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1.  Face Detectors 
As explained in our first lecture, we will use the problem of face detection as a 
running example to compare different techniques for detecting, classifying and 
tracking information in images. For each lecture, you will be asked to implement a 
form of face detector, and evaluate its performance. In most cases, the 
implementation will illustrate some point from the theoretical exercises. After the 
sixth lecture, you will be asked to write a report on you experiments. This report will 
count for half of your grade. 
 
We will use the FDDB data available on the course web site, as our first source of 
training and test data. The FDDB data set contains 2845 images with a total of 5171 
faces extracted from news articles selected using an automatic face detector. Faces 
with a height or width less than 20 pixels, as well as faces that are looking away from 
the camera were rejected. The remaining 5171 faces have been noted in a ground-
truth data set and labeled with a bounding box. The images in this data set exhibit 
large variations in scale, pose, lighting, background and appearance due to factors 
such as motion, occlusions, and facial expressions, which are characteristic of the 
unconstrained setting for image acquisition. This can be challenging for many 
computer vision algorithms.  
 
1.1. Sliding Window Face Detectors 
Faces can occur at many different positions, orientations and sizes (scales) in an 
image. With sufficient computing power, we could test could test for faces at all 
possible positions, sizes and orientations in parallel. However, lacking a massively 
parallel computer, we can use a sliding window detector.   
 

  
 
A sliding window detector is a brute force method to test if a pattern can be found in 
an image. This approach was made popular by the Viola-Jones face detector, now 
found in most smart phones and tablets.  A typical architecture for a sliding window 
detector looks like this:   
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Rectangular windows over a range of positions and sizes (and possibly orientations) 
are extracted and projected into a standard size feature vector.  This feature vector is 
run through a binary classifier (a detection function) that may produce a binary 
decision (P, N) or a likelihood of a P. The detection function will typically provide a 
positive detection over a range of position and sizes near an actual target. Adjacent 
detections may be grouped into clusters and used to provide a precise estimate for the 
position and size (and orientation) for each face.  
 
This process can be used to build an efficient tracking system for video sequence.  In 
this case, face detection is limited to a small range of positions and sizes near where 
faces have been found in the previous image. Our problem for this week is to 
construct and evaluate a simple face detector using a Multi-layer Perceptron (a fully 
connected neural network).  
 
1.2. Scale vs Resolution 
Scale is the size at which a pattern occurs in an image. With modern cameras, image 
can range to 4K pixels by 4K pixels (or larger) and faces can and do occur at all sizes 
depending on the optics and distance from the camera.  We say that faces exist at 
multiple scales.  
 
Resolution is the number of pixels used to represent a pattern. It is well known that 
for a pattern to be recognizable as a face, it must be represented by an array of at least 
8 x 8 pixels, and that error rates will improve with larger arrays.  It can also be shown 
that windows larger than 32 x 32 pixel provide little or no gain in detection rate and 
may actually degrade the error rate.  Thus there is a "sweet spot" of around 24 by 24 
pixels that provides the optimum resolution for face detection.  In addition, faces tend 
to be oval in shape, and it is often possible to improve detection by using a 
rectangular window with a larger vertical dimension, such as a 4 to 3 or similar ratio.  
 
Most machine learning algorithms for classifiers require specifying a fixed size input 
vector. Flattening a 24 x 24 pixel array to 1-D gives a vector with 576 components, 
which is large, but not unreasonable for a perceptron.  A part of our task will be 
determine how the detection error rate, and requirements for training vary as a 
function of resolution changes from, say 8x8 pixels to 24x24 pixels.  
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1.3. Building a Data set 
 
In order to perform a proper evaluation, we need to train and test our detector with a 
similar number of P and N examples.  Thus we need to build a "balanced" data set.  
Using a Balanced Data set will also be very important for successful learning of a 
detection function using any machine learning technique.  The data set will be 
composed of known P and N examples. 
 
The images in FDDB have been divided into 10 "folds".  You should  train your 
detector with some of the folds and use other folds for testing.  We have prepared a 
standard "evaluation" test set to allow programming teams to compare the results of 
their detectors.  
 
The easiest way to build a set of Positive face examples from FDDB is to simply 
extract an example of a Positive ROI for each face listed in the FDDB ground truth.  
We can we transform the pixels in each face bounding box to a standard resolution to 
be chosen for training and test.    
 
For a balanced data set, we need a similar number of Negative examples, Mn (#N). 
We can do this  by using a random number generator to choose the upper left corner a 
negative face window of the same size for each positive face.   Normally, most 
randomly chosen windows will be negative (N). However, occasionally a random 
window will overlap a Face.  Thus we need to set a criterion for when a window can 
be confirmed as a true negative (TN).  
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1.4. Intersection over Union (IUO) 
 
A rectangular window can be considered to be true positive when it has sufficient 
overlap with a Ground Truth Bounding Box. Overlap is measured as the ratio of 
Intersection over Union  (IOU).  

 
IOU is area of intersection divide by the area of Union of the rectangles: IOU =

AI
AU

 

Assume image coordinates with the origin at the top left corner. A rectangular 
window can be represented by the coordinate of their top-left (l, t) and bottom right 
(r, b), corners  (l, t, r, b). This is often called a "Region of Interest" or ROI.  
 l - "left" - first column of the window.  
 t - "top" - first row of the window.  
 r - "right"  - last column of the window.  
 b - "bottom" - last row of the window 
 
The area of a rectangle, 

!
R  is:    A= w ⋅h = ( l − r +1)⋅( b− t +1)  

 
For two rectangles: 

!
R1  and 

!
R2 , the area of the intersection of two rectangles is  

(ti, li, bi, ri) 
where  li =max(l1, l2 )  ri =min(r1, r2 )   ti =max(t1, t2 )  bi =min(b1,b2 )  
 
The area of the intersection is  Ai = ( li − ri +1)⋅( bi − ti +1)  
 
The area of the Union of two rectangles is:  AU = A1+ A2 − Ai  
 

Thus IOU is: IOU =
Ai
AU

=
Ai

A1+ A2 − Ai
 

 
A typical threshold for True Positive is IOU > 0.5. A True Negative requires an IOU  
to be ≤ 0.5. We can reject any randomly generated window with an IOU>0.5  and 
choose a new upper left corner.  
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2. Multi-layer Perceptrons (Artificial Neural Networks) 
2.1. The Perceptron Model  
 
The simplest possible neural network is composed of a single percetron.  

 
A perceptron (or “artificial neuron”) is a computational unit that integrates 
information from a vector of  features,   

€ 

! 
X ,  to compute the likelihood of an activation, 

a.  
 

€ 

a = f (z) 
 
The neuron is composed of a weighted sum of input values   
 
 z = w1x1+w2x2 + ...+wDxD +b  
 
 followed by a non-linear “activation” function,   

€ 

f (z)   
 
 a = f ( !wT

"
X +b )  
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2.2. Nonlinear Activation Function.  
 
A non-linear activation function makes it possible to learn the network parameters. 
Many different non-linear activation functions may be used for 

€ 

f (z)  
A popular choice for activation function is the sigmoid:  

€ 

σ (z) =
1

1+ e−z
 

 
 
The sigmoid is useful because the derivative is:   

€ 

dσ (z)
dz

=σ (z)(1−σ (z)) 

Other popular decision functions include the hyperbolic tangent, relu and softmax. 
 

 The hyperbolic Tangent:  

€ 

f (z) = tanh(z) =
ez − e−z

ez + e−z
 

 
The rectified linear function is popular for deep learning because of a trivial 
derivative:  
 
 Relu:  

€ 

relu(z) =max(0, z) 
 
While Relu is discontinuous at z=0, for   z > 0 :  

€ 

d(relu(z))
dz

=1 

The softmax function is often used for multi-class networks. For K classes:   
 

 f ( zk )=
ezk

ezk
k=1

K
∑

 

 
Note that the choice of decision function will determine the target variable “y” for 
supervised learning.  
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2.3. The Neural Network model 
 
A neural network is a multi-layer assembly of neurons.  For example, this is a 2-layer 
network:  

     
 
The circles labeled +1 are the bias terms.  
The circles on the left are the input terms.  Some authors, notably in the Stanford 
tutorials, refer to this as Level 1.  
 
We will NOT refer to this as a level (or, if necessary, level L=0).  
The rightmost circle is the output layer, also called L.  
The circles in the middle are referred to as a “hidden layer”.  In this example there is 
a single hidden layer and the total number of layers is L=2.  
 
The parameters carry a superscript, referring to their layer.   
 
We will use the following notation:  
L    The number of layers (Layers of non-linear activations).  
l     The layer index.  l ranges from 0 (input layer) to L (output layer) 
N(l)  The number of  units in layer l.  N(0)=D 

€ 

aj
(l )   The activation output of the jth neuron of the lth layer.  

€ 

wij
(l )     The  weight  from the unit i of layer l-1 for the unit j of layer l.  

€ 

bj
(l )     The bias term for jth unit of the lth layer 

f(z)  A non-linear activation function, such as a sigmoid, tanh, or soft-max 
 
For example:   

€ 

a1
(2) is the activation output of the first neuron of the second layer.  

€ 

W13
(2) is the weight for neuron 1 from the first level to neuron 3 in the second level.  

 
The above network would be described by:  
 

€ 

a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 +b1
(1) )  

 

€ 

a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 +b2
(1) )  

 

€ 

a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 +b3
(1) )  

 a1
(2) = f (w11

(2)a1
(1) +w21

(2)a2
(1) +w31

(2)a3
(1) + b1

(2) )  
 
 

Artificial Neural Networks  
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The Neural Network model 
 
A neural network is a multi-layer assembly of neurons.  For example, this is a 2-layer 
network:  
 

 
The circles labeled +1 are the bias terms.  
The circles on the left are the input terms.  Some authors, notably in the Stanford 
tutorials, refer to this as Level 1.  
 
We will NOT refer to this as a level (or, if necessary, level L=0).  
The rightmost circle is the output layer, also called L.  

The circles in the middle are referred to as a “hidden layer”.  In this example there is 
a single hidden layer and the total number of layers is L=2.  
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We will use the following notation:  
L    The number of layers (Layers of non-linear activations).  
l     The layer index.  l ranges from 0 (input layer) to L (output layer) 
N(l)  The number of  units in layer l.  N(0)=D 

! 

aj
(l )    The activation output of the jth neuron of the lth layer.  

! 

wij
(l )    The  weight  from the unit i of layer l-1 for the unit j of layer l.  

! 

bj
(l )     The bias term for jth unit of the lth layer 

f(z)  A non-linear activation function, such as a sigmoid, tanh, or soft-max 
 
For example:   

! 

a1
(2) is the activation output of the first neuron of the second layer.  

! 

W13
(2) is the weight for neuron 1 from the first level to neuron 3 in the second level.  

 
The above network would be described by:  
 

! 

a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 +b1
(1) )  

 

! 

a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 +b2
(1) )  

 

! 

a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 +b3
(1) )  

   

! 

h ! w ,b (
! 
X ) = a1

(2) = f (w11
(2)a1

(1) + w21
(2)a2

(1) + w31
(2)a3

(1) + b1
(2) ) 
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2.4. Multi-Layer networks.  
 
 The perceptron model can be generalized to multiple layers.  For example:  
 

  

Where !a(out ) =
a1
(out )

"
aK
(out )

!

"

#
#
#
#

$

%

&
&
&
&

 is the vector of network outputs, with each output neuron 

indicating the "likelihood" of the class "k".  
 
For a sliding window detector, the 2-D window must be flattened into a 1-D Vector 
that is input to the network. For example an 8x8 Sliding window would require a 
network with 64 inputs.  Each unit is defined as follows:  

 

€ 

a1
(l−1)

 … 

€ 

aN ( l−1)
(l−1)

 

+1 

€ 

f z j
(l )( ) 

€ 

zj
(l )  

€ 

aj
(l )

 
€ 

wij
(l )  

€ 

wN ( l−1) j
(l )

 

€ 

bj
(l )

 

… 
€ 

w1 j
(l )  

€ 

ai
(l−1)

 

€ 

wjk
(l+1)  

 
The equations for each neuron are:  

 

€ 

zj
(l ) = wij

(l)ai
(l−1)

i=1

N ( l−1)

∑ +bj
(l)  

€ 

aj
(l ) = f wij

(l)ai
(l−1) +bj

(l)

i=1

N ( l−1)

∑
$ 

% 
& & 

' 

( 
) )  

Where 
   

€ 

! a (0) =
! 
X  is the input layer. 

€ 

ai
(0) = Xd     

 l is the current layer under discussion.  
 N(l)  is the number of activation units in layer l. N(0)  = D 
 i,j,k Unit indices for layers l-1, l and l+1:   i→j→k 
 

€ 

wij
(l )  is the  weight for the unit i of layer l-1 feeding to unit j of layer l.  

 

€ 

aj
(l )  is the activation output of the jth unit of the layer  l 

 

€ 

bj
(l )   the bias term feeding to unit j of layer l. 

 

€ 

zj
(l ) = wij

(l)ai
(l−1) +bj

(l)

i=1

N ( l−1)

∑   is the weighted input to jth unit of layer l 

 f(z) is a non-linear decision function, such as a sigmoid, tanh(), or soft-max 
 

€ 

aj
(l ) = f (zj

(l ) ) is the activation output for the jth
 unit of layer l 
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2.5. Matrix Notation  
 
It can be more convenient to represent this using vectors:   
 

 

  

€ 

! z (l) =

z1
(l )

z2
(l )

"
zN l

(l )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  

  

€ 

! a (l) =

a1
(l )

a2
(l )

"
aN l

(l )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
and to write the weights and bias at each level l as a k by j Matrix,  
 

 

  

€ 

W (l ) =

w11
(l) ! w1i

(l) ! w1N ( l−1)
(l )

" # " $ "
wj1
(l) ! wji

(l) ! wjN ( l−1)
(l )

" $ " # "
wN ( l ) 1
(l) ! wN ( l )i

(l ) ! wN ( l )N ( l−1)
(l)

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

 
!
b (l ) =

b1
l

"
bi
l

"
b
N ( l )
l

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

 

 
(note: To respect matrix notation, we have reversed the order of i and j in the 
subscripts. ) 
 
We can see that the weights are a 3rd order Tensor or vector of matrices, with one 
matrix for each level, The biases are a matrix (vector of vectors) with a vector for 
each level.  
 
   

€ 

! z (l) = W (l) ! a (l−1) +
" 
b (l) and    

€ 

! a (l) = f (! z (l) ) = f (W (l )! a (l−1) +
! 
b (l) ) 

 
We can assemble the set of matrices 

€ 

W (l ) into an 3rd order Tensor (Vector of 
matrices), W,  and represent   

€ 

! a (l),   

€ 

! z (l)  and   

€ 

! 
b (l )  as matrices (vectors of vectors):  A, Z, 

B.  
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2.6. Training with Gradient Descent using Back-propagation 
 
The network weights and biases are trained by Gradient Descent using a set of  M 
sample windows 

!
Xm{ }  with ground truth labels (indicator variables), ym{ } .   For our 

face detector, 
!
Xm{ }  would be a set of M flattened face windows, and the ground truth 

with be binary {P, N} indictors. The results would be tested with a separate set of 
sample windows with ground truth labels (a test set).  Note that it is important to have 
a similar number of P and N examples in the training and test data.  
 
Training is typically performed using the using the back-propagation algorithm.  
 
The Back-propagation algorithm can be summarized as:  
 
1) Initialize the network and a set of correction vectors:  
 
 

  

€ 

∀
i, j ,l
wji
(l ) = N (0;ε)  

    

€ 

∀
i,l
bj
(l ) = N (0;ε)  

 

€ 

∀
i, j ,l
Δwji

(l) = 0 
 

€ 

∀
i,l
Δbj

(l) = 0  
 
where   

€ 

N  is a sample from a normal density, and 

€ 

ε  is a small value.  
 
2) For each training sample,   

€ 

! x m , propagate   

€ 

! x m  through the network (forward 
propagation) to obtain a network activation 

€ 

am
(L ) .  Compute the error and propagate 

this back through the network:  
 
 a) Compute the network error term:   

€ 

δm
out = am

(L ) − ym( )  

 b) Compute the error term at Layer L: 

€ 

δm
(L ) =

∂f (zj
(l ) )

∂zj
(l) δm

out  

 c) Propagate the error back from  l=L-1  to l=0:   

€ 

δ j,m
(l ) =

∂f (z j
(l) )

∂zj
(l ) wjk

(l+1)δk ,m
(l+1)

k=1

N ( l+1)

∑   

 d) Use the error at each layer to set a vector of correction weights.  
 
   Δwij,m

(l ) = –ai
(l−1)δ j,m

(l )   Δbj,m
(l ) =  – δ j,m

(l )  
 
3) For all layers, l=1 to L, update the weights and bias using a learning rate,  

€ 

η 
  wij

(l )← wij
(l ) +η ⋅ Δwij,m

(l )  
  bj

(l )← bj
(l ) +η ⋅ Δbj,m

(l )
 

 
Note that this last step can be done with an average correction matrix obtained from 
many training samples (Batch mode), providing a more efficient algorithm.   
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2.7. Key Equations for L layers:  
 

 Feed Forward from layer i to j:   

€ 

aj
(l ) = f wij

(l)ai
(l−1) +bj

(l)

i=1

N ( l−1)

∑
$ 

% 
& & 

' 

( 
) )  

 Feed Forward from layer j to k:   

€ 

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N ( l )

∑
# 

$ 
% % 

& 

' 
( (  

 
 Ouput error for training sample m:   δm

out = am
(L ) − ym( )   

 

 Error for unit at layer L:     

€ 

δm
(L ) =

∂f (zj
(l ) )

∂zj
(l) δm

out  

 

 Back Propagation from Layer k to j:   

€ 

δ j,m
(l ) =

∂f (z j
(l) )

∂zj
(l ) wjk

(l+1)δk ,m
(l+1)

k=1

N ( l+1)

∑  

 
 Weight and Bias Corrections for layer j: Δwij,m

(l ) = −ai
(l−1)δ j,m

(l )  
        Δbj,m

(l ) =  – δ j,m
(l )  

 
 Network Update Formulas:   wij

(l )← wij
(l ) +η ⋅ Δwij,m

(l )  
        bj

(l )← bj
(l ) +η ⋅ Δbj,m

(l )  
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Example Keras Code  ?? 
  
 model = Sequential() 
 model.add(Flatten(input_shape=(N, N, 3))) 
 model.add(Dense(units = N * N , activation='sigmoid')) 
 model.add(Dense(units=2, activation='softmax')) 
 model.compile(loss='sparse_categorical_crossentropy', 
 optimizer='adam', 
 metrics=['accuracy'] 
 
 
#Deteremine P ou N from IOU with Face Box 
 train_df = pd.read_csv('annotations.csv') 
 train_X = pd.Series(train_df['image_name']) 
 train_Y = pd.Series(train_df['IOU']) 
 
# Allocate Training Data, x, and Ground Truth Indicators y 
 x = [] 
 y = [] 
 for i in range(0, len(train_X)): 
  img = cv2.imread(train_X[i]) 
  x.append(img) 
  if(train_Y[i] > 0.5): 
   y.append(1) 
  else: 
   y.append(0) 
  y = numpy.array(y) 
  x = numpy.array(x) 
#Train the model 
  model.fit(x = x, y = y, epochs = 10) 
 
# Save the model 
 model.save("model.h5") 
    x = [] 
    img = cv2.imread("./Training/01_32/0.png") 
    x.append(img) 
    img = cv2.imread("./Training/01_32/81.png") 
    x.append(img) 
    x = numpy.array(x) 
    classes = model.predict(x) 
    print(classes) 
 


