estimate the coefficients

!w .

Perceptrons and Gradient Descent

9

Gradient Descent
Gradient descent is a first-order iterative optimization algorithm for finding the local
minimum of a differentiable function. Gradient descent is a popular algorithm for
estimating parameters for a large variety of models.

The gradient of a scalar-valued differentiable function of several variables, f (

!
X) is

vector derivatives:

!
∇f (
"
X) = ∂ f (

"
X)

∂
"
X

=

∂ f (
"
X)

∂x1
∂ f (
"
X)

∂x2
#

∂ f (
"
X)

∂xD

"

#

$
$
$
$
$
$
$
$
$$

%

&

'
'
'
'
'
'
'
'
''

The gradient of a function f (

!
X)at a point

!
X is the direction and rate of change for the

greatest slope of a surface. The direction of the gradient is the direction of greatest
slope, the magnitude is the gradient is the rate of change in that direction.

To find a local minimum of a function using gradient descent, we iteratively update
the function by subtracting corrections proportional to the gradient of the function at
the current point. To use this to determine the parameters for a perceptron (or neural
unit), we must introduce the notion of a Loss or cost for an error.

Loss (Cost) Function
The Loss (or cost) function is the cost of an error for classifying a data sample

!
Xm

with ground truth ym using with network parameters !w . Assume M samples of
training data

!
Xm with indicator variables ym. The vector,

!
Xm , has D dimensions. The

indicator ym, gives the expected result for the vector. Suppose that the neural unit
uses a vector of weights,

!w and a bias, b, to estimate ym from
!
Xm .

am = f (zm) = f (

!wT
!
Xm +b)

The cost (or Loss) for using the weights and biases

€

! w to discriminate
!
Xm is Cm

 Cm =

1
2
am − ym()2

	

Where we have multiplied by "1/2" to simplify the algebra.

Perceptrons and Gradient Descent

10

The gradient of the cost with respect to each of the parameters tells us how much
each parameter contributed to the error. We will use these to define a vector of
correction factors for each parameter.

!
∇Cm =

∂Cm

∂
!w
=

∂Cm

∂w1
!

∂Cm

∂wD

∂Cm

∂b

"

#

$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'

=

∆ w1
!

∆ wD

∆ b

"

#

$
$
$
$$

%

&

'
'
'
''

In order to evaluate these derivatives, we use the chain rule. Each gradient term can
provides a correction term for the function parameters. For a single neural unit:

 ∆ w1 =

∂Cm

∂w1
=
∂Cm

∂am
⋅
∂am
∂zm

⋅
∂zm
∂w1

To correct the network, we will subtract a fraction of this change from each of the
network parameters. Because the training data typically contains many unmodelled
phenomena (noise), the correction is weighted by a (very small) learning rate “η” to
stabilize learning

€

! w (i) =
! w (i−1) −ηΔ ! w m

The fraction, η, is referred to as the Learning rate. Typical values for η are from
η=0.01 to η=0.001.

(Drawing recovered from the internet - Source unknown)

The "optimum" coefficients are the coefficients that provide the smallest loss. To
determine the optimum coefficients, we iteratively refine the model to reduce the
errors, by subtracting a part of the derivative from the model parameters.

Perceptrons and Gradient Descent

11

Ideally for the optimum parameters, both the loss and the gradient are zero. For all
other parameters, the loss increases. With real data, this will rarely be obtained
because of noise in the training data.

Noise (unmodeled phenomena) will drive individual updates in random directions. A
small learning rate is used to limit noise from driving the parameters too far from the
optimum.

Warning: If you evaluate gradient descent by hand with real data, do not expect to
easily see a path to convergence. Typically, arriving at the optimum requires a LOT
of training data and MANY passes through the training data. Each pass through the
training data is referred to as an “epoch”. Gradient descent may require many epochs
to reach an optimal (minimum loss) model.

Feature Scaling
For a training set

€

{
!
X m} of M training samples with D values, if the individual features

do not have a similar range of values, than large values will dominate the gradient.
Small errors in this dimension are magnified.

One way to assure sure that features have similar ranges is to normalize the training
data. A simple technique is to normalize the range of sample values.

For example, ∀m=1
M : xdm :=

xdm −min(xd)
max(xd)−min(xd)

After estimating the model, use max(xd) and min(xd) to project the data back to the
original space.

Note that the 2D surface shown here would correspond to two parameters, for
example w, b for a single neural unit with a scalar input x. The actual surface is
hyper-dimensional and not easy to visualize.

Local Minima

Perceptrons and Gradient Descent

12

Gradient descent assumes that the loss function is convex. However, the loss
function depends on real data

€

!
X m with unmodeled phenomena (noise).

 Cm =

1
2
am − ym()2

	

Noise in the training samples {

€

!
X m } can create a non-convex loss with local minima.

(Drawing recovered from the internet - Source unknown)

In fact the gradient has MANY parameters, and the Loss function is evaluated in a
very high dimensional space. It is helpful to see the data as a hyper-dimensional
cloud descending (flowing over) a complex hyper-dimensional surface.

(Drawing recovered from the internet - Source unknown)

Perceptrons and Gradient Descent

13

Batch mode

Individual training samples will send the model in arbitrary directions. While,
updating with each sample will eventually converge, this tends to be costly. A more
efficient approach is to correct the model with the average of a large set of training
samples. The training data is typically divided into “folds” and the model is updated
with the average of each fold.

This is called “batch mode”.

 Δ
!w = 1

M
Δ
!wm

m=1

M

∑ =
1
M

!
∇Cm

m=1

M

∑

The model is then updated with the average error.

€

! w (i) =
! w (i−1) −ηΔ ! w

Stochastic Gradient Descent

Batch gradient descent often efficiently converges to a local minimum and becomes
stuck. This can be avoided with stochastic gradient descent. With Stochastic
gradient descent, a single training sample is randomly selected and used to update the
model. This will send the model in random directions, that eventually flow to the
global minima. While much less efficient than batch mode, this is less likely to
become stuck in local minima.

