
Computer Vision
MoSIG M2

James L. Crowley

Fall Semester 5 November 2020
Lesson 4

Invariant Image Description with Receptive Fields

Lesson Outline:

1.	
 The Mammalian Visual Cortex ... 3	

Receptive Fields in the Visual Cortex .. 3	

2.	
 Gaussian Functions and Gaussian Filters .. 5	

2.1.	
 2-D Finite Impulse Response Gaussian Filters ... 5	

2.2.	
 Finite Impulse Response Gaussian Digital Filters 5	

2.3.	
 Binomial Filters ... 7	

3.	
 Scale Invariant Image Pyramids .. 9	

3.1.	
 Scale Invariant Recursive Pyramid Algorithm .. 12	

3.2.	
 Square root of 2 sampling. ... 12	

3.3.	
 Scale Invariant Half-Octave Recursive Pyramid Algorithm 13	

3.4.	
 Multi-Resolution Region of Interests .. 15	

4.	
 Gaussian Receptive Fields ... 16	

4.1.	
 Gaussian Image Derivatives .. 16	

4.2.	
 Steerability of Gaussian Derivatives. .. 17	

4.3.	
 Intrinsic Orientation ... 18	

4.4.	
 Computing Image Derivatives with a Gaussian Pyramid 18	

4.5.	
 Color Opponent Receptive Fields ... 19	

5.	
 Invariant and Equivariant Properties in Scale Space ... 21	

5.1.	
 The Laplacian of the Gaussian .. 21	

5.2.	
 Computing a Scale Invariant Laplacian Pyramid 22	

5.3.	
 The Laplacian Profile .. 23	

5.4.	
 Laplacian Interest Points. .. 24	

6.	
 Histogram of Oriented Gradients (HOG) .. 25	

7.	
 Scale Invariant Feature Transform (SIFT) .. 26	

8.	
 Harris Corner Detector .. 27	

9.	
 Ridge Detection. .. 29	

 4-2

Glossary of Symbols and Mathematical Notation

Convolution of f(n) with g(x). f (x) = (f *g)(x) = f (x − n)g(n,σ)

n=−∞

∞

∑

Normalized 1-D Gaussian Function
g(x,σ) = 1

σ 2π
e
−
x2

2σ 2

Gaussian Scale Parameter σ

Gaussian Scale Property g(x,σ1)∗ g(x,σ2)= g(x, σ1
2 +σ2

2)

Normalized 2-D Gaussian Function g(x, y,σ) = 1
2πσ 2 e

−
(x2+y2)
2σ 2

2D Gaussian Separability Property
g(x,y,σ)= 1

2πσ2
e
−
(x2+y2)
2σ2 =

1
2πσ

e
−
x2

2σ2 ∗
1
2πσ

e
−
y2

2σ2

The Laplacian of the Gaussian

∇2g(x, y,σ) = gxx (x, y,σ)+ gyy (x, y,σ) =

∂g(x, y,σ)
∂σ

Finite impulse response (FIR) digital Gaussian filter G(n,σ) = 1
B
WN (n) ⋅e

−
(n∆ x)2

2σ 2

 4-3

1. The Mammalian Visual Cortex

The Visual Cortex of mammals is composed of multiple layers of retinotopic maps.

Each map is an image of the retina projected onto (convolved with) a receptive field
at different scales and different orientations.
Receptive Fields in the Visual Cortex

In 1968, Hubel and Wiesel probed the visual cortex of a cat with electrodes and
found layers of cells that responded to local patterns of stimulation. The discovered
that the visual cortex is composed of a series of layers. Each layer is a map of the
retina filtered by a “receptive field” that respond to a certain pattern over a narrow
range of sizes and orientations.

The patterns at the lowest level look like these:

 4-4

Each layer is a specific pattern at a specific orientation and scale.

1st order Gaussian derivatives at 3 scales 2nd order Gaussian Derivatives at 3 scales

This figure shows first and second order Gaussian derivative features from 3 scales, computed using
sums and differences of adjacent samples in a half-octave Gaussian pyramid.

The first level receptive fields were found to be local filters that pass a narrow range
of spatial frequencies. The first layer receptive fields were found to be modeled by
Gabor functions (Gaussian modulated by a Cosine plus an imaginary Sin).

The first layer receptive fields can also be modeled multi-scale derivatives of
Gaussians functions. These two representations are very similar. However, Gabor
functions can be very expensive to convolve with an image. Multi-scale Gaussian
derivatives can convolved very efficiently because of a number mathematical
properties that we will discuss below.

As they moved up the visual cortex, Hubel and Weisel found that these patters were
combined to form more complex patterns, such as corners, bars, crosses, etc. These
were named "complex" receptive field, and are similar to receptive field patterns
learned by convolutional neural networks.

It is possible to learn receptive fields for local image description using back
propagation. This is fine for tuning a system to a specific problem domain. However,
the general case of vision in the real world, this can require a very large set of
training data and computing time.

Researchers in several different communities have found that as the variety of
training data increases, the learned receptive fields converge to Gaussian Derivative
Functions. This result has been demonstrated by researchers in both machine
learning and computer vision, since the 1990's.

 4-5

2. Gaussian Functions and Gaussian Filters

In the following, we use lower case, g(x,σ) , for the Gaussian function, and
uppercase case, G(x,σ) , for Finite Impulse Response Gaussian Filters.

2.1. 2-D Finite Impulse Response Gaussian Filters

Gaussian functions

The Gaussian Function: g(x,σ) = 1
σ 2π

e
−
x2

2σ 2 (x can be real or integer)

Discrete (sampled) Convolution with a function: (f *g)(x) = f (x − n)g(n,σ)
n=−∞

∞

∑

Scale Property: g(x,σ)∗ g(x,σ)= g(x, 2σ)

More Generally: g(x,σ1)∗ g(x,σ2)= g(x, σ1
2 +σ2

2)

And in 2-D g(x, y,σ1)∗g(x, y,σ 2) = g(x, y, σ1
2 +σ 2

2)

The 2D Gaussian function is: g(x, y,σ) =
1

2πσ 2 e
−
(x2+y2)
2σ 2

This function is separable: g(x, y,σ) = g(x,σ)∗g(y,σ)
And thus p*g(x, y,σ) = p*g(x,σ)()∗g(y,σ)

(a 2-D convolution can be computed as two O(N) 1-D convolutions).

2.2. Finite Impulse Response Gaussian Digital Filters
The Gaussian function can be used to construct a finite impulse response (FIR)
digital filter. This requires (1) sampling the function and (2) limiting its duration
(windowing) and (3) renormalizing its gain.

The finite impulse response (FIR) digital Gaussian filter is: G(n,σ) = 1
B
WN (n) ⋅e

−
(n∆ x)2

2σ 2

The function ∆x is a sample distance (or sample rate). For simplicity, we can use
∆x=1, but other values are possible.

The term B is a normalization factor assures that the "gain" of the filter is 1.

 B = e
−
n2

2σ2

n=−R

R

∑

The normalisation factor, B, will be slightly less than √2πσ because of the window
function truncates the tails of the Gaussian.

 4-6

The function WN(n) is called a window function, and serves to limit the spatial extent
(window size) of the Gaussian. We will use a rectangular function as a window:

 WN (n) = 1 for -R≤n≤R
0 otherwise

!
"

Where R is a "radius". Typically R should be R ≥ 3σ for reasons developed in the
previous lecture. Setting ∆x=1 and R = 3 gives a filter that looks like this:

The 2-D Gaussian filter

The 2D Finite Impulse Response (FIR) Gaussian filter is G(x, y,σ) = 1
B
WN (x, y) ⋅e

−
(x2+y2)
2σ 2

Where x and y are integers.

We limit the spatial extent of the Gaussian with a Window function WN(x,y)

 WN (x, y) = 1 for -R ≤ x ≤ R and – R ≤ y ≤ R
0 otherwise

"
#
$

%$

The finite window, WN(x,y) has N2 = (2R+1)2 coefficients

Where R is a "radius. Typically R should be R ≥ 3σ .

A normalization factor assures that the "Gain" (sum of the coefficients) is 1.

 B =
x=−R

R

∑ e
−
(x2+y2)
2σ 2

y=−R

R

∑ ≤ 2πσ

0 1! 2! 3!‒1!‒2!-3!

 4-7

2.3. Binomial Filters

The binomial series is the series bn(m) of coefficients of the polynomial:

 (x + y)n = bn
m=0

n

∑ (m)xn−mym

The coefficients can be computed as an auto-convolution bn(m) = (1, 1)*n

These are the coefficients of Pascal's Triangle.

The variable n, the number of “auto-convolutions” represents the “row” of the filter.
The value µ is the center of gravity of the filter. The value σ is the standard deviation

bn(m) = (1, 1)*n : n convolutions of (1, 1)

Gain (sum) is: sn = bn (m)
m=0

n

∑ = 2n

Center of gravity is µn =
1
sn

bn
m=0

n

∑ (m) ⋅m =
n
2

The variance is: σ n
2 =

1
sn

bn
m=0

n

∑ (m) ⋅ (m−µ)2 = n
4

This can be used to compute the center and variance (scale) for each filter:

n sum = 2n µ= n/2 σ2 = n/4 σ = n/2 Coefficients
0 1 0 0 0 1
1 2 0.5 0.25 1 1
2 4 1 0/5 1 2 1
3 8 1.5 0.75 1 3 3 1
4 16 2 1 1 1 4 6 4 1
5 32 2.5 1.25 1 5 10 10 5 1
6 64 3 1.5 1 6 15 20 15 1
7 128 3.5 1.75 1 7 21 35 35 21 7 1
8 256 4 2 2 1 8 29 56 70 56 29 8 1

These coefficients provide a family of low pass filters with remarkable properties.
They are the best integer coefficient approximation for a Gaussian filter, and are thus
inexpensive to use on an embedded system without floating point hardware.

 4-8

Three filters, in particular, are interesting: b2(m)=(1, 2, 1), b4(m)=(1, 4, 6, 4, 1) and
b8(m)=(1, 8, 29, 56, 70, 56, 29, 8, 1). The filter b2(m) is used in the Sobel edge
detector, invented by Irwin Sobel in his 1964 Stanford Doctoral thesis. This detector
was made famous by the classic text book on Pattern Recognition and Image
Processing by R. Duda and P. Hart published in 1972.

The Sobel edge detector is composed of two image filters.

€

mr (i, j) =

1 0 –1
2 0 –2
1 0 –1

"

$
$
$

%

&

'
'
'

€

mc(i, j) =

1 2 1
0 0 0
–1 –2 –1

"

$
$
$

%

&

'
'
'

mc(i,j): detects contrast in column direction. mr(i,j) : detects contrast in row direction
When used as a low pass filter it is common to divide by the sum of the coefficients 4.

The filter b4(m)=(1, 4, 6, 4, 1) = b2(m)* b2(m) provides an integer approximation for
Gaussian Filter with σ= 1 using only 5 integer coefficients. Note that the sum of the
coefficients is 24=16

The 2-D version of this filter, b4(i,j)=b4(i)*b4(j), is often used as the σ= 1 filter to
compute a Gaussian Pyramid. For example, OpenCV contains a Gaussian Smoothing
function that uses this filter.

	

1	
 4	
 6	
 4	
 1	

	

	

4	
 16	
 24	
 16	
 4	

	
 b4(i,j) =(1/256) 6	
 24	
 36	
 24	
 6	

	

	

4	
 16	
 24	
 16	
 4	

	

	

1	
 4	
 6	
 4	
 1	

	

The σ= 2 version is b8(i,j)=b4(i,j)*b4(i,j). The impulse response for b8(i,j) is 9x9
but can be computed as convolution of 5x5 filters. We can even compute b8(i,j) as

b8(i,j)=b4(i)*b4(i)*b4(j)*b4(j) for a cost of 4x5=20 operations
or
b8(i,j)=b2(i)*b2(i)*b2(i)*b2(i)*b4(j)*b4(j)*b4(j)*b4(j) for a cost of 8x3=24 operations.

This is an approximation for an FIR Gaussian, where the approximation error
decreases with increasing sigma.

 4-9

3. Scale Invariant Image Pyramids
At the end of our last lecture we saw a recursive algorithm for computing a full
octave pyramid with a scale invariant impulse response. In this lecture I would like
to develop more fully the notion of scale invariance, and introduce the notion of a
scale invariant half-octave pyramid.

As before, let, P(x,y), be an image array of size RxC pixels, where (x, y) are integers.

To compute the scale space representation of the image we must sample scale space
in x, y and in σ. As we have seen above, σ is generally sampled over an exponential
range.
 σ k =σ 0∆σ

k
Where σ0 ≥ 1. We will sometimes use σ0 =1 for simplicity.
The smallest value of for σk is σ0 , because for k=0 as ∆σ 0 =1 .
The largest value of scale is determined by the image size, say

 σ kmax

=max(R,C)

For a full octave pyramid, we can have maximum of Kmax = Log2{max(R,C)} levels.

The impulse response of a digital filter is the result of processing an input signal
composed of a single impulse (dirac), with all other samples set to zero. For
convolution with an FIR filter, this would return the coefficients of the filter. For a
sequence of filtering operations, this is shows the equivalent composite filter.

Scale invariance means that the impulse response is identical at every level of the
pyramid. This is assured by having the sample rate (∆xk, ∆yk) by directly
proportional to the scale variable, σk.

For example, if we convolve a Gaussian filter P(x, y,1) = P(i, j)*G(x, y,σ =1)

We obtain an impulse response of

If we convolve our impulse with Gaussian filter with σ=2, and then resample with
∆x = 2 we obtain the same result

0 1! 2! 3!‒1!‒2!-3!

 4-10

Thus we can say that the impulse response is "invariant" with σ.

For a scale invariant pyramid the impulse responses should look like this

(This was taken from a half-octave pyramid algorithm using root-2 sampling, but the
principle is the same.)

Last lecture we introduced a 2D sample operator that computes every ∆xk pixel of
every ∆yk row:

P(i,j,k) = S2{P(x,y,k)}=P(2i,2j,k)

The variables x, y are the pixel coordinates in the original image. The variables i,j are
the sample position for level k.

in general P(i,j,k) = S∆xk{P(x,y,k)}=P(i∆xk,j∆xk ,k)

For a scale invariant impulse response, the spatial sample rates ∆xk and ∆yk must be
proportional to σk . To avoiding aliasing, we require that ∆xk =∆yk ≤ σk .
Using a value of σ0 = 1 results in a small but acceptable amount of aliasing.

Using σ0 = 2 and ∆xk =∆yk = σk /2 minimizes aliasing and can improve recognition
rates for many applications.

2
2

4
2

6
2

−2
2

−4
2

−6
2

0
2

 4-11

With the above values the direct algorithm for this would look like this:

The result is a collection of images of decreasing size with a total of 1.5 x 10242

samples. (1+1/4+1/8+...)≈1.5

The cost for computing this pyramid by brute force appears very high. However, the
math for this is somewhat misleading. The convolution equation suggests that an
inner product with an Nk x Nk filter at EVERY pixel in the image where Nk=6σk +1.
However, the inner product is followed by resampling, meaning that most of the
resulting samples are not used!

It is possible to program the convolution as a sequence of inner-products with a step
size of ∆xk=∆yk = σk /2. Consider the convolution equation for a large Gaussian
(σk>>1) with an image P(i,k).

P(x, y,k) = P(x, y)*G(x, y,σ k) = P(x − i, y− j)G(i, j,σ k)

j=−Rk

Rk

∑
i=−Rk

Rk

∑

The coordinates (x,y) are the original pixel coordinates. This formula can be
evaluated at step sizes of ∆xk=∆yk = σk /2. As the filter grows in size, the number of
inner products decreases proportionally, and the computational cost stays constant!

We can express this as a sampled discrete convolution operator (*∆x).
This says to apply the convolution every ∆x samples:
For example, for i from 1 to C/∆xk, and j from 1 to R/∆xk

P(i, j,k) = P(x, y)*∆ x G(x, y,σ k) = P(i∆ xk −m, j∆ xk − n)G(m,n,σ k)
n=−Rk

Rk

∑
m=−Rk

Rk

∑

Pyramid samples are at discrete positions (i, j, k)
The image pixel coordinates for any sample P(i, j, k) are x=i∆xk and y=j∆xk

P(x,y)!

S1{-}!
…
!

S2{-}!

S4{-}!

S8{-}!

S16{-}!

S32{-}!

Pyramid
Buffer

…
!

*G(x,y,σ=2) !

*G(x,y,σ=4)!

*G(x,y,σ=8)!

*G(x,y,σ=16)!

*G(x,y,σ=32)!

*G(x,y,σ=64)!
1024

512

256

128
64

32

 4-12

3.1. Scale Invariant Recursive Pyramid Algorithm

In the last lecture we saw a recursive algorithm for computing a full octave pyramid.
Scale Invariance requires an initial convolution with a Gaussian at σ=σ0, and then
compute each successive level with a Gaussians of σ=σ0 and σ=√2σ0. This is the
pyramid used in the SIFT image descriptor.

This is often computed with σ0=1. The Gaussian filters with σ0=1 can be
implemented with a 7x7 filter and σ=√2 is implemented with a 9x9 filter. Thus the
cost for the first level is 2x7=14 operations. The cost for each successive level is 2x7
+2x9 = 32 operations (multiplies and adds) per pixel. The total number of multiplies
and adds is 14 + 32 (1 + 1/4 + 1/16 +...) = 64 operations (multiplies and adds) per
pixel, and the total number of samples in the pyramid is NxNx(1 + 1/4 + 1/16 +...) or
approximately 1.5 x N x N. This is easily computed at video rate for most
computers.

However, a sample step size of ∆σ=2 is very large. The same algorithm can be used
to provide a step size of ∆σ=√2σ using √2 sampling.

3.2. Square root of 2 sampling.

Last week we saw the sample operator S2{·}.

€

S2{p(x, y)}

€

S2{⋅}

° ° ° °
° ° ° °
° ° ° °
° ° ° °

° °
° °

° °
° °

€

p(x, y)

° °

° °

€

S2{p(x, y)}

Pyramid
Buffer

…

P(x,y)!

S2{-}!

*G(x,y,√2σ0)!

S2{-}!

σ=σ0!

σ=σ0!

σ=√2σ0!

σ=2σ0!

*G(x,y, σ0)!

*G(x,y, σ0)!

*G(x,y, σ0)!

*G(x,y,√2σ0)!

σ=√2σ0!

σ=2σ0!

σ=σ0!

 4-13

Each sample is ∆x=2 pixels from the nearest neighbor. It is also possible to sample a
2D grid with a step size of ∆x=√2. Applying such sampling recursively a second
time results in a step size of 2.

€

S 2{⋅}

° ° ° °
° ° ° °
° ° ° °
° ° ° °

° °
° °

° °
° °

€

P(x,y)

€

S 2{P(x,y)}

° °
° °

° °
° °

€

S 2 {S 2 {P(x, y)}}

° °

° °
€

S 2{⋅}

 We can use this to compute a Half Octave (∆σ=√2σ) Pyramid.

When programming a √2 sampling, one encounters a practical detail of how to
address the samples on the odd (√2 sampled) levels. The simplest solution is to
simply use the same adresses as the corresponding lower even level, leaving every
other sample to be zero. Every other pixel of each row is left to be zero.

For a pyramid, for example, for odd k, ∆xk=∆xk-1. For even k, ∆xk=2k/2

When memory is important, more complicated address schemes are possible.

3.3. Scale Invariant Half-Octave Recursive Pyramid Algorithm

The following diagram shose the algorithm for the scale-invariant half-octave
pyramid. We use σ0=1 for simplicity.

Half-Octave Pyramid Algorithm Half-Octave Pyramid Data Structure
A half octave pyramid uses √2 sampling. For each even level of the pyramid the
S√2{·} sampling operation takes a filtered image at σ=√2 and expresses it on a sample
grid of where σ=1. However, for the even levels, the sample distance is along the
diagonals.

Pyramid !
Buffer!

*G(x,y,σ0)!

P(x,y)!

*G(x,y, σ0)!

σ0!

σ0!

σ=√2σ0!

S√2{·}!

σ0!

*G(x,y,σ0)!

k=0!

k=1!

k=2!

k=3!

k=4!

σ=√2σ0!

S√2{·}!

σ=σ0!

σ=σ0!

*G(x,y, σ0)!

σ0!

σ0!

σ=√2σ0!

S√2{·}!

*G(x,y,σ0)!

σ=√2σ0!

S√2{·}!

σ=σ0!

σ=σ0!

!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"

!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !"
!" !" !" !"
!" !" !" !"
!" !" !" !"
!" !"
!" !"!"!"

!"
!"

!"!"
!" !"

!" !"
!" !"

!"!"
!" !"

!" !"
!" !"

!"!"
!" !"

!" !"
!" !"!"!"

!" !"
!" !"
!" !"

!"!"
!" !"

!" !"
!" !"

!"!"
!" !"

!" !"
!" !"

!"!"
!" !"

!" !"
!" !"!"!"

!" !"
!" !"
!" !"

!"!"
!" !"

!" !"
!" !"

!"!"
!" !"

!" !"
!" !"

!"!"
!" !"

!" !"
!" !"!"!"

!" !"
!" !"
!" !"

!"!"
!" !"

!" !"
!" !"

!"!"
!" !"

!" !"
!" !"

!"!"
!" !"

!" !"
!" !"!"!"

!" !"
!" !"
!" !"

!"!"
!" !"

!" !"
!" !"

!"!"
!" !"

!" !"
!" !"

!"!"
!" !"

!" !"
!" !"!"!"

!" !"
!" !"
!" !"

!"!"
!" !"

!" !"
!" !"

 4-14

Thus all levels of the pyramid have an impulse response equal to a Gaussian of σ=1.
For the odd levels, the distance is measured along the diagonals, and the Gaussian
impulse response must be extracted in the diagonal direction to see the invariance.

For a half octave pyramid, the number of samples is an RxC image, the total number
of samples P = R·C·(1+1/2+1/4+1/8+...) = 2·R·C. The number of filter operations is
the same as for the scale invariant full octave pyramid: 64 operations per pixel!

The half-octave pyramid provides a sufficiently dense sampling of scale to enable
some interesting image invariants to be easily extracted.

However, the algorithms for addressing root 2 sample grids are very complicated.
Thus for simplicity, this is typically computed with an algorithm like this:

Half-Octave Pyramid Algorithm Half-Octave Pyramid Data Structure

This is the structure used in the SIFT detector, for example.

Pyramid
Buffer

…

P(x,y)!

S2{-}!

*G(x,y,√2σ0)!

S2{-}!

σ=σ0!

σ=σ0!

σ=√2σ0!

σ=2σ0!

*G(x,y, σ0)!

*G(x,y, σ0)!

*G(x,y, σ0)!

*G(x,y,√2σ0)!

σ=√2σ0!

σ=2σ0!

σ=σ0!

!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"

!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !"
!" !" !" !"
!" !" !" !"
!" !" !" !"
!" !"
!" !"!"!"

!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"

!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"

!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"
!" !" !" !" !" !" !" !"

!" !" !" !"
!" !" !" !"
!" !" !" !"
!" !" !" !"!" !"

!" !"

 4-15

3.4. Multi-Resolution Region of Interests

The multi-resolution equivalent to a 2D Region of Interest (ROI), is a 3D volume of
pyramid samples. We can refer to this as a multi-resolution region of interest (MS-
ROI). Each multi-resolution region of interest has a center sample, P(i, j, k),
surrounded by adjacent samples within some radius of ∆i, ∆j and ∆k.

For example consider a 3x3x3 Multi-resolution ROI from a half octave pyramid.

This ROI is centered on an odd level (k=1) where the 3x3 neighborhood for this pixel
is a diamond shape shown in green. The 3x3 neighborhood at level k=0 is a square
shown in blue. The 3x3 neighborhood at level k=2 is shown in red.

For this ROI to exist, the pyramid must have a sample at position P(i,j,k+1). This
requires that at level k, this ROI exists only when i and j have even values. For
example, this neighborhood is shown centered as pixel (4, 4, 1). A simpler way to
see this is to consider the center pixel at level k+1 as the address. For any sample in
the pyramid at position P(i,j,k), when k≥2 there exists such a neighborhood centered
at pixel P(i,j,k–1).

The 3x3x3 ROI has 33 = 27 samples. It is also possible to compute multi-resolution
ROIs at 5x5x5 (with 125 Samples) and 7x7x7 (with 343 samples).

Multi-resolution ROIs can be used as input windows to convolutional neural
networks. In this way, a CNN trained with data over a narrow range of scales can be
used over all scales. This can result in a substantial reduction in the required amount
of training data, and a substantial reduction in the number of neural units requierd for
eeuivalent performance.

1"

2"

3"

4"

5"

6"

1"""""""""""2"""""""""""3"""""""""""4""""""""""5""""""""""6"""""""""""7"

Level"0"

Level"1"

Level"2"

 4-16

4. Gaussian Receptive Fields
Gaussian Scale Space has a number of very interesting invariant and equivariant
properties. Differential operators can be used to detect key-points (interest points) in
scale space. These can be used to define invariant structures that represent
appearance independent of scale, position or image plane rotation. These properties
are detected with Gaussian derivatives, also known as Gaussian Receptive Fields.

For a variety of reasons, derivatives of the Gaussian function emerge as general local
image features. Chief among these are invariance to affine transformations. In
addition, using a well-defined mathematical function for receptive fields makes it
possible to predict and explain system behavior, AND to avoid the very high cost of
learning general functions. Gaussian Receptive Fields also make possible a highly
efficient computation for the lower levels of a deep network for image recognition.

4.1. Gaussian Image Derivatives
Gaussian derivatives provide general-purpose receptive fields for image descriptions.
These descriptions can be made invariant to scale, orientation, and illumination, and
robust to changes in viewing direction and illumination color.

A derivative can be shown to be form of convolution. As a result, derivatives are
commutative with convolution, and the derivative of the convolution with a function
is equal to convolution with the derivative of a function.

fx (x) =

∂(f *g)(x)
∂x

= f * ∂g(x)
∂x

"

#
$

%

&
'(x) = f (x − n)gx (n)

n=−∞

∞

∑

We can use this to compute image derivatives with Gaussian receptive fields.

For a 2D Gaussian function of g(x, y,σ) = 1
2πσ 2 e

–(x
2+y2)
2σ 2

The 1st derivative in x is: gx (x, y,σ) = –
x
σ 2 ⋅

1
2πσ 2 e

–(x
2+y2)
2σ 2

The 2D FIR Gaussian Derivative filter is: Gx (x, y,σ) = –
1
B
WN (x, y)

x
σ 2 e

–(x
2+y2)
2σ 2

As before, B is a normalization factor assures that the "gain" of the filter is 1, and
WN(n) is a window function, that limits the spatial extent to N=2R+1 coefficients,
and R should be R ≥ 3σ. Note that the sum of the coefficients of the derivative
should be 0. The normalization factor is computed from the truncated Gaussian

 B = e
−
(x2+y2)
2σ 2

y=–R

R

∑
x=−R

R

∑

 4-17

Gaussian Derivatives are used to compute derivatives of images

For images

 Px (x, y,σ) = P(x, y)*Gx (x, y,σ) Py (x, y,σ) = P(x, y)*Gy (x, y,σ)
 Pxx (x, y,σ) = P(x, y)*Gxx (x, y,σ) Pyy (x, y,σ) = P(x, y)*Gyy (x, y,σ)

Using a Gaussian Pyramid

 Px (i, j,k) = P(i, j,k)*Gx (x, y,σ) Py (i, j,k) = P(i, j,k)*Gy (x, y,σ)
 Pxx (i, j,k) = P(i, j,k)*Gxx (x, y,σ) Pyy (i, j,k) = P(i, j,k)*Gyy (x, y,σ)

A typical scale value in this case is σ=1

4.2. Steerability of Gaussian Derivatives.

It is possible to synthesize an oriented derivative at any point as a weighted sum of
derivatives in perpendicular directions. The weights are given by sine and cosine
functions. The weights are given by sine and cosine functions.

 gx

θ (x, y,σ) = cos(θ) ⋅ gx (x, y,σ)+ sin(θ) ⋅ gy (x, y,σ)

Higher order derivatives can also be steered.

Thus we can use Gaussian image derivatives along the row and column direction to
compute the derivative at any orientation.

Thus:

1st order Px

θ (i, j,k) =Cos(θ)Px (i, j,k)+ Sin(θ)Py (i, j,k)
2nd order pxx

θ (i, j,k) =Cos(θ)2 pxx (i, j,k)+ 2Cos(θ)Sin(θ)pxy (i, j,k)+ Sin(θ)
2 pyy (i, j,k)

3rd order

pxxx
θ (i, j,k) =Cos(θ)3 pxxx (i, j,k)+3⋅Cos(θ)

2Sin(θ)pxxy (i, j,k)+3⋅Cos(θ)Sin(θ)
2 pxyy (i, j,k)+ Sin(θ)

3 pyyy (i, j,k)

By steering the derivatives to the local orientation, we obtain an "invariant" measure
of local contrast. We can also "steer" in scale to obtain invariance to size.

Note, we can NOT steer the mixed derivatives, i.e gxy(x,y, σ)

 4-18

4.3. Intrinsic Orientation

For each pixel, one can calculate the orientation of maximal gradient. This orientation
is equivariant with rotation. One can use this as an "intrinsic" orientation to normalize
the receptive fields at any point in the image.

Local orientation: θi (x, y,σ) = Tan
−1(
Py (x, y,σ)
Px (x, y,σ)

)

Or with a Pyramid: θi (i, j,k) = Tan
−1(
Py (i, j,k)
Px (i, j,k)

)

Note that local orientation depends on σ!

4.4. Computing Image Derivatives with a Gaussian Pyramid

It is possible to use the Gaussian Pyramid to compute image derivatives at scale using
sums and differences. These are very similar to the receptive fields observed in the
visual cortex of mammals.

Let P(x,y) be an image and P(i, j, k) be a Gaussian pyramid of the image.
We can obtain a fast approximation for Gaussian derivatives by sum and difference
of the samples.

€

Px (i, j,k) ≈ P(i+1, j,k)−P(i −1, j,k) = P(i, j,k)∗ –1 0 1[]

€

Py(i, j,k) ≈ P(i, j +1,k)−P(i, j −1,k) = P(i, j,k)∗
−1
0
1

%

&

'
'
'

(

)

*
*
*

€

Pxx (i, j,k) ≈ P(i+1, j,k)− 2P(i, j,k)+P(i −1, j,k) = P(i, j,k)∗ 1 −2 1[]

€

Pyy(i, j,k) ≈ P(i, j +1,k)− 2P(i, j,k)+P(i, j −1,k) = P(i, j,k)∗
1
−2
1

%

&

'
'
'

(

)

*
*
*

€

Pxy(i, j,k) ≈ P(i+1, j +1,k)−P(i −1, j +1,k)−P(i+1, j −1,k)+P(i −1, j −1,k) = P(i, j,k)∗
−1 0 1
0 0 0
1 0 −1

%

&

'
'
'

(

)

*
*
*

 4-19

The following are some numerically evaluated examples published in the Scale Space
Conference of 2003. [Crowley-Riff 2003]

Gx(i,j,k) Gy(i,j,k) Gxx(i,j,k) Gyy(i,j,k) Gxy(i,j,k)

Impulse Response for Gx(i,j,k)

Impulse Response for Gxx(i,j,k)

Impulse response for Gaussian derivatives for pyramid levels k=0,1,2,3,4,5.

4.5. Color Opponent Receptive Fields

Gaussian receptive fields can be used with color images by projecting the RGB color
vector to a luminance-chrominance represenation:

 (R, G, B) ⇒ (L, C1, C2)

€

L
1C
2C

"

$
$ $

%

&

'
' '

=

0.33 0.33 0.33
−0.5 −0.5 1
0.5 −0.5 0

"

$
$ $

%

&

'
' '

R
G
B

"

$
$ $

%

&

'
' '

Gaussian derivatives in this space provide color opponent receptive fields.

RGB B-W R-G R+G-B

 4-20

Color opponent space can be used to build color opponent receptive fields.
We then compute 3 pyramids: L(i, j, k), C1(i, j, k), and C2(i, j, k),

Examples of color opponent receptive fields.

For example, the C2=R-B channel is very close to as skin color detector. Skin colored
blobs such as hands and faces will result in strong peaks a Laplacian Pyramid
computed from C2.

The color opponent receptive fields can be used to provide general feature vectors for
appearance.

 4-21

5. Invariant and Equivariant Properties in Scale Space
5.1. The Laplacian of the Gaussian

The Laplacian of the Gaussian an important derivative operator for invariant image
description. The Laplacian of the Gaussian is the sum of the second derivatives.

 ∇2g(x, y,σ) = gxx (x, y,σ)+ gyy (x, y,σ)

The equivalent digital filter is ∇2G(x, y,σ) =Gxx (x, y,σ)+Gyy (x, y,σ)

In human vision, the 2D Laplacian of the Gaussian is used to detect the natural scale
of entities and thus to drive attention in the LGN. The central region acts as a kind of
“spot detector” for entities of a particular scale.

For computer vision, the Laplacian of the Gaussian provides a Scale-invariant feature
detector, used in the popular SIFT operator (Scale Invariant Feature Transform).

2D Plot of ∇2g(x, y,σ) Image of ∇2g(x, y,σ) 1-D Cross section∇2g(x, y,σ)

The Difference of Gaussian (DoG) operator

The Gaussian is the unique solution to the diffusion equation, and as a consequence:

 ∇2g(x, y,σ) = gxx (x, y,σ)+ gyy (x, y,σ) =

∂g(x, y,σ)
∂σ

Thus, we can approximate an FIR Laplacian filter as a Difference of Gaussian filters:

€

∇2G(x, y,σ) ≈ G(x, y,σ1) –G(x, y,σ 2)()

This is sometimes called a DoG (Difference of Gaussian) operator and can be
computed very easily from a Gaussian Pyramid as a difference of levels.

 4-22

It is common to use: ∇2G(x, y,σ) ≈G(x, y, 2σ)−G(x, y,σ)

But note that from the scale property:

€

G(x, y, 2σ) ≈ G(x, y,σ)*G(x, y,σ)

so that

€

∇2G(x, y,σ) ≈ G(x, y,σ)*G(x, y,σ)−G(x, y,σ)

We can compute the Laplacian of an image recursively:

 ∇2P(x,y,σ)= P* ∇2G(x,y,σ)() ≈ P*G(x,y,σ)()*G(x,y,σ)− P*G(x,y,σ)

The following illustrates this with a 1D Gaussian:

 ∇2G(x,σ) ≈G(x, 2σ)−G(x,σ)

In 1D the Laplacian (Blue) is the difference of a larger Gaussian (green) from a
smaller Gaussian (red). Both Gaussians are normalized to sum to 1.0.

5.2. Computing a Scale Invariant Laplacian Pyramid

We can use DoG to compute the Laplacian of an image as:

 ∇2P(x, y,σ) = P* ∇2G(x, y,σ)() ≈ P*G(x, y, 2σ)−P*G(x, y,σ)

Thus the Laplacian of the image can be computed directly from a difference of
samples at the same image position for adjacent levels in a Half-Octave Gaussian
Pyramid.

For each position P(i, j, k) in a Half-Octave Gaussian Pyramid, a Laplacian may be
computed as:

 L(i,j,k) = P(i∆xk, j∆yk, k) – P(i∆xk–1, j∆yk–1, k–1)

Note that it is necessary to re-align the samples to original image coordinates using
∆xk, ∆yk in order to assure that the image position of the two Gaussians is the same.

 4-23

The resulting difference is assured to have an impulse response that sums to zero
because both Gaussian Filters have been normalized to 1.

For computation with a √2 pyramid, the "scale" of the inner lobe is is the scale a level
k-1: σk-1.

5.3. The Laplacian Profile

The Laplacian profile is the sequence of values for the Laplacian of the image over a
range of scales at an image position, x,y.

The Laplacian of the image is ∇2p(x, y,σ) = p*∇2g(x, y,σ) = pxx (x, y,σ)+pyy (x, y,σ)
In theory, a Laplacian profile exists for every image position. However, for an image
pyramid, the profile only exists for pyramid samples. For any

A sampled Laplacian Profile of the image can be computed for any

 L(i,j,k) = P(i∆xk, j∆yk, k) – P(i∆xk–1, j∆yk–1, k–1)

The Laplacian profile is invariant to rotation and translation and equivariant to
changes in scale. Since scale is proportional to distance, the profile is equivariant to
viewing distance.

 σs

x

y

∇2P(x, y, s)

When evaluated over an exponential range of scales, the Laplacian profile is an
invariant descriptor for scale.

Some examples from images (computed with a half-octave pyramid):

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 4-24

A change in viewing distance at x, y shifts the function ∇2P(x,y,σ) in σ. The form of
the profile translates in scale but remains the same. Technically this is called a
“covariant”.

The Laplacian profile is the basis for the Natural Interest points used in the highly
popular SIFT (Scale Invariant Feature Transform). In the SIFT operator, local
maxima in the Laplacian (in position and scale) serve to position the operator where
there is a maximum of image signal.

The Laplacian profile can also be used to extract a very efficient operator for "time to
crash" that describes the "looming reflex".

For every pixel in the image, there are one or more scales at which the Laplacian
profile is a local maximum. These local maximum indicate the scale at information
can be found in the image, and are referred to as the "intrinsic scales" for the pixel.

5.4. Laplacian Interest Points.
A Laplacian interest point is a local maximum within some volume in a Laplacian
pyramid in space and scale.

(xi, yi,σ i) = local −maxx,y,k,R

{∇2P(x, y,k)}

The smallest possible volume is a 3x3x3 ROI. However, because of the smoothness
properties of the Laplacian, it is possible for the maximum to fall exactly between
two samples, resulting in a "double-peak" of two adjacent samples with equal values.
This is a common event for elongated structures. Reliability of detection can be
improved by testing over a radius of 2, resulting in a 5x5x5 ROI.

Candidate local maxima can be detected using a scanning window approach over all
possible 5x5x5 ROIs.

It is possible to obtain a more precise location of the peak by computing the center of
gravity (moment) over a range of samples in x, y and σ.

 4-25

6. Histogram of Oriented Gradients (HOG)

A local histogram of gradient orientation provides a vector of features image
appearance that is relatively robust to changes in orientation and illumination.

HOG gained popularity because of its use in the SIFT feature point detector
(described next). It was subsequently explored and made popular by Navneet Dalal
(M2R GVR 2003) and Bill Triggs (currently at UGA Labo LJK).

The orientation of a gradient at pyramid sample (i,j,k) is:

€

θ(i, j,k) =Tan−1
py(i, j,k)
px (i, j,k)

$
%
&

'
(
)

This is a number between 0 and π. We can quantize it to a value between 1 and N
value by

 a(i, j,k) = Round N ⋅θ(i, j,k)
π

#
$
%

&
'
(

We can then build a local histogram for a window of size WxH, with upper left
corner at io, jo, k. We allocate a table of N cells: h(a). Then for each pixel i,j in our
window:

€

∀
i=1

W
∀
j=1

H
h(a(i+ io, j + jo ,k)) = h(a(i+ io, j + jo ,k))+1

The result is a local feature composed of N values.
Recall that with histograms, we need around 8 samples per bin to have a low RMS
error. Thus a good practice is to have N=W=H. For example N=4, W=4 and H=4.
Many authors ignore this and use values such as N=8, W=4, H=4, resulting in a
sparse histogram.

Remark: A fast version when N=4 replaces the inverse tangent by computing the
diagonal derivatives with differences:

P0 (i, j,k) = P(i+1, j,k)−P(i−1, j,k)
 Pπ

4

(i, j,k) = P(i+1, j +1,k)−P(i−1, j −1,k)

€

Pπ
2

(i, j,k) = P(i, j +1,k)−P(i, j −1,k)

€

P3π
4

(i, j,k) = P(i+1, j −1,k)−P(i −1, j +1,k)

To determine a(i,j,k) simply choose the maximum of P0,Pπ

4

,Pπ
2

,P3π
4

 4-26

7. Scale Invariant Feature Transform (SIFT)

SIFT uses a scale invariant pyramid to compute scale invariant interest points as
shown above.

 Lk0 = p1(i, j, k) – p(i, j, k)
 Lk1 = p2(i, j, k) – p1(i, j, k)
 Lk2 = p3(i, j, k) – p2(i, j, k)
 Lk3 = p4(i, j, k) – p3(i, j, k)

If Lk0 < Lk1 > Lk2 then the point p(i, j, k) is a natural interest point at with σ = 2k+1/2
If Lk1 < Lk2 > Lk3 then the point p(i, j, k) is a natural interest point with σ = 2k+1

For each interest point, it then computes a U x V grid of HOG detectors with N=8,
W=4, H=4 at the level k
Typically U=V=4.

 At level k, ∆i=∆j=2 k/2

This gives 16 x 8 = 128 features at each interest point.
This feature vector is invariant to changes in position and scale and very robust with
changes in image plane rotation and illumination intensity.

Various authors experiment with other grid sizes.
For example, let the grid size be G.

 G=4, W=4, H=4, N=4

16 histograms of 4 numbers =64.

 4-27

8. Harris Corner Detector

Harris, Chris, and Mike Stephens. "A combined corner and edge detector." Alvey
vision conference. Vol. 15. 1988.

The Harris-Stevens Corner detector is inspired from the Moravec Interest Point
detector proposed in 1973 by Hans Moravec for stereo matching. Moravec used the
Sum of Squared Difference (SSD) between adjacent small patches to detect interest
points. In 1988, Harris and Stevens observed that this is equivalent to an auto-
correlation of the image.

€

S(x, y) = w(u,v) I(u + x,v+ y)− I(u,v)()2
u,v
∑

where

€

I(x, y) is the image,
 w(x,y) is some window function, typically Gaussian.

 I(u+x,v+y) can be approximated as a local Taylor Series:

€

I(u + x,v+ y) ≈ I(u,v)+ I x (u,v)x+ I y(u,v)y

where

€

I x (x, y) and

€

I y(x, y) are the local x and y derivatives

Giving

€

S(x, y) = w(u,v) I x (u,v)x+ I y(u,v)y()2
u,v
∑

Which can be written in Matrix form as:

€

S(x, y) ≈ x y()A
x
y

$
%
&

'
(where A is the

“Structure Tensor”

€

A = w(x, y)
I x I x I x I y
I x I y I yI y

"

$

%

&
'

x,y
∑

With our Gaussian pyramid this is simply:

€

A =
Px
2 PxPy

PxPy Py
2

"

$

%

&
'

Compute the Eigenvectors of A:

€

λ1 0
0 λ2

$
%

&

'
(= R A RT

where

€

λ1 is the maximum gradient,

€

λ2 is the minimum gradient.

if

€

λ1 ≈ 0 and

€

λ2 ≈ 0 then the point is of no interest
if

€

λ1 ≈ 0 and

€

λ2 >> 0 then the point is a horizontal edge
if

€

λ1 >> 0 and

€

λ2 ≈ 0 then the point is a vertical edge
if

€

λ1 ≈ λ2 >> 0 then the point is corner

 4-28

To avoid computing the eigenvalues (requires a square root), we can define a
measure for “corner-ness”:

€

Mc = det(A)−κ ⋅Trace2 (A) = λ1λ2 −κ λ1 +λ2()2

where κ is a tunable sensitivity parameter.

Examples of Harris-Stevens Corners:

 4-29

9. Ridge Detection.

The Eigenvalues of the Hessian provide a popular ridge detector.

The Hessian at scale s is

€

H (x, y, s) =
Pxx (x, y, s) Pxy(x, y, s)
Pxy(x, y, s) Pyy(x, y, s)
"

$

%

&
'

The Eigenvalues are found by diagonalizing the Hessian.
For any point in scale space (x, y, s)

€

Prr 0
0 Pss

"

$

%

&
' = R H RT where

€

R =
cos(θ) −sin(θ)
sin(θ) cos(θ)
$

%
&

'

(
)

€

Pss is the largest value in second derivative, while

€

Prr is the smallest.
On a ridge point,

€

Prr will be the second derivative along the ridge (close to zero)
while

€

Pss will be the 2nd derivative perpendicular to the ridge.

For any 2D Matrix, the principal directions can be computed directly as

€

cos(θ) =
1
2
1+

Pxx −Pyy

Pxx −Pyy()2 + 4Pxy
2

$

%

&
& &

'

(

)
))
 ,

€

sin(θ) = sgn(Pxy)
1
2
1−

Pxx −Pyy

Pxx −Pyy()2 + 4Pxy
2

$

%

&
& &

'

(

)
))

Recall that the gradient is

€

!
∇ P(x, y, s) =

Px (x, y, s)
Py(x, y, s)

$
%

&

'
(=

P *Gx (x, y, s)
P *Gy(x, y, s)

$
%

&

'
(

for any point (x, y, s), the Gradient can be aligned with the ridge using

€

Pr = cos(θ)Px − sin(θ)Py

€

Ps = sin(θ)Px + cos(θ)Py

A positive ridge point is any point, R(x,y,s) that satisfies:

 Pr = 0 and Prr ≤ 0 and | Prr| ≥ |Pss|

A negative ridge is any point for which

 Pr=0 and Prr ≥ 0 and | Prr|≤ |Pss|

of course, Pr will rarely be exactly zero, so we use form of approximation Pr ≈ 0

 4-30

The ridge direction at (x, y, s) is:

€

cos(θ) =
Px

Px
2 +Py

2

€

sin(θ) =
Py

Px
2 +Py

2

A Maximal ridge is a ridge point

€

R(x, y, s) for which

€

local−max
s

{∇2P(x, y, s)}

Examples of Maximal Ridge points:

