
Computer Vision
MoSIG M2

James L. Crowley and Nachwa Aboubakr

Fall Semester 15 October 2020
Lesson 2 - Practical Part

Face Detection in Images and Multi-Layer Perceptrons

Lesson Outline:

1.	 Face Detectors ... 2	

1.1.	 Sliding Window Face Detectors .. 2	
1.2.	 Scale vs Resolution .. 3	
1.3.	 Building a Data set .. 4	
1.4.	 Intersection over Union (IUO) .. 5	

2.	 Multi-layer Perceptrons (Artificial Neural Networks) .. 6	
2.1.	 The Perceptron Model ... 6	
2.2.	 Nonlinear Activation Function. ... 7	
2.3.	 The Neural Network model ... 8	
2.4.	 Multi-Layer networks. ... 9	
2.5.	 Matrix Notation ... 10	
2.6.	 Training with Gradient Descent using Back-propagation 11	
2.7.	 Key Equations for L layers: ... 12	

 2-2

1. Face Detectors
As explained in our first lecture, we will use the problem of face detection as a
running example to compare different techniques for detecting, classifying and
tracking information in images. For each lecture, you will be asked to implement a
form of face detector, and evaluate its performance. In most cases, the
implementation will illustrate some point from the theoretical exercises. After the
sixth lecture, you will be asked to write a report on you experiments. This report will
count for half of your grade.

We will use the FDDB data available on the course web site, as our first source of
training and test data. The FDDB data set contains 2845 images with a total of 5171
faces extracted from news articles selected using an automatic face detector. Faces
with a height or width less than 20 pixels, as well as faces that are looking away from
the camera were rejected. The remaining 5171 faces have been noted in a ground-
truth data set and labeled with a bounding box. The images in this data set exhibit
large variations in scale, pose, lighting, background and appearance due to factors
such as motion, occlusions, and facial expressions, which are characteristic of the
unconstrained setting for image acquisition. This can be challenging for many
computer vision algorithms.

1.1. Sliding Window Face Detectors
Faces can occur at many different positions, orientations and sizes (scales) in an
image. With sufficient computing power, we could test could test for faces at all
possible positions, sizes and orientations in parallel. However, lacking a massively
parallel computer, we can use a sliding window detector.

A sliding window detector is a brute force method to test if a pattern can be found in
an image. This approach was made popular by the Viola-Jones face detector, now
found in most smart phones and tablets. A typical architecture for a sliding window
detector looks like this:

Face
Detection

Clustering

Face Hypotheses
(Position, Size, orientation)

Image
WIndow

Window
Extractor

Color
Image

Prediction

Face Hypothesis Generation (Scanning Window)

Faces

Tracking process
assumes a video sequence

Positive Face
Detections

	 	 	 	 	 	 	 	

 2-3

Rectangular windows over a range of positions and sizes (and possibly orientations)
are extracted and projected into a standard size feature vector. This feature vector is
run through a binary classifier (a detection function) that may produce a binary
decision (P, N) or a likelihood of a P. The detection function will typically provide a
positive detection over a range of position and sizes near an actual target. Adjacent
detections may be grouped into clusters and used to provide a precise estimate for the
position and size (and orientation) for each face.

This process can be used to build an efficient tracking system for video sequence. In
this case, face detection is limited to a small range of positions and sizes near where
faces have been found in the previous image. Our problem for this week is to
construct and evaluate a simple face detector using a Multi-layer Perceptron (a fully
connected neural network).

1.2. Scale vs Resolution
Scale is the size at which a pattern occurs in an image. With modern cameras, image
can range to 4K pixels by 4K pixels (or larger) and faces can and do occur at all sizes
depending on the optics and distance from the camera. We say that faces exist at
multiple scales.

Resolution is the number of pixels used to represent a pattern. It is well known that
for a pattern to be recognizable as a face, it must be represented by an array of at least
8 x 8 pixels, and that error rates will improve with larger arrays. It can also be shown
that windows larger than 32 x 32 pixel provide little or no gain in detection rate and
may actually degrade the error rate. Thus there is a "sweet spot" of around 24 by 24
pixels that provides the optimum resolution for face detection. In addition, faces tend
to be oval in shape, and it is often possible to improve detection by using a
rectangular window with a larger vertical dimension, such as a 4 to 3 or similar ratio.

Most machine learning algorithms for classifiers require specifying a fixed size input
vector. Flattening a 24 x 24 pixel array to 1-D gives a vector with 576 components,
which is large, but not unreasonable for a perceptron. A part of our task will be
determine how the detection error rate, and requirements for training vary as a
function of resolution changes from, say 8x8 pixels to 24x24 pixels.

 2-4

1.3. Building a Data set

In order to perform a proper evaluation, we need to train and test our detector with a
similar number of P and N examples. Thus we need to build a "balanced" data set.
Using a Balanced Data set will also be very important for successful learning of a
detection function using any machine learning technique. The data set will be
composed of known P and N examples.

The images in FDDB have been divided into 10 "folds". You should train your
detector with some of the folds and use other folds for testing. We have prepared a
standard "evaluation" test set to allow programming teams to compare the results of
their detectors.

The easiest way to build a set of Positive face examples from FDDB is to simply
extract an example of a Positive ROI for each face listed in the FDDB ground truth.
We can we transform the pixels in each face bounding box to a standard resolution to
be chosen for training and test.

For a balanced data set, we need a similar number of Negative examples, Mn (#N).
We can do this by using a random number generator to choose the upper left corner a
negative face window of the same size for each positive face. Normally, most
randomly chosen windows will be negative (N). However, occasionally a random
window will overlap a Face. Thus we need to set a criterion for when a window can
be confirmed as a true negative (TN).

 2-5

1.4. Intersection over Union (IUO)

A rectangular window can be considered to be true positive when it has sufficient
overlap with a Ground Truth Bounding Box. Overlap is measured as the ratio of
Intersection over Union (IOU).

IOU is area of intersection divide by the area of Union of the rectangles: IOU =

AI
AU

Assume image coordinates with the origin at the top left corner. A rectangular
window can be represented by the coordinate of their top-left (l, t) and bottom right
(r, b), corners (l, t, r, b). This is often called a "Region of Interest" or ROI.
 l - "left" - first column of the window.
 t - "top" - first row of the window.
 r - "right" - last column of the window.
 b - "bottom" - last row of the window

The area of a rectangle,

!
R is: A= w ⋅h = (l − r +1)⋅(b− t +1)

For two rectangles:

!
R1 and

!
R2 , the area of the intersection of two rectangles is

(ti, li, bi, ri)
where li =max(l1, l2) ri =min(r1, r2) ti =max(t1, t2) bi =min(b1,b2)

The area of the intersection is Ai = (li − ri +1)⋅(bi − ti +1)

The area of the Union of two rectangles is: AU = A1+ A2 − Ai

Thus IOU is: IOU =
Ai
AU

=
Ai

A1+ A2 − Ai

A typical threshold for True Positive is IOU > 0.5. A True Negative requires an IOU
to be ≤ 0.5. We can reject any randomly generated window with an IOU>0.5 and
choose a new upper left corner.

Ground'Truth'

ROI'

Intersec1on'

i"

j"

 2-6

2. Multi-layer Perceptrons (Artificial Neural Networks)
2.1. The Perceptron Model

The simplest possible neural network is composed of a single percetron.

A perceptron (or “artificial neuron”) is a computational unit that integrates
information from a vector of features,

€

!
X , to compute the likelihood of an activation,

a.

€

a = f (z)

The neuron is composed of a weighted sum of input values

 z = w1x1+w2x2 + ...+wDxD +b

 followed by a non-linear “activation” function,

€

f (z)

 a = f (!wT

"
X +b)

 2-7

2.2. Nonlinear Activation Function.

A non-linear activation function makes it possible to learn the network parameters.
Many different non-linear activation functions may be used for

€

f (z)
A popular choice for activation function is the sigmoid:

€

σ (z) =
1

1+ e−z

The sigmoid is useful because the derivative is:

€

dσ (z)
dz

=σ (z)(1−σ (z))

Other popular decision functions include the hyperbolic tangent, relu and softmax.

 The hyperbolic Tangent:

€

f (z) = tanh(z) =
ez − e−z

ez + e−z

The rectified linear function is popular for deep learning because of a trivial
derivative:

 Relu:

€

relu(z) =max(0, z)

While Relu is discontinuous at z=0, for z > 0 :

€

d(relu(z))
dz

=1

The softmax function is often used for multi-class networks. For K classes:

 f (zk)=
ezk

ezk
k=1

K
∑

Note that the choice of decision function will determine the target variable “y” for
supervised learning.

 2-8

2.3. The Neural Network model

A neural network is a multi-layer assembly of neurons. For example, this is a 2-layer
network:

The circles labeled +1 are the bias terms.
The circles on the left are the input terms. Some authors, notably in the Stanford
tutorials, refer to this as Level 1.

We will NOT refer to this as a level (or, if necessary, level L=0).
The rightmost circle is the output layer, also called L.
The circles in the middle are referred to as a “hidden layer”. In this example there is
a single hidden layer and the total number of layers is L=2.

The parameters carry a superscript, referring to their layer.

We will use the following notation:
L The number of layers (Layers of non-linear activations).
l The layer index. l ranges from 0 (input layer) to L (output layer)
N(l) The number of units in layer l. N(0)=D

€

aj
(l) The activation output of the jth neuron of the lth layer.

€

wij
(l) The weight from the unit i of layer l-1 for the unit j of layer l.

€

bj
(l) The bias term for jth unit of the lth layer

f(z) A non-linear activation function, such as a sigmoid, tanh, or soft-max

For example:

€

a1
(2) is the activation output of the first neuron of the second layer.

€

W13
(2) is the weight for neuron 1 from the first level to neuron 3 in the second level.

The above network would be described by:

€

a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 +b1
(1))

€

a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 +b2
(1))

€

a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 +b3
(1))

 a1
(2) = f (w11

(2)a1
(1) +w21

(2)a2
(1) +w31

(2)a3
(1) + b1

(2))

Artificial Neural Networks

8

The Neural Network model

A neural network is a multi-layer assembly of neurons. For example, this is a 2-layer
network:

The circles labeled +1 are the bias terms.
The circles on the left are the input terms. Some authors, notably in the Stanford
tutorials, refer to this as Level 1.

We will NOT refer to this as a level (or, if necessary, level L=0).
The rightmost circle is the output layer, also called L.

The circles in the middle are referred to as a “hidden layer”. In this example there is
a single hidden layer and the total number of layers is L=2.

The parameters carry a superscript, referring to their layer.
We will use the following notation:
L The number of layers (Layers of non-linear activations).
l The layer index. l ranges from 0 (input layer) to L (output layer)
N(l) The number of units in layer l. N(0)=D

!

aj
(l) The activation output of the jth neuron of the lth layer.

!

wij
(l) The weight from the unit i of layer l-1 for the unit j of layer l.

!

bj
(l) The bias term for jth unit of the lth layer

f(z) A non-linear activation function, such as a sigmoid, tanh, or soft-max

For example:

!

a1
(2) is the activation output of the first neuron of the second layer.

!

W13
(2) is the weight for neuron 1 from the first level to neuron 3 in the second level.

The above network would be described by:

!

a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 +b1
(1))

!

a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 +b2
(1))

!

a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 +b3
(1))

!

h ! w ,b (
!
X) = a1

(2) = f (w11
(2)a1

(1) + w21
(2)a2

(1) + w31
(2)a3

(1) + b1
(2))

 2-9

2.4. Multi-Layer networks.

 The perceptron model can be generalized to multiple layers. For example:

Where !a(out) =
a1
(out)

"
aK
(out)

!

"

#
#
#
#

$

%

&
&
&
&

 is the vector of network outputs, with each output neuron

indicating the "likelihood" of the class "k".

For a sliding window detector, the 2-D window must be flattened into a 1-D Vector
that is input to the network. For example an 8x8 Sliding window would require a
network with 64 inputs. Each unit is defined as follows:

€

a1
(l−1)

 …

€

aN (l−1)
(l−1)

+1

€

f z j
(l)()

€

zj
(l)

€

aj
(l)

€

wij
(l)

€

wN (l−1) j
(l)

€

bj
(l)

…
€

w1 j
(l)

€

ai
(l−1)

€

wjk
(l+1)

The equations for each neuron are:

€

zj
(l) = wij

(l)ai
(l−1)

i=1

N (l−1)

∑ +bj
(l)

€

aj
(l) = f wij

(l)ai
(l−1) +bj

(l)

i=1

N (l−1)

∑
$

%
& &

'

(
))

Where

€

! a (0) =
!
X is the input layer.

€

ai
(0) = Xd

 l is the current layer under discussion.
 N(l) is the number of activation units in layer l. N(0) = D
 i,j,k Unit indices for layers l-1, l and l+1: i→j→k

€

wij
(l) is the weight for the unit i of layer l-1 feeding to unit j of layer l.

€

aj
(l) is the activation output of the jth unit of the layer l

€

bj
(l) the bias term feeding to unit j of layer l.

€

zj
(l) = wij

(l)ai
(l−1) +bj

(l)

i=1

N (l−1)

∑ is the weighted input to jth unit of layer l

 f(z) is a non-linear decision function, such as a sigmoid, tanh(), or soft-max

€

aj
(l) = f (zj

(l)) is the activation output for the jth
 unit of layer l

 2-10

2.5. Matrix Notation

It can be more convenient to represent this using vectors:

€

! z (l) =

z1
(l)

z2
(l)

"
zN l

(l)

"

$
$
$
$

%

&

'
'
'
'

€

! a (l) =

a1
(l)

a2
(l)

"
aN l

(l)

"

$
$
$
$

%

&

'
'
'
'

and to write the weights and bias at each level l as a k by j Matrix,

€

W (l) =

w11
(l) ! w1i

(l) ! w1N (l−1)
(l)

" # " $ "
wj1
(l) ! wji

(l) ! wjN (l−1)
(l)

" $ " # "
wN (l) 1
(l) ! wN (l)i

(l) ! wN (l)N (l−1)
(l)

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

!
b (l) =

b1
l

"
bi
l

"
b
N (l)
l

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

(note: To respect matrix notation, we have reversed the order of i and j in the
subscripts.)

We can see that the weights are a 3rd order Tensor or vector of matrices, with one
matrix for each level, The biases are a matrix (vector of vectors) with a vector for
each level.

€

! z (l) = W (l) ! a (l−1) +
"
b (l) and

€

! a (l) = f (! z (l)) = f (W (l)! a (l−1) +
!
b (l))

We can assemble the set of matrices

€

W (l) into an 3rd order Tensor (Vector of
matrices), W, and represent

€

! a (l),

€

! z (l) and

€

!
b (l) as matrices (vectors of vectors): A, Z,

B.

 2-11

2.6. Training with Gradient Descent using Back-propagation

The network weights and biases are trained by Gradient Descent using a set of M
sample windows

!
Xm{ } with ground truth labels (indicator variables), ym{ } . For our

face detector,
!
Xm{ } would be a set of M flattened face windows, and the ground truth

with be binary {P, N} indictors. The results would be tested with a separate set of
sample windows with ground truth labels (a test set). Note that it is important to have
a similar number of P and N examples in the training and test data.

Training is typically performed using the using the back-propagation algorithm.

The Back-propagation algorithm can be summarized as:

1) Initialize the network and a set of correction vectors:

€

∀
i, j ,l
wji
(l) = N (0;ε)

€

∀
i,l
bj
(l) = N (0;ε)

€

∀
i, j ,l
Δwji

(l) = 0

€

∀
i,l
Δbj

(l) = 0

where

€

N is a sample from a normal density, and

€

ε is a small value.

2) For each training sample,

€

! x m , propagate

€

! x m through the network (forward
propagation) to obtain a network activation

€

am
(L) . Compute the error and propagate

this back through the network:

 a) Compute the network error term:

€

δm
out = am

(L) − ym()

 b) Compute the error term at Layer L:

€

δm
(L) =

∂f (zj
(l))

∂zj
(l) δm

out

 c) Propagate the error back from l=L-1 to l=0:

€

δ j,m
(l) =

∂f (z j
(l))

∂zj
(l) wjk

(l+1)δk ,m
(l+1)

k=1

N (l+1)

∑

 d) Use the error at each layer to set a vector of correction weights.

 Δwij,m

(l) = –ai
(l−1)δ j,m

(l) Δbj,m
(l) = – δ j,m

(l)

3) For all layers, l=1 to L, update the weights and bias using a learning rate,

€

η
 wij

(l)← wij
(l) +η ⋅ Δwij,m

(l)
 bj

(l)← bj
(l) +η ⋅ Δbj,m

(l)

Note that this last step can be done with an average correction matrix obtained from
many training samples (Batch mode), providing a more efficient algorithm.

 2-12

2.7. Key Equations for L layers:

 Feed Forward from layer i to j:

€

aj
(l) = f wij

(l)ai
(l−1) +bj

(l)

i=1

N (l−1)

∑
$

%
& &

'

(
))

 Feed Forward from layer j to k:

€

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N (l)

∑

$
% %

&

'
((

 Ouput error for training sample m: δm

out = am
(L) − ym()

 Error for unit at layer L:

€

δm
(L) =

∂f (zj
(l))

∂zj
(l) δm

out

 Back Propagation from Layer k to j:

€

δ j,m
(l) =

∂f (z j
(l))

∂zj
(l) wjk

(l+1)δk ,m
(l+1)

k=1

N (l+1)

∑

 Weight and Bias Corrections for layer j: Δwij,m

(l) = −ai
(l−1)δ j,m

(l)
 Δbj,m

(l) = – δ j,m
(l)

 Network Update Formulas: wij

(l)← wij
(l) +η ⋅ Δwij,m

(l)
 bj

(l)← bj
(l) +η ⋅ Δbj,m

(l)

 2-13

Example Keras Code ??

 model = Sequential()
 model.add(Flatten(input_shape=(N, N, 3)))
 model.add(Dense(units = N * N , activation='sigmoid'))
 model.add(Dense(units=2, activation='softmax'))
 model.compile(loss='sparse_categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy']

#Deteremine P ou N from IOU with Face Box
 train_df = pd.read_csv('annotations.csv')
 train_X = pd.Series(train_df['image_name'])
 train_Y = pd.Series(train_df['IOU'])

Allocate Training Data, x, and Ground Truth Indicators y
 x = []
 y = []
 for i in range(0, len(train_X)):
 img = cv2.imread(train_X[i])
 x.append(img)
 if(train_Y[i] > 0.5):
 y.append(1)
 else:
 y.append(0)
 y = numpy.array(y)
 x = numpy.array(x)
#Train the model
 model.fit(x = x, y = y, epochs = 10)

Save the model
 model.save("model.h5")
 x = []
 img = cv2.imread("./Training/01_32/0.png")
 x.append(img)
 img = cv2.imread("./Training/01_32/81.png")
 x.append(img)
 x = numpy.array(x)
 classes = model.predict(x)
 print(classes)

