
Computer Vision
James L. Crowley and Nachwa Aboubakr

MoSIG M2 Fall Semester
Project 2: 15 October 2020

Face Detection using a Multi-layer Perceptron.

The objective for this exercise is to use the Keras Library to classify an image window as face or
not. You can use Jupyter Notebook or Google Colab to write your code. Test data and ground truth
are provided by the “FDDB: Face Detection Data Set and Benchmark” of the University of
Massachusetts.

This exercise is composed of three parts.
1) Construct a data-set of Positive and Negative face imagettes from the first 8 folds of FDDB.

Divide this data set into Training Data and Validation data. The validation data is used to test
for over-fit.

2) Construct and train a MultiLayer Perceptron (MLP) with variations in hyper-parameters. Train
and validate each MLP using your test and validation data-sets.

3) Evaluate each MLP with the evaluation data set available on the Course web site, and display an
ROC curves for each MLP. Note that the evaluation data has been constructed from folds 9 and
10 of FDDB, to is important not to train on this data.

duplicates, which makes it appropriate for detecting similar
images in our data set.

As with most automatic approaches for duplicate detec-
tion, this approach has a trade-off among false positives
and false negatives. To restrict the number of false posi-
tives, while maintaining a high true positive rate, we follow
an iterative approach (outlined in Algorithm 1) that alter-
nates between clustering and manual inspection of the clus-
ters. We cluster (steps 3-5 of Algorithm 1) using a spectral
graph-clustering approach [15]. Then, we manually label
each non-singleton cluster from the preceding step as either
uniform, meaning that it contains images that are all near
duplicates of each other, or non-uniform, meaning that at
least one pair of images in the cluster are not near duplicates
of each other. Finally, we replace each uniform cluster with
one of the images belonging to it.

For the clustering step, in particular, we construct a fully-
connected undirected graph G over all the images in the
collection, where the ARG-matching scores are used as
weights for the edges between each pair of images. Follow-
ing the spectral graph-clustering approach [15], we compute
the (unnormalized) Laplacian L

G

of graph G as

L

G

= diag(d)�W

G

, (1)

where d is the set of degrees of all the nodes in G, and W

G

is the adjacency matrix of G. A projection of the graph G

into a subspace spanned by the top few eigenvectors of L

G

provides an effective distance metric between all pairs of
nodes (images, in our case). We perform mean-shift clus-
tering with a narrow kernel in this projected space to obtain
clusters of images.

Algorithm 1 Identifying near-duplicate images in a collec-
tion

1: Construct a graph G = {V,E}, where V is the set of
images, and E are all pairwise edges with weights as
the ARG matching scores.

2: repeat
3: Compute the Laplacian of G, L

G

.
4: Use the top m eigenvectors of L

G

to project each
image onto Rm.

5: Cluster the projected data points using mean-shift
clustering with a small-width kernel.

6: Manually label each cluster as either uniform or non-
uniform.

7: Collapse the uniform clusters onto their centroids,
and update G.

8: until none of the clusters can be collapsed.

Using this procedure, we were able to arrange the im-
ages according to their mutual similarities. Annotators were
asked to identify clusters in which all images were derived
from the same source. Each of these clusters was replaced

by a single exemplar from the cluster. In this process we
manually discovered 103 uniform clusters over seven iter-
ations, with 682 images that were near-duplicates. Addi-
tional manual inspections were performed to find an addi-
tional three cases of duplication.

Next we describe our annotation of face regions.

5. Annotating face regions
As a preliminary annotation, we drew bounding boxes

around all the faces in 2845 images. From this set of anno-
tations, all of the face regions with height or width less than
20 pixels were excluded, resulting in a total of 5171 face
annotations in our collection.

Figure 4. Challenges in face labeling. For some image regions,
deciding whether or not it represents a “face” can be challeng-
ing. Several factors such as low resolution (green, solid), occlu-
sion (blue, dashed), and pose of the head (red, dotted) may make
this determination ambiguous.

For several image regions, the decision of labeling them
as face regions or non-face regions remains ambiguous due
to factors such as low resolution, occlusion, and head-pose
(e.g., see Figure 4). One possible approach for handling
these ambiguities would be to compute a quantitative mea-
sure of the “quality” of the face regions, and reject the im-
age regions with the value below a pre-determined thresh-
old. We were not able, however, to construct a satisfactory
set of objective criteria for making this determination. For
example, it is difficult to characterize the spatial resolution
needed to characterize an image patch as a face. Similarly,
for occluded face regions, while a threshold based on the
fraction of the face pixels visible could be used as a crite-
rion, it can be argued that some parts of the face (e.g., eyes)
are more informative than other parts. Also, note that for
the current set of images, all of the regions with faces look-
ing away from the camera have been labeled as non-face
regions. In other words, the faces with the angle between
the nose (specified as radially outward perpendicular to the

4

 Face Boxes Face Ellipses
To do this exercise, you’ll need first to activate your python workspace, and install the Keras library
under your conda environment. You should then, do the following in a jupyter notebook:

1) Split FDDB dataset (folds 01-08) into training and validation sets.
2) Generate training samples from dataset folds (01-08). Your training samples need to include

a positive imagette for each face, and a negative imagette of the same size taken at random
from the same image.

3) Build your MLP models using Keras. Remember to resize and flatten your input images into
a fixed size vector before passing them through MLP network.

4) Download the test set, and test your model on the provided imagettes.
5) Tune your model parameters, and post your best model results on
https://docs.google.com/spreadsheets/d/11UksOcAzK5to90rjXrIYiUjKk4QbrI4TaJhYLrio1eM/
edit?usp=sharing

Hyper-Parameters to tune:
§ Face imagette resolution (input vector size): (e.g WxH: 8x8, 16x16, 16x24,

32x32, …)
§ MLP architecture: number of hidden layers, number of units, activation function,

learning rate, etc.
6) Document your work in the Jupyter Notebook by commenting it and send the .ipynb file to:

James.Crowley@inria.fr, Nachwa.Aboubakr@inria.fr, Yangtao.Wang@inria.fr

