
Fast Computation of Characteristic Scale Using a Half-Octave
Pyramid

James L. Crowley, Olivier Riff, and Justus H. Piater
Projet PRIMA, Lab. GRAVIR-IMAG

INRIA Rhône-Alpes, France

Abstract

The characteristic (or intrinsic) scale of a local image
pattern is the scale parameter at which the Laplacian
provides a local maximum. Nearly every position in
an image will exhibit a small number of such charac-
teristic scales. Computing a Gaussian jet at a char-
acteristic scale provides a scale invariant feature vec-
tor for tracking, matching, indexing and recognition.
However, the computational cost of directly search-
ing the scale axis for the characteristic scale at each
image position can be prohibitively expensive.

In this paper, we describe a fast method for com-
puting the characteristic scale by interpolating val-
ues from a scale-invariant Laplacian pyramid. We
present an experimental evaluation of the scale in-
variance of the impulse response for pyramids com-
puted with three forms of Gaussian filters. We show
that interpolation between pixels across scales can be
used to provide an accurate estimate of the charac-
teristic scale at each image point.

Keywords: Pyramid, Gaussian, multi-scaling,
Laplacian profile, DoG, scale invariance,
characteristic scale, natural interest points.

Applications: Characteristic scale computation,
natural interest points detection, pattern recog-
nition, object tracking.

1 Introduction

The visual appearance of a neighborhood can be de-
scribed by a local Taylor series [7]. The coefficients of
this series constitute a feature vector that compactly
represents the neighborhood appearance for indexing
and matching. The set of possible local image neigh-
borhoods that project to the same feature vector are

referred to as the ”Local Jet”. A key problem in
computing the local jet is determining the scale at
which to evaluate the image derivatives.

Lindeberg [8] has described scale invariant fea-
tures based on profiles of Gaussian derivatives across
scales. In particular, the profile of the Laplacian,
evaluated over a range of scales at an image point,
provides a local description that is “equivariant” to
changes in scale. Equivariance means that the fea-
ture vector translates exactly with scale and can thus
be used to track, index and recognize structures in
the presence of changes in scale.

The problem with this approach is that a direct
computation of the characteristic scale at each image
position appears to make real-time implementation
unfeasible. This paper presents a method to obtain
the characteristic scale by interpolating the samples
of a half-octave Laplacian Pyramid along both the
image and the scale axes. The Laplacian for any
image position is obtained by bi-linear interpolation
between adjacent sample pixels. Local maxima over
scale are determined by a fitting a parabolic function
to samples in the scale direction at a pixel. However,
not just any multi-resolution pyramid can be used for
such calculations. Scale-invariant image description
requires that the sampled impulse response be the
same at every level of the pyramid.

2 Pyramid Methods for Multi-
resolution Image Analysis

Multiresolution methods have been used in com-
puter vision since the 1970’s. Early work in multi-
resolution image description was primarily motivated
by a desire to reduce the computational cost of meth-
ods for image description and image matching. One
of the earliest uses was a technique referred to as

1

“planning” [6], in which image resolution was re-
duced by summing pixels in non-overlapping 8 × 8
blocks. The results of edge detection at low resolu-
tion were used to select regions for edge detection at
high resolution.

Multi-resolution processing was soon generalized
to computing multiple copies of an image by repeat-
edly summing non-overlapping blocks of pixels and
re-sampling until the image reduced to a small num-
ber of pixels. Such a structure became known as
a multi-resolution pyramid [12]. In a typical early
pyramid algorithm, non-overlapping blocks of 4 × 4
pixels were summed at each level to produce the next
reduced resolution level. Such pyramid structures
were used to construct fast algorithms for image seg-
mentation, edge detection, and to accelerate correla-
tion for stereo matching [9, 10]. Unfortunately, com-
puting a pyramid by averaging non-overlapping win-
dows resulted in substantial aliasing. Such aliasing
is most noticeable as a large component of additive
random noise generated by image translation. Such
noise can render most image analysis algorithms un-
reliable.

The problem of segmentation and classification
of textures led a number of researchers to look
for general-purpose multi-resolution representations.
Burt [2, 3] proposed a multi-resolution pyramid al-
gorithm using smoothing with overlapping windows.
Weights for the smoothing filters were obtained by
postulating a set of four principles. These principles
resulted in the use of a mask that serves as a smooth-
ing filter for repeated re-sampling. While smoothing
with these masks did reduce noise, significant alias-
ing effects still remained. Moreover, Burt’s pyramid
was not scale invariant.

During this period, a half-octave scale-invariant
pyramid algorithm was proposed based on consid-
erations from signal processing [4, 11]. This algo-
rithm was explicitly designed to maintain the same
sampled impulse response at each level. Images were
smoothed by a Gaussian filter designed to avoid alias-
ing effects. Unfortunately, the use of large FIR Gaus-
sian filters led to computing times on the order of an
hour for a single image.

By the mid-1980’s, the multi-resolution pyramid
had become a standard structure for use in stereo
matching and motion analysis [1]. The use of tech-
niques from digital signal processing provided math-
ematical tools to understand the effects of repeated
smoothing and sampling. By the late 1980’s, pyra-

mids were generally computed using Gaussian filters
of sufficiently large size so as to minimize the ran-
dom noise dues to aliasing. However, generally little
attention was paid to the scale-invariant properties.

3 A scale-invariant half-octave
pyramid

3.1 Sampling a scale-space represen-
tation

A scale-equivariant space can be constructed using
any kernel function. Let x(t) be a signal defined
over a continuous variable t. A kernel function, k(t),
can be scaled to any scale factor, s, by dividing the
t. Thus for continuous variables, a scale-equivariant
“scale-space” representation of a signal is easily de-
fined, as

p(t, s) = x(t) ∗ k(
t

s
).

Computing a sampled digital representation of such
a space requires choosing appropriate sample rates
for t and s. The sample rate, T0, for the t variable
is determined by the Nyquist frequency of the signal.
For a scale-invariant representation, the s variable
should be sampled using an exponential series

sk = sk
o .

This is easily shown by taking the logarithm of t
s .

The logarithm converts the 1
s term into translation

along the scale axis. The set of possible scales range
from 1 to the number of samples. The logarithmic
sample rate in scale depends on the smoothness of
the kernel. The cost of brute force sampling of such
a space is the number of signal samples, N , times the
number of scale samples, log N . Thus such a space
is, in principle, O(N log N). Unless the bandwidth
of x(t) is limited and the kernel is properly chosen,
the actual constants required for such a space are
computationaly prohibitive.

A multi-resolution pyramid algorithm produces a
sampled scale-space representation of a signal, p(t, s),
with a computational complexity of O(N). The re-
duction in complexity is achieved by re-using each
scale-sampled representation of the signal as an in-
termediate result for producing the next. Strict scale
equivariance requires that convolution of a kernel fil-
ter with itself produce a scaled copy of the kernel

2

filter:

k(
t

so
) = k(t) ∗ k(t)

The Gaussian function

g(t, σ) = e−
t2

2σ2 (1)

obeys this property, with a scale factor of so =
√

2.
More generally, the Gaussian functions are closed un-
der convolution. That is, the convolution with two
Gaussians of variance σ2

1 and σ2
2 results in a Gaussian

of variance σ2
3 = σ2

1+σ2
2 . As a result, a scale-invariant

pyramid can be defined by cascaded convolution with
a Gaussian kernel.

The Gaussian function has a number of other prop-
erties that make it ideally suited for use as a kernel fil-
ter for computing a scale-invariant pyramid. Among
these is the fact that a circularly symmetric Gaussian
is separable into a product of 1-D components. This
property allows us to compute the convolution of an
N ×N Gaussian by a series of two 1-D convolutions.
Thus the convolution with a Gaussian remains O(N),
even when applied to a 2-D N × N signal.

3.2 The O(N) scale-invariant pyramid

A multi-resolution pyramid is an O(N) method for
computing a sampled scale space. The reduction in
computation is achieved by reusing each level as an
intermediate result to compute the next level. This
pyramid algorithm is not simply scale equivariant.
Each level is resampled at a step size that exactly
equals the increase in scale. Thus the ratio of scale
to sample rate is constant and the pyramid provides
a scale invariant impulse response.

The scale-invariant pyramid algorithm (Figure 1)
is composed of an initial convolution with the kernel
filter followed by a series of processing stages, k = 0
to K. For each stage, k, the pyramid is composed
of three signals p0(n, k), p1(n, k) and p2(n, k). The
output of each stage is resampled to produce the in-
put for the next stage. Because of resampling, each
stage is composed of Nk = N

2k samples (in the case of
a 1-D signal).

The signal p0(n, k) serves as the input to the kth
stage. This signal is convolved with the kernel filter,
g(n, σ), to provide p1(n, k):

p1(n, k) = p0(n, k) ∗ g(n, σ)

The second stage is computed by convolution with a
scaled copy of the kernel filter:

p2(n, k) = p1(n, k) ∗ g(n,
√

2σ)

This scaled copy can be obtained by cascaded convo-
lution with the kernel filter:

p2(n, k) = p1(n, k) ∗ g(n, σ) ∗ g(n, σ)

To demonstrate the scale invariance, consider the
impulse response for a scale-invariant pyramid with
a Gaussian kernel g(n, 0) using a typical value of σ =
1.0. Thus the kernel filter is:

g(n, 1) = e−
n2
2

To have an impulse as input, assume an N -sample
input signal x(n) = δ(n−N

2) composed of zero values,
except at position N

2 where the value is set to 1.
The initialization step convolves the impulse with the
kernel filter:

p0(n, 0) = g(n, 1).

Thus variance and σ at p0(n, 0) are both 1.0. The
next step is

p1(n, 0) = p0(n, 0) ∗ g(n, 1)

Thus the variance at p1(n, 0) is σ2
01 = 2 and the scale

factor is σ01 =
√

2. Continuing,

p2(n, 0) = p1(n, 0) ∗ g(n, 1) ∗ g(n, 1).

The variance of p2(n, 0) is σ2
02 = 4, and thus σ02 = 2.

The result is resampled at T1 = 2 to provide Stage
k = 1. To show the effects of sampling, consider a
change in variables, m = 2n, to obtain

p0(m, 1) = p2(2m, 0).

Expressed in the original variable, n, resampling does
not effect the variance or σ of the signal. Thus
σ2

10 = 4, and σ10 = 2. However, convolution with
a resampled signal is the same as scaling the kernel
filter. Thus,

p1(m, 1) = p0(m, 1) ∗ g(m, 1) = p2(n, 0) ∗ g(2n, 1).

By virtue of resampling, the Gaussian kernel has ef-
fectively been rescaled by a factor of σ = 2. This is
equivalent to rescaling the variance of the Gaussian
by 4. Thus σ2

11 = 8, and σ11 = 4. Continuing the
stage,

p2(m, 1) = p1(m, 1) ∗ g(m) ∗ g(m)

3

which gives σ2
12 = 16, and σ11 = 8. The result is

resampled to provide the input to the next stage and
the process is repeated:

p0(m, 3) = p2(2m, 2)

The result is a sequence of signals in which both the
sample rate and the scale factor grow in powers of
2. At each stage, an intermediate result for p1(n, k)
provides a

√
2 scaling of the impulse response.

The 1-D algorithm defined above is easily general-
ized to 2-D by replacing the variable n with i, j. This
input signal is changed from x(n) of size N sample
to x(i, j) of size N2. However, the Gaussian kernel
is separable:

g(i, j, σ) = e−
i2+j2

2σ2 = e−
i2

2σ2 ∗ e−
j2

2σ2

Thus, convolution with the kernel with an N × N
image can be computed as a series of two O(N) 1-
D convolutions. Thus the cost of convolution with
a Gaussian remains O(N) and the resulting pyramid
remains an O(N) algorithm.

4 An experimental comparison
of fast Gaussian filters

4.1 Fast implementation of Gaussian
Filters

Digital filters can be designed using either a direct
(FIR) or recursive (IIR) form. The direct form is ob-
tained as a finite number of samples of the desired
impulse response. The recursive form is designed as
a ratio of polynomials in the z domain. Closure un-
der convolution provides a third method for design-
ing Gaussian filters by cascade convolution. The fol-
lowing section compares these three implementation
methods for a 1-D Gaussian filter.

4.1.1 The FIR implementation of a Gaussian

The simplest means to implement a digital Gaussian
filter is to sample the Gaussian function (Eqn. 1) at
integer multiples of T0. For σ = 1 pixel, a reasonably
good approximation is obtained using a kernel width
of 9 pixels.

4.1.2 Binomial filters

Binomial filters are obtained with cascaded convo-
lution of a kernel filter composed of [1, 1]. The co-
efficients for the nth filter in the series, bn(m), are
defined by:

bn(m) = [1, 1]∗n

where the exponent ∗n denotes n autoconvolutions.
The set of filter coefficients is well known as the bi-
nomial series, often computed using Pascal’s triangle.
This series provide best approximation to a Gaussian
a finite size. The properties of the binomial filters are
particularly easy to compute. For example, the sum
of coefficients for the binomial bn(m) is simply 2n,
while the variance is σ2 = n

4 .
The binomial filters b2(m) (with coefficients 1, 2, 1)

and b4(m) (1, 4, 6, 4, 1) are of special interest. The
Fourier transform of b2(m) is a single period of a
cosine on platform and thus is a monotonic low-pass
filter with no ripples in the stop band:

B2(w) = 2 + 2 cosw

Since the even-order binomials are auto-convolutions,
they are powers of this filter and thus also have no
ripples in the stop band. The filters b2(m) and b4(m)
have variances of 1

2 and 1, respectively. The filter
b4(m) is equivalent to b2(m) ∗ b2(m). Thus, a σ = 1
kernel filter can be computed by two convolutions
with the kernel [1, 2, 1] at a cost of two multiplications
and 4 additions per pixel.

4.1.3 Recursive filters

Different recursive implementations of Gaussian fil-
ters have been proposed by Deriche [5] and by Vliet,
Young and Verbeek [13]. To maintain shift invari-
ance (or zero phase), the filter is implemented as a
cascade of forward and backward difference equations
with real-valued coefficients b.

Backward: v[n] = αx[n] −
N∑

i=1

biv[n − i]

Forward: y[n] = αv[n] −
N∑

i=1

biy[n + i]

with α = 1 +
∑N

i=1 bi. An interesting property of
recursive filters is that the number of operations is
independent of the variance of the filter. In the fol-
lowing we consider recursive filters of size N = 3 and
N = 5.

4

sampling

sampling

...

image start

Lk(σlap = 1.7)

Lk(σlap = 3.3)

...

σgauss = 1

Lk(σlap = 2.4)

Lk(σlap = 1.18)

σgauss =
√

2

σgauss = 2

σgauss = 2

σgauss = 2
√

2

σgauss = 4

Stage k = 1

g(n,σ = 1)

g(n,σ = 1)

g(n,σ = 1)

g(n,σ = 1) ∗ g(n,σ = 1)

g(n,σ = 1) ∗ g(n,σ = 1)

p2(n, 1)

p1(n, 1)

p0(n, 1)

p2(n, 0)

p1(n, 0)

p0(n, 0)

Level 2

Level 3

Level 1

Level 0

Stage k = 0

Stage k = K

Figure 1: Scheme of the pyramid

4.2 Approximating a Laplacian as a
difference of Gaussians

A difference of Gaussians (DoG) is widely used as
an approximation for the Laplacian of a Gaussian.
A Gaussian low-pass pyramid is thus easily used to
compute a Laplacian pyramid. However, the preci-
sion of this approximation is rarely studied. In radial
form, the normalized Laplacian is a second deriva-
tive, given by:

∇2G(r, σlap) =
r2 − σ2

lap

σ5
lap

√
2π

e
− 1

2
r2

σ2
lap

The difference of Gaussians is:

DOG(r, σdog) =
1

σ1

√
2π

e
− 1

2
r2

σ2
1 − 1

σdog

√
2π

e
− 1

2
r2

σ2
dog

Approximating the Laplacian with a difference of
Gaussians requires the specification of the two pa-
rameters σ1 and σdog. Our Gaussian pyramid pro-
vides Gaussians in scale step sizes of

√
2 so that

σ1 =
√

2σdog. To determine the σ of the correspond-
ing Laplacian, we wrote a simple script search for the
value of σ for which the sum of squares of the differ-
ence is minimized. The minimum error energy was

obtained when σlap = 1.18σdog. Figure 2 shows the
difference between a Laplacian in radial form and a
difference of Gaussians.

−6 −4 −2 0 2 4 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8
binomial DOG
DOG
real laplacian

Figure 2: Comparisons of real Laplacian versus real
DoG and binomial DoG for σdog =

√
2 and σ1 =√

2σdog = 2 and σlap = 1.7

In Figure 3, both the DoG computed with binomial
coefficients and a DoG computed using FIR Gaus-

5

0 2 4 6 8 10 12
0

5

10

15

level of the pyramid

%
 o

f e
rro

r

error Laplacian−binomial DOG
error Laplacian−real DOG

Figure 3: Evaluation of algorithm accuracy

sian’s (N = 9) are compared to a true Laplacian.
The FIR DoG demonstrates a constant error of ap-
proximately 3.6% at all scales. The Binomial DoG
starts with an error of 16% but rapidly descends to
match the 3.6% error of the FIR implementation by
the third image of the pyramid.

5 Comparison of Scale Invari-
ance

5.1 Comparison of Gaussian Filters

The scale invariance of the impulse response for a
pyramid with σ0 = 1 was evaluated on an image
where the central pixel has a value of 100 and all
others pixels are set to zero. Gaussian Pyramids with
σ0 = 1 were computed using the three filter methods:
FIR (N = 9), Recursive (N = 5) and Binomial. Two
DoG images were computed at each level:

d01(i, j, k) = p1(i, j, k) − p0(i, j, k)
d12(i, j, k) = p2(i, j, k) − p1(i, j, k)

All three filters exhibited rapid convergence to a
scale-invariant impulse reponse. For example, the
percentage of change for the center pixel at levels
k = 1, 2, 3, 4 are shown for d01(i, j, k) and d12(i, j, k)
in Figure 4. These are representative of the errors ob-
served at other pixel positions. One can note that the
invariance error for d01 is within 3%. Both binomial,
recursive and FIR filter implementations rapidly con-
verged to extremely small errors (less than 0.0001%).

The percentage error for d12(i, j, k) are within 1%
with the same rapid convergence. The improvement
in error rates is primarily due to the extra smooth-
ing provided by a larger ratio of σ to sample rate,

Table 1: Computational costs of filters.
Filter FIR binomial Rec. Rec.

N = 9 [1,2,1] N = 3 N = 5
g0 36 16 28 44
g1 72 32 28 44

g0 ∗ g1 108 48 56 88

which results in less error due to sampling. The ex-
periments also validate our choice of σ0 = 1.0 for
our pyramid by showing that such pyramid provides
reasonably accurate scale invariance.

1 2 3 4 5
−1.0%

0.0%

1.0%

2.0%

FIR
Recursive
Binomial

1 2 3 4 5
−0.5%

0.0%

0.5%

1.0%

FIR
Recursive
Binomial

Figure 4: 1.(top): Scale invariance of d01(i, j, k)
2.(bottom): Scale invariance of d12(i, j, k)

5.2 Computational Cost

Table 1 recapitulates the previous results in oper-
ations per pixel for filters g0 and g1 with the FIR
(N = 9), the binomial [1, 2, 1] and 2 recursive filters
(N = 3 and N = 5). This shows that a pyramid com-
puted using the binomial filter has a lower cost than
either the recursive filter or the direct FIR filter.

6 Characteristic Scale

Determining characteristic scale requires comparison
of Laplacian values along the scale axis. However,
because the pyramid is computed on resampled im-
ages, Laplacian values are not directly available at
most pixels. These samples were eliminated without
loss of information due to smoothing. Thus they can
be easily be recovered through bi-linear interpolation.

Suppose that we seek the value at pixel i, j at level
k, and that this pixel falls between pixels (i0, j0) and

6

(i1, j1). Note that Tk = 2k is sample rate at level k.
Given

a =
p(i1, j0, k) − p(i0, j0, k)

Tk

b =
p(i0, j1, k) − p(i0, j0, k)

Tk

c = a +
p(i0, j1, k) − p(i1, j1, k)

Tk

the interpolated value at pixel i, j is

p(i, j, k) = a(i − i0) + b(j − j0)
+ c(i − i0)(j − j0) + p(i1, j1, k).

6.1 Computing Characteristic scale

Let us refer to the difference of Gaussian images at
each level k as l = 0 for d01 and l = 1 for d12. In that
case, we can define an integer scale index n = 2k + l.
For a typical 6-level pyramid, n runs from 0 to 11.
Using this index as a free variable, the Laplacian pro-
file, at pixel (i, j) is the series of interpolated Lapla-
cian values, the d(n) determined for each pixel i, j.
The charactistic scale at a pixel is the peak in this
profile.

The precision of the characteristic scale can be im-
proved by interpolation using a parabola for the three
samples closest to the peak. Let d(n0) be a local peak
in d(n). The interpolated extremum is

σmax = n0 + 1 +
d(n0 − 1) − d(n0 + 1)

2(d(n0 − 1) + d(n0 + 1) − 2d(n0))
.

Multiple characteristic scales correspond to con-
centric patterns in an image. The half-octave pyra-
mid limits discrimination of such patterns to concen-
tric scale changes of powers of 2. This is a funda-
mental limitation due to sampling scale at multiples
of

√
2. Fortunately denser concentric scales tend to

be rare in real images.
The following graph (Figure 5) shows an example

of Laplacian values as a function of the characteris-
tic scale on a 12-level pyramid (i.e., 6 stages). The
extremum of the curve in Figure 5 is located around
a characteristic scale of 10 pixels. The interpolated
curve is shown as a dashed line on this figure.

6.2 Estimating size from characteris-
tic scale

To evaluate the ability of intrinsic scale to recover
size, we constructed an image set containing uniform

20 40 60 80
−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10

la
pl

ac
ia

n
va

lu
es

laplacian profile
parabola to locate the max

CHARACTERISTIC SCALE AT THE EXTREMUM

Figure 5: example of Laplacian profile

disks of radius from 1 to 100 pixels. Each image was
processed with a binomial pyramid, and the profile of
Laplacian values was computed at the center of the
circle. This profile was interpolated using parabolic
interpolation. Figure 6 compares the results to the
ideal straight line.

0 20 40 60 80 100
0

20

40

60

80

ch
ar

ac
te

ris
tic

 s
ca

le characteristic scale computed
straight−line fit

radius of the circle

Figure 6: Scale invariance: The characteristic scale
was estimated at the center pixel for 100 images con-
taining each containing disks of radius from 1 to 100
pixels.

The real and interpolated values of the Laplacian
at each extremum are compared in Figure 7. The
constancy of these curves further confirms the scale
invariance of the pyramid.

0 10 20 30 40 50
0

10

20

30

40

radius of the circle

m
ax

 la
pl

ac
ia

n
va

lu
e

laplacian for sigma=radius of circle
max of laplacian at center point

Figure 7: Scale invariance of the Laplacian values

7

6.3 Invariance to rotation

Figure 8 demonstrates the invariance to rotation of
the characteristic scales. In this experiment, the
characteristic scale was computed at every pixel of
an image containing a Dirac impulse. The resulting
image of characteristic scales, encoded as gray levels,
is displayed together with a set of level curves. Note
the slight deviations from perfect radial symmetry.

Figure 8: Characteristic scales of a Dirac image and
level curves

7 Conclusions

We have presented a simple and fast algorithm to
evaluate characteristic scales at any pixel in an im-
age. This method is based on the computation of
differences of Gaussians obtained by binomial filter-
ing in a pyramid.

The experiments described above demonstrate
that a scale-invariant half-octave pyramid computed
with a binomial kernel can provide an efficient and
precise means to compute characteristic scales. At
first glance, it may seem surprising that a relatively
crude Gaussian approximation such as a 1-2-1 bino-
mial filter yields reliable estimates of characteristic
scale.

References

[1] P. Anandan. Measuring Visual Motion from Im-
age Sequences. PhD thesis, Computer Science
Department, University of Massachusetts, 1987.

[2] P. J. Burt. Fast filter transforms for image pro-
cessing. Computer Graphics and Image Process-
ing, 16:20–51, 1981.

[3] P. J. Burt and E. H. Adelson. The Laplacian
pyramid as a compact image code. IEEE Trans-
actions on Communications, 31:532–540, 1983.

[4] J. L. Crowley. A Representation for Visual In-
formation. PhD thesis, Carnegie-Mellon Univer-
sity, 1981.

[5] R. Deriche. Recursively implementing the Gaus-
sian and its derivatives. Rapport de Recherche
1893, INRIA, Sophia Antipolis, France, Apr.
1993.

[6] M. D. Kelly. Edge detection by computer in
pictures using planning. Machine Intelligence,
6:379–409, 1971.

[7] J. J. Koenderink and A. J. van Doorn. Repre-
sentation of local geometry in the visual system.
Biological Cybernetics, 55:367–375, 1987.

[8] T. Lindeberg. Feature detection with automatic
scale selection. International Journal of Com-
puter Vision, 30(2):77–116, 1998.

[9] H. P. Moravec. Towards automatic visual ob-
stacle avoidance. In Proceedings of the 5th In-
ternational Joint Conference on Artificial Intel-
ligence, 1977.

[10] A. Rosenfeld and G. J. Vanderbrug. Coarse-
fine template matching. IEEE Transactions on
Systems, Man and Cybernetics, 7:104–107, 1977.

[11] R. Stern and J. Crowley. Fast computation
of the difference of low-pass transform. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 6:212–222, 1984.

[12] S. L. Tanimoto and T. Pavlidis. A hierarchi-
cal data structure for picture processing. Com-
puter Graphics and Image Processing, 4:104–
119, 1975.

[13] L. J. van Vliet, I. T. Young, and P. W. Ver-
beek. Recursive Gaussian derivative filters. In
Proc. 14th International Conference on Pattern
Recognition (ICPR’98), volume 1, pages 509–
514. IEEE Computer Society Press, Aug. 1998.

8

