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1 Homogeneous Coordinates and Tensor Notation 
 
Homogeneous coordinates allow us to express translation, rotation, scaling, and 
projection all as matrix multiplications.  The principle is to add an extra dimension to 
each vector.  
 
For example, points on a plane are expressed as:  
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Similarly, points in 3D space become 
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The line equation,  ax+by+c=0 can be expressed as a simple product:  
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Similarly, for a plane equation:  ax+by+cz+d=1:  
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This is called a "homogeneous" equation because the all terms are first order.  
Technically this is a "first order" homogeneous equation.  
 
ax2+by2+c=0  would be a second order homogeneous equation.  
 
Note that in Homogeneous coordinates, all scalar multiplications are equivalent.  
 

 

€ 

a ⋅
x
y
1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

= b ⋅
x
y
1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
 



 3 

 
Any vector can be expressed in "canonical" form by normalizing the last coefficient 
to 1. 
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Using Homogeneous coordinates, we will construct a camera model as a 3 x 4 matrix 
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such that the image point (xi, yi) is found from the scene point (xs, ys, zs) by 
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Note that 

€ 

Ms
i  is in canonical form. All coefficients have been divided by m34.  
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The camera model, 

€ 

Ms
i , has 11 coefficients and not 12. Calibrating 

€ 

Ms
i  requires 

estimating 11 parameters.   
 
1.1 Tensor Notation:  
In tensor notation, the sign "

→
" is replaced by subscripts and superscripts. 

A super-script signifies a column vector.  For example the point   
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The line  is   Li  =  (l1, l2, l3)  
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A matrix is a line vector of column vector (or a column vector of line vectors )  
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When homogeneous coordinates are used to represent transforms, these indices can 
be used to indicate the reference frame.  
 
For example: A transformation from the scene "s" to the image "i"  is a 3 x 4 matrix:  
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The sub/super scripts indicate the source and destination reference frames.  

€  

M s
i  is a transformation from "s" (Scene) to "i" (image).  

 
The summation symbol is implicit when a superscript and subscript have the same 
letter. This is called Einstein summation convention.  For example:  
 
 Li Pi   = l1 p1  + l2 p2  + l3 p3    
 
The product of a matrix and a vector gives a vector:  
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j pi  

 
This example transforms the point pi in reference frame  i to a point pj in reference j.  
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2 Coordinate Transforms in 2D 
Homogeneous coordinates allow us to unify projective transformations using only 
matrix multiplication. This includes both Affine and Projective transformations  
Four popular classes of transformations are:  

• Euclidean Transformations  
• Isometries  
• Affine Transformations 
• Projective Transformations 

 
Homogeneous transformations allow us to unify all of these as matrix multiplications.  
Below we review transformations in 2-space. These transformations are easily 
generalized to higher number of dimensions.  
 
2D:  points and lines on a plane 
3D:  points and planes in a volume 
4D and up:  points and hyper-planes in a hyper-space 
 
2.1 Euclidean Transformation  
A Euclidean transformation expresses 3 degrees of freedom: translation (tx, ty,) and 
rotation,   θ.  
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Note, in such transforms, the origin of the A (source) reference frame is mapped to 
the position (tx, ty) in the B (target) coordinate system.  
 
Note that in classic notation this would be written:  
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which expresses:   xB = xACos(θ )− yASin(θ )+ tx  
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yB = xASin(θ)+ yACos(θ )+ ty  
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w =1 
 
The transformation is invertible:  
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B = (TB

A )−1  
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That is the translation (tx, ty) is the position of the origin of the source in the target.  
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2.2 Similitude 
A similitude expresses 4 degrees of freedom: translation (tx, ty,), rotation, θ and scale, 
s.  
 
We can translate, rotate and rescale an image with 

€ 
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B P A 
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this gives a reduction of scale by s:  x2 = s x1 (x2

 is reduced by a scale factor s) 
Alternatively we could write  
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in classic notation :  
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In any case this reduces to a Euclidean transformation because all scalar multiples of 
homogeneous coordinates are equivalent.   
 
If we replace s by 1/s the space B is a larger scale copy of A.    
If s is negative we obtain a reflection.   
 
When s is the same for x and y, the scaling is isotropic (uniform). It is possible to 
express anisotropic (non-uniform) scaling with separate scale factors for x and y. 
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An anisotropic projection captures 5 degrees of freedom: transalation (tx, ty,),  
rotation, θ and scale, (sx, sy).  
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2.3 Affine Transformations 
 
An affine transformation has 6 dof:  a, b, c, d, e, f 
 
The complete affine transformation is 
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The affine transform includes similitudes and isometries as a special cases, but also 
includes sheer.  
 
2.4 Projection between two planes  (Homography) 
 
The projective transformation from one plane to another is called a homography.  
A homography is bijective (reversible).  
 
In tensor notation  
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In classic notation:   
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3 The Camera Model 
 
A "camera" is a closed box with an aperture (in latin:  "camera obscura"). Photons are 
reflected from the world, and pass through the aperture to form an image on the 
retina. Thus the camera coordinate system is defined with the aperture at the origin.  
 
The Z (or depth) axis runs perpendicular from the retina through the aperture.  
The X and Y axes define coordinates on the plane of the aperture.  
 
3.1 The Pinhole Camera 
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Points in the scene are projected to an "up-side down" image on the retina.  
 
This is the "Pin-hole model" for the camera.  
 
The scientific community of computer vision often uses the "Central Projection 
Model".  In the Central Projection Model, the retina is placed in Front of the 
projective point. 
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We will model the camera as a projective transformation from scene coordinates, S, 
to image coordinates, i.  
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This transformation is expressed as a 3x4 matrix:  
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composed from 3 transformations between 4 reference frames.  
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3.2 Extrinsic and Intrinsic camera parameters  
 
The camera model can be expressed as a function of 11 parameters.  
These are often separated into 6 "extrinsic" parameters and 5 "intrinsic" parameters:  
 
Thus the "extrinsic" parameters of the camera describe the camera position and 
orientation in the scene. These are the six parameters:  
 
 Extrinsic Parameters = (x, y, z, θ, ϕ, γ) 
 
The intrinsic camera parameters express the projection to the retina, and the mapping 
to the image. These are :  
 
 F : The "focal" length of the camera 
 Cx, Cy : the image center (expressed in pixels).  
 Dx, Dy

 : The size of pixels (expressed in pixels/mm). 
 
3.3 Coordinate Systems 
 
This transformation can be decomposed into 3 basic transformations between 4 
reference frames. The reference frames are:  
 
Coordinate Systems:  
  Scene Coordinates: 
   Points in the scene:   Ps

  = (xs, ys, zs, 1)T    
 
  Camera Coordinates:    
  Point in the scene:   Pc  =  (xc, yc, zc, 1)T  
  Project on the retina:  Qr =   (xr, yr, 1)T     
  
 Image Coordaintes 
  Point in the image:   Qi  = (i, j, 1)T   
 
The transformations are represented by Homogeneous projective transformations.  
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These express  
1) A translation/rotation from scene to camera coordinates: 
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2) A projection from scene points in camera coordinates to the retina: 

€ 

 
3) Sampling scan and A/D conversion of the retina to give an image: 
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When expressed in homogeneous coordinates, these transformations are composed as 
matrix multiplications.  
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We use "tensor notation" to keep track of our reference frames.   
 
3.4 Projective Transforms:  from the scene to the retina 
Consider the central projection model for a 1D camera:  
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The origin of this system is the retina, shown here as intersection of the x (1-D retina 
axis) and the z (depth) axes. These are referred to as "camera Coordinates".  
 
The point  Pc  =  (xc,, zc, 1)T  is a point in the scene, in camera coordinates.  
The point Qr =   (xr, 1)T    is the projection of this point on the retina.  
The projective (focal) point is a distance F behind the retina.  
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We represent this as the projective transformation Pcr  
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3.5 From Scene to Camera 
 
The following matrix represents a translation  ∆x, ∆y, ∆z and a rotation R.  
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The transformation is composed by expressing the position of the source reference 
frame in the destination reference frame.  
 
The rotation part is a 3x3 matrix that can be decomposed into 3 smaller rotations 
using Euler Angles (rotation around each axis).  
 
 R= Rz(γ)Ry(ϕ)Rx(θ) 
 
En 3D 
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3.6 From the Retina to Digitized Image 
 
The "intrinsic parameters of the camera are F and Cx, Cy, Dx, Dy 
 
The image frame is composed of pixels  (picture elements) 
 
 image 
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Note that pixels are not necessarily square.  
 
The mapping from retina to image can be expressed with 4 parameters:  
 
 Cx, Cy : the image center (expressed in cols and rows).  
 Dx, Dy

 : The size of pixels expressed in cols/m and rows/mm.  
  
 i = xrDi (mm . col/mm)  + Ci (cols)    
 j = yrDj (mm . row/mm) + Cj  (rows) 
 
Transformation from retina to image :  
 
        Qi =   Cr 
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3.7 The Complete Camera Model 
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and thus 

 i = wi
w
=
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1 ⋅Rs
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3 ⋅Rs =

M11xs +M12ys +M13zs +M14

M31xs +M32ys +M33zs +1
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3.8 Calibrating the Camera 
How can we obtain   Ms

i  ?    By a process of calibration.  
Observe a set of at least 6 non-coplanar points whose position in the world is known.  
 
  Rk

s  for k=0,1,2,3,4,5  (s are the scene coordinate axes s=1,2,3) 
 
 For each point, k,  we observe the corresponding point in the image Pk

i  
 
For example, we can use the corners of a cube.  Define the lower front corner as the 
origin, and the edges as unit distances.  
 

 
The matrix  Ms

i   is composed of 3x4=12 coefficients. However because, 
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Ms
i   is in 

homogeneous coordinates, the coordinate m34 can be set to 1.  
 
Thus there are  12-1 = 11.   
We can determine these coefficients by observing known points in the scene. (
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Rk
s).  

Each point provides two coefficients. Thus, for 11 coefficients we need at least  5 
1
2     

points.  With 6 points the system is over-constrained.  
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For each known calibration point 

€ 

Rk
s  given its observed image position 
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Pk
i ,  we can 

write:  
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This gives 2 equations for each point.   
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s − ik (Ms
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s ) = 0  Ms

2 ⋅Rk
s − jk (Ms
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s ) = 0  

 
Each pair of equations corresponds to the planes that pass though the image row and 
the image column of the observed image point Ps 

k  

 
The equation Ms

1 ⋅Rk
s − ik (Ms

3 ⋅Rk
s ) = 0  is the vertical plane that includes the projective 

center through the pixel i=ik.   
 
The equation 

€ 

Ms
2 ⋅ Rk

s − jk (Ms
3 ⋅ Rk

s ) = 0  is the horizontal plane that includes the projective 
center and the row j=jk.   
 
For each of k scene points, we know 

€ 

Rk
s by definition and we observe 

€ 

Pk
i .  

We then use these pairs to solve for 

€ 

Ms
i .  

 

given  

€ 

Pk
i =

ik
jk
1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

=

wkik
wk jk
wk

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
 we write  : 

€ 

Pk
i = Ms

iRk
s  

to obtain 

€ 

Ms
1 ⋅ Rk

s − ik (Ms
3 ⋅ Rk

s ) = 0  and 

€ 

Ms
2 ⋅ Rk

s − jk (Ms
3 ⋅ Rk

s ) = 0  
 
For each pair of corresponding points (

€ 

Pk
i , 

€ 

Rk
s) can write two equations 

 
 M1

1 ⋅Rk
1 +M2

1 ⋅Rk
2 +M3

1 ⋅Rk
3 +M4

1 ⋅1− ikM1
3 ⋅Rk

1 − ikM2
3 ⋅Rk

2 − ikM3
3 ⋅Rk

3 − ik = 0  

 M1
2 ⋅Rk

1 +M2
2 ⋅Rk

2 +M3
2 ⋅Rk

3 +M4
2 ⋅1− jkM1

3 ⋅Rk
1 − jkM2

3 ⋅Rk
2 − jkM3

3 ⋅Rk
3 − jk = 0  
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any 11 such equations we can solve for  

€ 

M s
i  (neglecting the coefficient 

€ 

M 4
3 =1) 

 
With 6 pairs of scene and image points we have 11 possible sets of 11 equations 
yielding 11 solutions.  We could “average” the results.  
 
Alternatively, we can set up all 12 equations and solve for a least squares solution 
that minimizes :  
 
 C =  || A Ms 

i  || 
 
in  matrix form this gives: Ak Ms 

i   = 0. 
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Rk
1 Rk

2 Rk
3 1 0 0 0 0 −ikRk

1 −ikRk
2 −ikRk

3 −ik
0 0 0 0 Rk

1 Rk
2 Rk

3 1 − jkRk
1 − jkR0

2 − j0Rk
3 − jk

"

#

$
$

%

&

'
'

M1
1

M2
1

M3
1

M4
1

M1
2

M2
2

M3
2

M4
2

M1
3

M2
3

M3
3

1

"

#

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

= 0  

 
For example, give a cube with observed corners   
 
 PL

o = (101, 221)  PL
1 = (144, 181)  PL

2 = (22, 196) 
 PL

3 = (105, 88)  PL
4 = (145, 59)  PL

5 = (23, 67) 
 
Least squares will give:  
 

 MS
i =

55.88 −79.29 1.27 101.91
−22.29 −17.87 −134.34 221.30
0.100 0.038 −0.008 1

"

#

$
$
$

%

&

'
'
'
 

 
Note that the center of the retina is at pixel (102, 221).  
 
 
 
  
 


