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1. Scale Space 
1.1. Scale and Resolution - Some Vocabulary 
 
A phenomena is anything that you can perceive. An entity is any observable 
phenomena. In an image, entities occupy 2D regions of pixels.  
 
The scale of an entity refers to its size.  In the real world, scale is expressed in meters 
(or inches and feet if you prefer to use the thumb and foot of some obscure old 
english king as a unit of measure). For computer vision, scale refers to image pixels, 
and how they relate to objects in the real world. The scale of an entity in an image is 
the length of the largest line segment that can be contained within the region of pixels 
occupied by the entity.  
 
Resolution refers to the ability to "resolve" detail, typically expressed as the smallest 
distance for which two entities can be discriminated. For a digital signal, resolution is 
expressed as samples. For sound, resolution expresses the temporal sample rate, and 
determines the highest frequencies that can discriminated (or resolved). For images, 
resolution expresses the spatial sample rate used to represent an entity, and 
determines the smallest entities that can be resolved.  
 
For example, in a high-resolution aerial photograph of the city, you can "resolve" 
small details such as sidewalks and people. In a low-resolution image, you can only 
resolve large structures such as roads, buildings and rivers.  
 
It is always possible to use more pixels than needed for an image.   However, adding 
more pixels does not necessarily add additional information and can even make large 
structures more difficult to perceive.  
 
Obviously, resolution and scale are related. But they are sometimes confused. One 
way to think of this is to see scale as the physical size of a region in image pixels, and 
resolution is the minimum number of sample needed to represent the region for 
analysis.   
 
Recognition often requires context.  Recognizing an entity can often depend on the 
presence or absence of neighboring entities. Locality refers to the scale of context.  
Locality expresses the scale of the scale of the region around an entity needed for 
recognition.  
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1.2. Scale Space 
 
In most natural images, entities can be found at multiple scales. In general 
information at larger scales provides context for information at smaller scales.   
 
For image understanding, we need to interpret information in localities 
(neighborhoods) at different scales, in order to recognize each entity in its appropriate 
context. Such processing can be said to be "multi-local". The challenge is that large 
entities can become much harder to detect and recognize if represented at high 
resolution. Beyond a certain resolution, both error rates and computational cost 
increase.  
 
To avoid this problem we need to analyse the image at multiple scales, with each 
scale represented at the appropriate resolution (number of sample rates). The entities 
in the image are said to exist in a space of scales (a scale-space), with each scale 
represented at an appropriate resolution.  To do this, we express the scale space of the 
image with a multi-resolution image pyramid.   
 
How can we determine appropriate resolution for a scale? How can we transform an 
image to a multiple resolution representation without loosing information? Digital 
signal processing provides the analytic tools (and techniques) that we need.  
 
1.3. Computing a Scale Space 
 
Let P(i, j) be a 2-D image where (i, j) are the image positions of pixels. Each integer 
value for (i, j) provides the unique identity for a picture element (a pixel), and the 
order relation of i and j locates each pixel within a 2D space. Real values for x and y 
can be used to identify locations between pixels if needed.  

 
 

To compute a "scale space" we add a third dimension, s to the image space to define 
a continuous 3D space P(i, j, s).   To do this properly, we need to transform our 
discrete, integer sampled image to a continuous signal. We do this with a measure 
function. For a many reasons, some of which will be developed below, the most 
convenient measure function for this is the Gaussian (or normal) function.  
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This is commonly done for by convolving the image with multiple copies of a 2D 
Gaussian filter at multiple scales:  
 
 P( x,y,s )= P* g( )( x,y,σ s )   for an exponential range of scales:  σ s = σo

s  
 
Note that in the scientific literature for computer vision, image processing and digital 
signal processing this would be sometimes written as:  
 
  P( x,y,s )= P( i, j )* g( x,y,σ s )  
 
1.4. Convolution and Cross Correlation 
 
We can transform a sampled  signal f(n) into a continuous signal f(x) by convolving 
the signal with a continuous function.  A popular function, described blow, is the 
Gaussian.  
 

 f ( x )= ( f * g )( x )= f ( n )g( x − n,σ )
n=−∞

∞

∑  

 
The term x-n has the effect of flipping the Gaussian around its center point. This 
"flipping" simplifies certain analysis in the Fourier domain and is thus part of 
convolution. However, the Gaussian is Symmetric, so in fact this flipping has no 
effect!  We could have written:   
 

f ( x )= ( f ⊗ g )( x )= f ( n )g( x + n,σ )
n=−∞

∞

∑  

 
This operation is called cross correlation, and is said to be easier for beginners to 
visualize.  It is often mistakenly called convolution in some machine learning papers. 
For symmetric signals such as the Gaussian, the distinction is irrelevant.  
1.5. Multi-Scale Gaussians 
 
Notice that we need to define a scale variable, σ, for our Gaussian. Convolution with 
the Gaussian blurs (smears-out) the values of the pixels with a spread proportional to 
the scale, making it more difficult to resolve small details. In signal processing terms, 
the Gaussian is said to be the "Point Spread Function" for the continuous signal f(x).  
 
Intuitively, we would think that we want to use a scale variable as small as possible 
in order to be able to detect small details. However, this smearing also surpresses 
image noise and makes it easier to detect large-scale entities.  
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Recognizing entities at multiple scales is made easier by convolving with multiple 
values of σ.  This gives us a multi-scale version of the signal:  
 

 f ( x,σ )= ( f * g )( x )= f ( n )g( x − n,σ )
n=−∞

∞

∑  

 
The standard deviation, σ, is often referred to as the scale of the Gaussian. Scale 
determines the scale of entities that we can recognize in the resulting signal. Thus we 
can use σ, to define the scale axis for a multi-scale description of the signal. The 
scale of the Gaussian will also determine the resolution required to represent the 
signal. 
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2. Gaussian Digital Filters 
 
2.1. The Gaussian Function 

The normalized Gaussian Function is   g(x,σ ) = 1
σ 2π

e
−
x2

2σ 2  

 
Where x is a spatial dimension and σ2 is the second moment of the function.   The 
letter "e" refers to the Euleur constant e=2.7182818284.... We can use the parameter 
σ as a measure of scale of the Gaussian. 
 

The term  
1

σ 2π
 assures that Gaussian function integrates to 1  for all values of σ.  

 

 σ 2π = e
−
x2

2σ 2 dx
−∞

∞

∫  

 
Gaussian Scale Property 
 
A very important property for us is that the convolution of a two Gaussians yields a 
scaled Gaussian.   
 
   g( x,σ )∗ g( x,σ )= g( x, 2σ )  
 

In general  g( x,σ1 )∗ g( x,σ2 )= g( x, σ1
2 +σ2

2 )  
 
The convolution of a Gaussian with variance σ1

2  with a Gaussian with variance σ2
2  

creates a larger Gaussian with a variance σ3
2 = σ1

2 +σ2
2 . 

 
Thus we can decompose a convolution into two smaller convolutions:  
 
f ( x )= ( f * g3 )( x )= ( f * g1 )* g2( )( x )  

 
 This will make it possible to create a fast recursive algorithm for computing image 
pyramids.  
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2.2. The 2D Gaussian Function 
Our image, P(i,j), is a 2-D sampled signal, and so we need to use a 2D Gaussian.  

The 2D Gaussian function is: g(x, y,σ ) =
1

2πσ 2 e
−
(x2+y2 )
2σ 2  

Gaussian functions have many interesting properties.  For example the 2D Gaussian 
is the only function that is both separable and circularly symmetric.   
 

Separability:  g( x,y,σ )= 1
2πσ2

e
−
( x2+y2 )
2σ2 =

1
2πσ

e
−
x2

2σ2 ∗
1
2πσ

e
−
y2

2σ2

 
 
This means that a convolution with a 2-D NxN Gaussian (O(N2) operations) can be 
computed as a sequence of 2 convolutions with 1-D Gaussians  (O(N) operations).  
 
p* g( )( x,y,σ )= p* g( )( x,σ )( )* g( y,σ )  

 
or as it is more commonly written in computer vision 
 
p( i, j )* g( x,y,σ )= p( i, j )* g( x,σ )( )* g( y,σ )  

  
2.3. Gaussian Derivatives 
Images are discrete (sampled) signals.  Convolution with a continuous Gaussian 
makes it possible to perform operations to images that would normally only be 
possible with a continuous signal.  For example, to compute derivatives:  
 

f x( x )=
∂f ( x )
∂x

* g
"

#
$

%

&
'( x )=

∂( f * g )( x )
∂x

= f * ∂g( x )
∂x

"

#
$

%

&
'( x )= f ( n )gx( x − n,σ )

n=−∞

∞

∑
 

 
Gaussian Derivatives are classically used to describe invariant image structures.   
 

Gaussian   
gx( x,y,σ )=

∂G( x,y,σ )
∂x

= – x
σ2
G( x,y,σ )  

Derivatives:   gy( x,y,σ )=
∂G( x,y,σ )

∂y
= – y

σ2
G( x,y,σ )  

   gxx( x,y,σ )=
∂2G( x,y,σ )

∂x2
=
x2 −σ2

σ4
G( x,y,σ )  

   gxy( x,y,σ )=
∂2G( x,y,σ )

∂x∂y
=
xy
σ4
G( x,y,σ )  

   gxxx( x,y,σ )=
∂3G( x,y,σ )

∂x3
=
x3 − xσ2

σ6
G( x,y,σ )  
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We can compute Gaussian derivatives by first convolving with a Gaussian, then 
convolving with simple local sum and difference operators.  This gives a very fast 
algorithm that we will see this next week.  
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The Laplacian of the Gaussian 
 
The Laplacian of the Gaussian is the sum of the second derivatives.  
 
   

€ 

∇2G(x, y,σ ) =Gxx (x, y,σ )+Gyy(x, y,σ )  
 
The 2D Laplacian of the Gaussian is both separable and circularly symmetric.  
 
The Gaussian is the unique solution to the diffusion equation, and as a consequence:  
 

 ∇2G( x,y,σ )=Gxx( x,y,σ )+Gyy( x,y,σ )=
∂G( x,y,σ )

∂σ
 

  
In human vision, the 2D Laplacian of the Gaussian is used to detect the natural scale 
of entities and thus to drive attention in the LGN. The central region acts as a kind of 
“spot detector” for entities of a particular scale.  
 
For computer vision, the Laplacian of the Gaussian provides a Scale-invariant feature 
detector, used in the popular SIFT operator (Scale Invariant Feature Transform).  

 
 

 
 

 

2D Plot of  Image of  1-D Cross section  
 
 

€ 

∇2G(x, y,σ )

€ 

∇2G(x, y,σ )

€ 

∇2G(x, y,σ )
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The Difference of Gaussian (DoG) operator 
 
The Gaussian is the unique solution to the Diffusion equation:  
 

  

 
As a result, we can approximate the Laplacian as a Difference of Gaussians:  
 
 

€ 

∇2G(x, y,σ ) ≈ G(x, y,σ1) –G(x, y,σ 2 )( )  
 
This is sometimes called a DoG (Difference of Gaussian) operator and can be 
computed very easily from a Gaussian Pyramid as a difference of levels.  
 
It is common to use:  

€ 

∇2G(x, y,σ ) ≈ G(x, y, 2σ )−G(x, y,σ ) 
 
But note that from the scale property:   

€ 

G(x, y, 2σ ) ≈ G(x, y,σ )*G(x, y,σ )  
 
so that  

€ 

∇2G(x, y,σ ) ≈ G(x, y,σ )*G(x, y,σ )−G(x, y,σ ) 
 
We can compute the Laplacian of an image recursively:  
 
 ∇2P( x,y,σ )= P* ∇2G( x,y,σ )( ) ≈ P*G( x,y,σ )( )*G( x,y,σ )− P*G( x,y,σ )  
 

€ 

∇2G(x, y,σ ) =Gxx (x, y,σ )+Gyy(x, y,σ ) =
∂G(x, y,σ )

∂σ
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2.4. Gaussian Digital Filters  
 
The Gaussian function can be used to construct a finite impulse response (FIR) 
digital filter. This requires (1) sampling the function and (2) limiting its duration 
(windowing) and (3) renormalizing its gain.  
 
The finite impulse response (FIR) digital Gaussian filter is:  
 

g( n,σ )= 1
B
WN( n )⋅e

−
( n∆x )2

2σ2
 

 
The function ∆x is a sample distance (or sample rate).  For simplicity, we can use 
∆x=1, but other values are possible.  
 
The term B is a normalization factor assures that the "gain" of the filter is 1.  
 

  B = e
−
n2

2σ2

n=−R

R

∑  

 
The normalisation factor, B,  will be slightly less than √2πσ because of the window 
function truncates the Gaussian.  
 
The function WN(n) is called a window function, and serves to limit the spatial extent 
(window size) of the Gaussian. We will use a rectangular function as a window:  
 

 WN( n )=
1������	
��� ≤�≤�
0����	���
���������

"
#
$

%$  
 

Where R is a "radius".  Typically R should be  R ≥ 3σ for reasons that are developed 
below. 
   
Setting ∆x=1 and R = 3 gives a filter that looks like this:  

 
 
To understand the as a Finite Impulse Response Gaussian Digital Filter, we need to 
model the effects of sampling and windowing.   
 

0 σ" 2σ" 3σ"‒σ"‒2σ"-3σ"
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Sampling 
 
Sampling a continuous function creates an effect known as aliasing. This is because 
any information at scales that are smaller than the sample rate may or may not be 
captured in a sample. The result is that the samples contain random noise.  
 

 
Aliasing is commonly modeled and analyzed with a Fourier Transform.  
 
The Fourier transform of a signal s(x) is :  

 
S(ω) = s(x)

−∞

∞

∫ e− jωxdx   where ω = 2π f
 

The Fourier transform S(ω) exists for all frequencies from –∞ to ∞. 
 
For a sampled signal, the Discrete Sampled Fourier Transform  
(also known as the Discrete Time Fourier Transform (DTFT) is  

 S(ω )= s( n )e− jωn
n=−R

R

∑   where ω = 2πf  

 
In the discrete sampled Fourier transform, frequencies higher than 1 cycle per two 
samples, are indistinguishable from frequencies at lower frequencies.  
 

 
A sampled cosine with 2 samples per period 

 

 
Cosine with less than 2 samples per period looks like a cosine with more than 2 

samples per period 
 
Sampling at a step size of ∆x creates multiple copies of the power spectrum in the 
frequency domain with each copy offset by a the frequency  ω = 2πF=2π/∆x 
 
If we consider ∆x = 1, we can say that S(ω) is periodic with a period of 2π 
 
 
 

x 
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The Discrete Sampled Fourier Transform is periodic with a period of ωs=2π/∆x. 
Sampling at a step size of ∆x creates multiple copies of the power spectrum in 
Frequency with each copy offset by a the frequency  ωs = 2πFs=2π/∆x 

 
 
For a sampled signal, the spectrum is unique over a range of 2π frequencies. Beyond 
that are an infinite number of copies of the spectrum. These copies add to create a 
composite spectrum. Any energy beyond  ωs/2= πFs is added as noise to the next 
copy.  The results is random noise added to the signal, shown in red.   

 
Limiting aliasing requires removing( filtering) frequencies beyond ωs/2= πF. This 
may be done with the Gaussian Low pass filter.  
 
The Fourier Transform of a Gaussian is a Gaussian, with a scale inversely 

proportional to the scale of the Gaussian. 
 

F{ g( x,σ )}= e
−
1
2
ω2σ2

 

 
As the space domain Gaussian grows larger, it spectrum grows sharper.  
Sampling the Gaussian creates a periodic Fourier Transform:  

 
These copies add to create a composite spectrum. Any energy beyond  ωs/2= πFs is 
added to the next copy as noise.   To minimize this effect, we need to assure that the 
sample rate is sufficiently small or that the scale of the Gaussian is sufficiently large.  

0 
–2πFs 2πFS–πFs πFs

2πf 

G(ω) 

ω!

π 0 -π 
ω"
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This requires that we use ∆x ≤ σ/2.   
For  σ/∆x < 2,  aliasing folds a significant amount of energy at the sampling 
frequency, corrupting the quality (and the invariance) of the Gaussian function.  
 
Convolving the image signal with a Gaussian low pass filter, 

 
( S* g )( n )= S( m )g( n−m,σ )

m=−∞

∞

∑
 

 is the same as multiplying in Frequency,  
 

 
S(ω )⋅G(ω,σ )

  
This has the effect of suppressing the high frequency energy in the signal that would 
be aliased by sampling 

 
The larger the Gaussian, the better the suppression of noise. However, convolution 
blurs the image, and must be kept to a minimum.  A good compromise is to use a 
sample size of less than half the sigma of the Gaussian.  
 

 
∆ xk =∆ yk ≤ 

1
2
σ k

 
 
smaller sampling is even better, but there little improvement for going below 1/4 
 

 ∆xk = ∆ yk = 1
4
σk  

π 0 -π 
ω"

2πf 
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Windowing 
Truncating an infinite function to a finite duration is equivalent to multiply by a 
window WN(x). When we limit g(x,σ) to a finite support, we multiply by a window 
  

 G(n, σ) = G(n, σ) · WN(n) where WN( n )=
1������	
��� ≤�≤�
0����	���
�����������

"
#
$

%$
 

 
Multiplying by a finite window is equivalent to convolving with the Fourier 
transform of the finite window:  
 
 F{G( n,σ )⋅WN( n )}=G(ω,σ )*WN (ω )  
 

where    

€ 

WN (ω) =
sin(ωN 2)
sin(ω 2)

     and     

€ 

G(ω,σ ) = 2π  σ e
−

1
2
σ 2ω 2

 

    
For N <  7, the ripples in WN(ω) dominate the spectrum and corrupt the resulting 
Gaussian. 
At N=7 the effect is tolerable but noticeable.  
At N≥ 9 the effect becomes minimal 
  
2.5. 2D  Gaussian Digital Filters   

In 2D the  Finite impulse response Gaussian filter  is : G(i, j,σ ) = 1
B
WN (i, j) ⋅e

−
(i2+ j2 )
2σ 2  

Where i and j are integers,  
  

 

€ 

wN (i, j) =
1     for - R ≤ i ≤ R and – R ≤ j≤ R
0    otherwise                                 
# 
$ 
% 

 

 
The Gaussian function has infinite spatial extent. To provide a digital filter we limit 
the spatial extent of the Gaussian with a Window function WN(i,j) 
 
The finite window, WN(i,j)  has  N2 = (2R+1)2 coefficients 
 
Where R is a "radius. Typically R should be R ≥ 3σ .   
A normalization factor assures that the "Gain" of the filter is 1.  

  B =
x=−R

R

∑ e
−
( i2+ j2 )
2σ2

y=−R

R

∑ ≤ 2πσ  
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3. Image Pyramids 
 
An image pyramid is a multi-scale representation in which an image has been low-
pass filtered and resampled to an appropriate resolution over an exponential range of 
sample rates. To prevent aliasing (additive random noise from sampling), each image 
must be smoothed with a low-pass filter whose impulse response is proportional to 
the sample rate.   
 
Pyramid representations provide scale invariant image description. When properly 
computed, each image in the pyramid will have an identical impulse response, 
enabling computation of scale invariant features for recognizing phenomena 
independent of scale.   

 
Pyramid image from wikipedia 

(https://en.wikipedia.org/wiki/Pyramid) 
 
Image pyramids are classically computed using a Gaussian Low pass filter. However 
a fast integer coefficient version is possible using Binomial low pass filters, which 
are integer approximations to Gaussian low pass filters. Gaussian filters (and their 
binomial equivalents) are interesting because of interesting scale invariant properties.  
 
Computing the difference of adjacent images in a Gaussian pyramid provides a 
Laplacian Pyramid. Laplacian pyramids are widely used to detect scale invariant 
images features, for example with the widely used "SIFT" image descriptor (Scale 
Invariant Feature Transform").  
 
Gaussian pyramids may be computed using a fast recursive algorithm that has 
computational complexity of O(N), where N is the number of pixels, and results in a 
O(N) representation the image.   
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3.1. Direct Calculation of an Image Pyramid 
 
Let, p(i,j), be an image array of size RxC pixels, where (i, j) are integers. To compute 
the scale space representation of the image we must sample scale space in x, y and in 
σ.  As we have seen above, σ is generally sampled over an exponential range.  
 
  σk = σ0 ∆s

k  
 
The smallest value of is σk  is σ0when k=2 as ∆ s0 =1 .   
The largest value of scale is determined by the image size, say  
 
 ∆ skmax =max(R,C)  
 
Thus we can have maximum of  K = Log2{max(R,C)} levels in the pyramid. 
 
We can convert our image to a continous scale space with:  
 

 P( x,y,k )= p( i, j )* g( x,y,σk )= p( x − i , y − j )g( i , j ,σk )
j=−Rk

Rk

∑
i=−Rk

Rk

∑
 

where σk = σo ∆s
k . Typical values would be σ0=2 and ∆s=2. 

 
Each image can be resampled by a sampling operator that computes every ∆xk pixel 
of every ∆yk row:   
 

P(i,j,k) = S2
k{P(x,y,k)} 

 
For example, this is the result of a sample rate of ∆x = ∆y=2. 
 

 

€ 

S2{p(x, y)}  

€ 

S2{⋅}

 

° ° ° ° 
° ° ° ° 
° ° ° ° 
° ° ° ° 

° ° 
° ° 

° ° 
° ° 

p( i, j )  

° ° 

° ° 

S2{ p( i , j )}   
 
For scale equivariance, the spatial sample rates ∆xk  and  ∆yk should be chosen so that 
the impulse response at each image is the same. As we saw above, aliasing can be 
remedied by using ∆xk =∆yk  ≤ (1/2) σk . 
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With the above values the algorithm for this would look like this:  
 

 
 ∆xk=∆yk =∆sk

 =2k.    
 
The result is a collection of images of decreasing size. For example for an image of 
1024 x 1024:  

 
 
The number of pixels is 1024x1024 (1+ 1/4 + 1/16 + 1/64+...) < 1.5 x 10242 

  
However, the cost for computing this pyramid is very high.   
For an image of 1024 x 1024 pixels, the largest Gaussian would be σk=128, and the 
pyramid would have K=8 levels from 0 to 7.  
 
For an image of RxC pixels, where C >R  this still requires O(R2) operations.  
For a 210 by 210  image, this is O(220) operations per pixel.  
 
The cost for computing the largest scale (smallest window) approaches the number of 
pixels to the 4th power! 10244  =  (210)4 = 240.      
 
We can gain some improvement by noting that the Gaussian is separable, giving a 
convolution that costs 2N rather than N2.  
 
 

€ 

P(x, y,k) = P(x, y)*G(x, y,σ k ) = P(x, y)*G(x,σ k )*G(y,σ k )  
 
However, for  

€ 

σ k = 2k+1 we still have an exponential growth  σk = ( 2,4,8,16,...) .  
We can do better than this. 

*g(x,y,σ0) 

P(i,j) 

S1{-} 

…
 

*g(x,y,σ1) S2{-} 

*g(x,y,σ2) S4{-} 

*g(x,y,σ3) S8{-} 

*g(x,y,σ4) S16{-} 

*g(x,y,σ5) S32{-} 

Pyramid  
Buffer 

…
 

1024 

512 

256 

128 
64 

32 
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3.2. Scale Invariant Pyramid Algorithm 
 
To overcome the exponential growth, we can use each level in the pyramid to 
compute the next level. This yields a form of recursive algorithm referred to as 
“cascade convolution”.   

 P( x,y,k )= P( i, j ,k −1)* g( x,y,σk )= p( x − i , y − j ,k −1)g( i , j ,σk )
j=−Rk

Rk

∑
i=−Rk

Rk

∑  

  

 
 
However, the resulting algorithm does not have a scale invariant impulse response. 
To provide a scale invariant impulse response, we need to do an initial convolution 
with a Gaussian at σ=σ0, and then compute each successive level with a Gaussians of  
σ=σ0 and σ=√2σ0.   When σ0=1 this algorithm would look like this.  
 

 
 

S2{-} 

…
 

Pyramid  
Buffer 

…
 

*g(x,y,σ) 

S2{-} 

*g(x,y,σ) 

S2{-} 

*g(x,y,σ) 

P(i,j) 

Pyramid  
Buffer 

…
 

*g(x,y,1) 

512 x 512 

128 x 128 

P(i,j) 

S2{-} 

*g(x,y,1) 

*g(x,y,√2) 

S2{-} 

*g(x,y,1) 

*g(x,y,√2) 

σ=1!

σ=1!

σ=√2!

σ=2!

σ=1!

1024x 1024 

σ=√2!

σ=2!
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The cost of this algorithm is on the order of the size of the filter g(x,y,σ0) times the 
number of resulting samples. For example, consider a pyramid constructed using 
Gaussian filters with σ0=1 implemented with a 7x7 filter and σ=√2 is implemented 
with a 9x9 filter.  The separability property of the Gaussian tells us that each 
convolution can be implemented as a row convolution followed by a column 
convolution. Thus the cost for the first level is 2x7=14 multiplies and adds. The cost 
for each successive level is 2x7 +2x9 = 32 multiplies and adds per pixel. The total 
number of multiplies and adds is 14 + 32 (1 + 1/4 + 1/16 +...) = 64 multiplies and 
adds per pixel, and the total number of samples in the pyramid is NxNx(1 + 1/4 + 
1/16 +...) or approximately   1.5 x N x N.   This is easily computed at video rate for 
most computers.  
 
Using σ0=√2 would result in a reduction of aliasing at slight increase in computing 
cost.  
 
There are a number of additional optimizations that are possible, but these go beyond 
the scope of this lecture.    
 
3.3. Sampling 
 
Resampling P(x, y, k) at ∆xk ~ σk   results an identical impulse response at each level. 
Pyramid samples are at discrete positions (i∆xk, j∆xk)  for integer values of i, j:   
 
 P(i, j, k) =P(i∆xk, j∆xk, k)  
 
The position in the original image of a sample from level k is  x = i∆xk and y = j∆yk  
If we sampling at a scale step of ∆xk = 2k  this gives a  "full octave" pyramid.   
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It is also possible to build a scale invariant pyramid with a step size of  ∆xk = 2k/2  
using ∆xk  = 2k/2   This is known as a “half-octave” pyramid.  
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An impulse response is the output of a convolution when the input is a single impulse 
(Dirac Delta function).  The following figure show the “impulse response” for a Scale 
Invariant pyramid at 6 different scales, computed using a fast O(N) algorithm.  This 
was taken from a half-octave pyramid algorithm using root-2 sampling, but the 
principle is the same.  
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4. Invariant and Equivariant Properties in Gaussian Scale Space  
 
Gaussian Scale Space has a number of very interesting invariant and equivariant 
properties.  Differential operators can be used to detect key-points (interest points)  in 
scale space. These can be used to define invariant structures that represent 
appearance independent of scale, position or image plane rotation.   
 
Keypoints are typically found using differential operators such as the  Gradient (first 
derivative) or the Laplacian (second derivative).  
 
An example is the Laplacian Profile.    Recall that the Laplacian of an image is:  
  
 

€ 

∇2P(x, y, s) = P *∇2G(x, y,σ s ) = Pxx (x, y, s)+Pyy(x, y, s) 
 
When evaluated over an exponential range of scales, the Laplacian gives a Laplacian 
profile.  This is an invariant descriptor for appearance. 
 
When computed over an exponential range of scales, the  Laplacian profile is 
invariant to rotation and translation and equivariant to changes in scale. Since scale is 
proportional to distance, the profile is equivariant to viewing distance. 
 

 σs
 

x 

y 

∇2P(x, y, s) 

   
 
A change in viewing distance at x, y shifts the function ∇2P(x,y,s) in s.  The form of 
the profile translates in scale but remains the same.  Technically this is called a 
“covariant”. 
 
A Laplacian interest point is found by  

€ 

(xi , yi , si ) = local −max
x,y,s

{∇2P(x, y, s)} 

Local-Max{} returns any point (x, y, s) for which the value of the function is larger 
than all neighbors within some distance ε.  
 
We will see this in the next lecture 
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