
Computer Vision
James L. Crowley

M2R MoSIG Fall Semester
Lesson 6 19 Nov 2020

Homogeneous Coordinates and
Projective Camera Models

Lesson Outline:

1	 Homogeneous Coordinates and Tensor Notation .. 2	

1.1	 Tensor Notation: ... 3	
2	 Coordinate Transforms in 2D .. 5	

2.1	 Euclidean Transformation ... 5	
2.2	 Similitude .. 7	
2.3	 Affine Transformations ... 8	
2.4	 Projection between two planes (Homography) .. 8	

3	 The Camera Model .. 9	
3.1	 The Pinhole Camera .. 9	
3.2	 Extrinsic and Intrinsic camera parameters .. 10	
3.3	 Coordinate Systems .. 10	
3.4	 Projective Transforms: from the scene to the retina 11	
3.5	 From Scene to Camera .. 12	
3.6	 From the Retina to Digitized Image .. 13	
3.7	 The Complete Camera Model ... 14	
3.8	 Calibrating the Camera ... 14	

 2

1 Homogeneous Coordinates and Tensor Notation

Homogeneous coordinates allow us to express translation, rotation, scaling, and
projection all as matrix multiplications. The principle is to add an extra dimension to
each vector.

For example, points on a plane are expressed as:

€

!
P =

x
y
1

"

$
$
$

%

&

'
'
'

Similarly, points in 3D space become

€

!

Q =

x
y
z
1

"

$
$
$
$

%

&

'
'
'
'

The line equation, ax+by+c=0 can be expressed as a simple product:

!
LT
!
P = a b c()

x
y
1

!

"

#
#
#

$

%

&
&
&
= 0 where

€

!
L T = a b c()

Similarly, for a plane equation: ax+by+cz+d=1:

€

!
S T
!
P = a b c d()

x
y
z
1

"

$
$
$
$

%

&

'
'
'
'

= 0 where

€

!
S =

a
b
c
d

"

$
$
$
$

%

&

'
'
'
'

This is called a "homogeneous" equation because the all terms are first order.
Technically this is a "first order" homogeneous equation.

ax2+by2+c=0 would be a second order homogeneous equation.

Note that in Homogeneous coordinates, all scalar multiplications are equivalent.

€

a ⋅
x
y
1

$

%
%
%

&

'

(
(
(

= b ⋅
x
y
1

$

%
%
%

&

'

(
(
(

 3

Any vector can be expressed in "canonical" form by normalizing the last coefficient
to 1.

€

ax
ay
a

"

$
$
$

%

&

'
'
'

=

ax /a
ay /a
a /a

"

$
$
$

%

&

'
'
'

=

x
y
1

"

$
$
$

%

&

'
'
'

Using Homogeneous coordinates, we will construct a camera model as a 3 x 4 matrix

€

Ms
i =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 1

"

$
$
$

%

&

'
'
'

such that the image point (xi, yi) is found from the scene point (xs, ys, zs) by

xi

yi

1

!

"

#
#
##

$

%

&
&
&&
 =

q1
q3

q2
q3

1

!

"

#
#
#
#
#
##

$

%

&
&
&
&
&
&&

=
q1

q2

q3

!

"

#
#
##

$

%

&
&
&&
 =
!
Q=Ms

i
!
P =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 1

!

"

#
#
##

$

%

&
&
&&

xs
ys
zs
1

!

"

#
#
#
#
#

$

%

&
&
&
&
&

Note that

€

Ms
i is in canonical form. All coefficients have been divided by m34.

€

Ms
i =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 1

"

$
$
$

%

&

'
'
'

The camera model,

€

Ms
i , has 11 coefficients and not 12. Calibrating

€

Ms
i requires

estimating 11 parameters.

1.1 Tensor Notation:
In tensor notation, the sign "

→
" is replaced by subscripts and superscripts.

A super-script signifies a column vector. For example the point

€

!
P is Pi

€

Pi =

p1
p2
p3

"

$
$
$

%

&

'
'
'

The line is Li = (l1, l2, l3)

 4

A matrix is a line vector of column vector (or a column vector of line vectors)

€

Mi
j =

m
1

1 m2
1 m3

1

m
1

2 m
2

2 m
3

2

m
1

3 m
2

3 m
3

3

"

$
$
$

%

&

'
'
'

€

Mi = m1 m2 m3()

€

M j =

m1

m2

m3

"

$
$
$

%

&

'
'
'

When homogeneous coordinates are used to represent transforms, these indices can
be used to indicate the reference frame.

For example: A transformation from the scene "s" to the image "i" is a 3 x 4 matrix:

€

Ms
i =

m1
1 m2

1 m3
1 m4

1

m1
2 m2

2 m3
2 m4

2

m1
3 m2

3 m3
3 1

"

$
$
$

%

&

'
'
'

The sub/super scripts indicate the source and destination reference frames.

€

M s
i is a transformation from "s" (Scene) to "i" (image).

The summation symbol is implicit when a superscript and subscript have the same
letter. This is called Einstein summation convention. For example:

 Li Pi = l1 p1 + l2 p2 + l3 p3

The product of a matrix and a vector gives a vector:

€

p j =Ti
j pi

This example transforms the point pi in reference frame i to a point pj in reference j.

 5

2 Coordinate Transforms in 2D
Homogeneous coordinates allow us to unify projective transformations using only
matrix multiplication. This includes both Affine and Projective transformations
Four popular classes of transformations are:

• Euclidean Transformations
• Isometries
• Affine Transformations
• Projective Transformations

Homogeneous transformations allow us to unify all of these as matrix multiplications.
Below we review transformations in 2-space. These transformations are easily
generalized to higher number of dimensions.

2D: points and lines on a plane
3D: points and planes in a volume
4D and up: points and hyper-planes in a hyper-space

2.1 Euclidean Transformation
A Euclidean transformation expresses 3 degrees of freedom: translation (tx, ty,) and
rotation, θ.

€

QB = TA
BPA

€

q1

q2

q3

"

$
$
$

%

&

'
'
'

=

Cos(θ) −Sin(θ) tx
Sin(θ) Cos(θ) ty
0 0 1

"

$
$
$

%

&

'
'
'

p1

p2

p3

"

$
$
$

%

&

'
'
'

Note, in such transforms, the origin of the A (source) reference frame is mapped to
the position (tx, ty) in the B (target) coordinate system.

Note that in classic notation this would be written:

€

xB
yB
1

"

$
$
$

%

&

'
'
'

=

wxB
wyB
w

"

$
$
$

%

&

'
'
'

=

Cos(θ) −Sin(θ) tx
Sin(θ) Cos(θ) ty
0 0 1

"

$
$
$

%

&

'
'
'

xA
yA
1

"

$
$
$

%

&

'
'
'

which expresses: xB = xACos(θ)− yASin(θ)+ tx

€

yB = xASin(θ)+ yACos(θ)+ ty

€

w =1

The transformation is invertible:

€

TA
B = (TB

A)−1

 6

That is the translation (tx, ty) is the position of the origin of the source in the target.

 7

2.2 Similitude
A similitude expresses 4 degrees of freedom: translation (tx, ty,), rotation, θ and scale,
s.

We can translate, rotate and rescale an image with

€

QB = S A
B P A

€

q1

q2

q3

"

$
$
$

%

&

'
'
'

=

s ⋅Cos(θ) −s ⋅Sin(θ) tx
s ⋅Sin(θ) s ⋅Cos(θ) ty
0 0 1

"

$
$
$

%

&

'
'
'

p1

p2

p3

"

$
$
$

%

&

'
'
'

this gives a reduction of scale by s: x2 = s x1 (x2

 is reduced by a scale factor s)
Alternatively we could write

€

q1

q2

q3

"

$
$
$

%

&

'
'
'

=

Cos(θ) −Sin(θ) tx
Sin(θ) Cos(θ) ty
0 0 1

s

"

$
$
$

%

&

'
'
'

p1

p2

p3

"

$
$
$

%

&

'
'
'

in classic notation :

€

x2
y2
1

"

$
$
$

%

&

'
'
'

=

s ⋅Cos(θ) –s ⋅Sin(θ) tx
s ⋅Sin(θ) s ⋅Cos(θ) ty

0 0 1

"

$
$
$

%

&

'
'
'

x1
y1
1

"

$
$
$

%

&

'
'
'

In any case this reduces to a Euclidean transformation because all scalar multiples of
homogeneous coordinates are equivalent.

If we replace s by 1/s the space B is a larger scale copy of A.
If s is negative we obtain a reflection.

When s is the same for x and y, the scaling is isotropic (uniform). It is possible to
express anisotropic (non-uniform) scaling with separate scale factors for x and y.

x2
y2
1

!

"

#
#
##

$

%

&
&
&&
=

sx ⋅Cos(θ) −sy ⋅Sin(θ) tx
sx ⋅Sin(θ) sy ⋅Cos(θ) ty

0 0 1

!

"

#
#
#
#

$

%

&
&
&
&

x1
y1
1

!

"

#
#
##

$

%

&
&
&&

An anisotropic projection captures 5 degrees of freedom: transalation (tx, ty,),
rotation, θ and scale, (sx, sy).

 8

2.3 Affine Transformations

An affine transformation has 6 dof: a, b, c, d, e, f

The complete affine transformation is

€

Qb = Aa
bPa

€

q1

q2

q3

"

$
$
$

%

&

'
'
'

=

a b c
d e f
0 0 1

"

$
$
$

%

&

'
'
'

p1

p2

p3

"

$
$
$

%

&

'
'
'

or

€

x2
y2
1

"

$
$
$

%

&

'
'
'

=

a b c
d e f
0 0 1

"

$
$
$

%

&

'
'
'

x1
y1
1

"

$
$
$

%

&

'
'
'

The affine transform includes similitudes and isometries as a special cases, but also
includes sheer.

2.4 Projection between two planes (Homography)

The projective transformation from one plane to another is called a homography.
A homography is bijective (reversible).

In tensor notation

€

QB = HA
BPA

€

q1

q2

q3

"

$
$
$

%

&

'
'
'

=

h1
1 h2

1 h3
1

h1
2 h2

2 h3
2

h1
3 h2

3 h3
3

"

$
$
$

%

&

'
'
'

p1

p2

p3

"

$
$
$

%

&

'
'
'

€

xB = q
1

q3 =
h1

1p1 + h2
1p2 + h3

1p3

h1
3p1 + h2

3p2 + h3
3p3

€

yB = q
2

q3 =
h1

2p1 + h2
2p2 + h3

2p3

h1
3p1 + h2

3p2 + h3
3p3

In classic notation:

€

xb
yb
1

"

$
$
$

%

&

'
'
'

=

wxb
wyb
w

"

$
$
$

%

&

'
'
'

=

h1
1 h2

1 h3
1

h1
2 h2

1 h3
1

h1
3 h2

3 1

"

$
$
$

%

&

'
'
'

xa
ya
1

"

$
$
$

%

&

'
'
'

€

xB =
wxB
w

=
h11xA + h12yA + h13
h31xA + h32yA + h33

€

yB =
wyB
w

=
h21xA + h22yA + h23
h31xA + h32yA + h33

 9

3 The Camera Model

A "camera" is a closed box with an aperture (in latin: "camera obscura"). Photons are
reflected from the world, and pass through the aperture to form an image on the
retina. Thus the camera coordinate system is defined with the aperture at the origin.

The Z (or depth) axis runs perpendicular from the retina through the aperture.
The X and Y axes define coordinates on the plane of the aperture.

3.1 The Pinhole Camera

•

•
Z

X

Y

P = (x, y, z)

F

Image
Objective

Axe Optique

Points in the scene are projected to an "up-side down" image on the retina.

This is the "Pin-hole model" for the camera.

The scientific community of computer vision often uses the "Central Projection
Model". In the Central Projection Model, the retina is placed in Front of the
projective point.

 pin-hole

Retina

Point

We will model the camera as a projective transformation from scene coordinates, S,
to image coordinates, i.

€

!
Q i = M s

i
!
P s

This transformation is expressed as a 3x4 matrix:

€

Ms
i =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

"

$
$
$

%

&

'
'
'

composed from 3 transformations between 4 reference frames.

 10

3.2 Extrinsic and Intrinsic camera parameters

The camera model can be expressed as a function of 11 parameters.
These are often separated into 6 "extrinsic" parameters and 5 "intrinsic" parameters:

Thus the "extrinsic" parameters of the camera describe the camera position and
orientation in the scene. These are the six parameters:

 Extrinsic Parameters = (x, y, z, θ, ϕ, γ)

The intrinsic camera parameters express the projection to the retina, and the mapping
to the image. These are :

 F : The "focal" length of the camera
 Cx, Cy : the image center (expressed in pixels).
 Dx, Dy

 : The size of pixels (expressed in pixels/mm).

3.3 Coordinate Systems

This transformation can be decomposed into 3 basic transformations between 4
reference frames. The reference frames are:

Coordinate Systems:
 Scene Coordinates:
 Points in the scene: Ps

 = (xs, ys, zs, 1)T

 Camera Coordinates:
 Point in the scene: Pc = (xc, yc, zc, 1)T
 Project on the retina: Qr = (xr, yr, 1)T

 Image Coordaintes
 Point in the image: Qi = (i, j, 1)T

The transformations are represented by Homogeneous projective transformations.

€

!
P c = Ts

c
!
P s

€

!
Q r = Pc

r ! P c

€

!
Q i = Cr

i ! Q r

These express
1) A translation/rotation from scene to camera coordinates:

€

2) A projection from scene points in camera coordinates to the retina:

€

3) Sampling scan and A/D conversion of the retina to give an image:

€

 11

When expressed in homogeneous coordinates, these transformations are composed as
matrix multiplications.

€

!
Q = M s

i
!
P = Cr

iPc
rTs

c ! P

We use "tensor notation" to keep track of our reference frames.

3.4 Projective Transforms: from the scene to the retina
Consider the central projection model for a 1D camera:

Qr!

Pc!

F! zc!

xr!

x!

z!
xc!

The origin of this system is the retina, shown here as intersection of the x (1-D retina
axis) and the z (depth) axes. These are referred to as "camera Coordinates".

The point Pc = (xc,, zc, 1)T is a point in the scene, in camera coordinates.
The point Qr = (xr, 1)T is the projection of this point on the retina.
The projective (focal) point is a distance F behind the retina.

By similar triangles: xr

F
=

xc
(F + zc)

⇒ xr
(F + zc)
F

= xc

We can express the fraction (F + zc)

F
 as a coefficient w.

In matrix form this can be written as: xr
1

!

"
##

$

%
&&=

wxr
w

!

"
##

$

%
&&=

1 0 0

0 1
F

1

!

"

#
#
#

$

%

&
&
&

xc
zc
1

!

"

#
#
##

$

%

&
&
&&

If we extend to 3D we obtain:
xr
yr
1

!

"

#
#
##

$

%

&
&
&&
=

wxr
wyr
w

!

"

#
#
##

$

%

&
&
&&
=

1 0 0 0
0 1 0 0

0 0 1
F

1

!

"

#
#
#
#
#

$

%

&
&
&
&
&

xc
yc
zc
1

!

"

#
#
#
#
#

$

%

&
&
&
&
&

We represent this as the projective transformation Pcr

Qr=
q1

q2

q3

!

"

#
#
##

$

%

&
&
&&
 =

1 0 0 0
0 1 0 0

0 0 1
F

1

!

"

#
#
#
#
#

$

%

&
&
&
&
&

p1

p2

p3

1

!

"

#
#
#
#
#

$

%

&
&
&
&
&

= Pc
r
!
Pc

 12

3.5 From Scene to Camera

The following matrix represents a translation ∆x, ∆y, ∆z and a rotation R.

€

Ts
c =

Δx
R Δy

Δz
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

The transformation is composed by expressing the position of the source reference
frame in the destination reference frame.

The rotation part is a 3x3 matrix that can be decomposed into 3 smaller rotations
using Euler Angles (rotation around each axis).

 R= Rz(γ)Ry(ϕ)Rx(θ)

En 3D

Rx(θ) is a rotation around the x axis.

 Rx (θ) =
1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

"

#

$
$
$

%

&

'
'
'

 Ry (ϕ) =
cos(ϕ) 0 sin(ϕ)
0 1 0

−sin(ϕ) 0 cos(ϕ)

"

#

$
$
$$

%

&

'
'
''

 Rz (γ) =
cos(γ) −sin(γ) 0
sin(γ) cos(γ) 0
0 0 1

"

#

$
$
$$

%

&

'
'
''

 13

3.6 From the Retina to Digitized Image

The "intrinsic parameters of the camera are F and Cx, Cy, Dx, Dy

The image frame is composed of pixels (picture elements)

 image

 0 NCols-1

NRows-1

0

Note that pixels are not necessarily square.

The mapping from retina to image can be expressed with 4 parameters:

 Cx, Cy : the image center (expressed in cols and rows).
 Dx, Dy

 : The size of pixels expressed in cols/m and rows/mm.

 i = xrDi (mm . col/mm) + Ci (cols)
 j = yrDj (mm . row/mm) + Cj (rows)

Transformation from retina to image :

 Qi = Cr

i Qr

i
j
1

!

"

#
#
#

$

%

&
&
&
=

Di 0 Ci

0 −Dj Cj

0 0 1

!

"

#
#
##

$

%

&
&
&&

xr
yr
1

!

"

#
#
##

$

%

&
&
&&

 14

3.7 The Complete Camera Model

 Pi = Cr
i Pc

r Ts
c Ps = Ms

i
 Ps

 Qi =Ms

iPs

wi
wj
w

!

"

#
#
#

$

%

&
&
&
=

m1
1 m2

1 m3
1 m4

1

m1
2 m2

2 m3
2 m4

2

m1
3 m2

3 m3
3 m4

3

!

"

#
#
#
#

$

%

&
&
&
&

xs
ys
zs
1

!

"

#
#
#
#
#

$

%

&
&
&
&
&

and thus

 i = wi
w
=
Ms

1 ⋅Rs

Ms
3 ⋅Rs =

M11xs +M12ys +M13zs +M14

M31xs +M32ys +M33zs +1

 j =
wj

w
=
Ms

2 ⋅Rs

Ms
3 ⋅Rs =

M21xs +M22ys +M23zs +M24

M31xs +M32ys +M33zs +1

3.8 Calibrating the Camera
How can we obtain Ms

i ? By a process of calibration.
Observe a set of at least 6 non-coplanar points whose position in the world is known.

 Rk

s for k=0,1,2,3,4,5 (s are the scene coordinate axes s=1,2,3)

 For each point, k, we observe the corresponding point in the image Pk

i

For example, we can use the corners of a cube. Define the lower front corner as the
origin, and the edges as unit distances.

The matrix Ms

i is composed of 3x4=12 coefficients. However because,

€

Ms
i is in

homogeneous coordinates, the coordinate m34 can be set to 1.

Thus there are 12-1 = 11.
We can determine these coefficients by observing known points in the scene. (

€

Rk
s).

Each point provides two coefficients. Thus, for 11 coefficients we need at least 5
1
2

points. With 6 points the system is over-constrained.

 15

For each known calibration point

€

Rk
s given its observed image position

€

Pk
i , we can

write:

 ik =
wkik
wk

=
Ms

1 ⋅Rk
s

Ms
3 ⋅Rk

s jk =
wk jk

wk

=
Ms

2 ⋅Rk
s

Ms
3 ⋅Rk

s

This gives 2 equations for each point.

 Ms

1 ⋅Rk
s − ik (Ms

3 ⋅Rk
s) = 0 Ms

2 ⋅Rk
s − jk (Ms

3 ⋅Rk
s) = 0

Each pair of equations corresponds to the planes that pass though the image row and
the image column of the observed image point Ps

k

The equation Ms

1 ⋅Rk
s − ik (Ms

3 ⋅Rk
s) = 0 is the vertical plane that includes the projective

center through the pixel i=ik.

The equation

€

Ms
2 ⋅ Rk

s − jk (Ms
3 ⋅ Rk

s) = 0 is the horizontal plane that includes the projective
center and the row j=jk.

For each of k scene points, we know

€

Rk
s by definition and we observe

€

Pk
i .

We then use these pairs to solve for

€

Ms
i .

given

€

Pk
i =

ik
jk
1

"

$
$
$

%

&

'
'
'

=

wkik
wk jk
wk

"

$
$
$

%

&

'
'
'
 we write :

€

Pk
i = Ms

iRk
s

to obtain

€

Ms
1 ⋅ Rk

s − ik (Ms
3 ⋅ Rk

s) = 0 and

€

Ms
2 ⋅ Rk

s − jk (Ms
3 ⋅ Rk

s) = 0

For each pair of corresponding points (

€

Pk
i ,

€

Rk
s) can write two equations

 M1

1 ⋅Rk
1 +M2

1 ⋅Rk
2 +M3

1 ⋅Rk
3 +M4

1 ⋅1− ikM1
3 ⋅Rk

1 − ikM2
3 ⋅Rk

2 − ikM3
3 ⋅Rk

3 − ik = 0

 M1
2 ⋅Rk

1 +M2
2 ⋅Rk

2 +M3
2 ⋅Rk

3 +M4
2 ⋅1− jkM1

3 ⋅Rk
1 − jkM2

3 ⋅Rk
2 − jkM3

3 ⋅Rk
3 − jk = 0

 16

any 11 such equations we can solve for

€

M s
i (neglecting the coefficient

€

M 4
3 =1)

With 6 pairs of scene and image points we have 11 possible sets of 11 equations
yielding 11 solutions. We could “average” the results.

Alternatively, we can set up all 12 equations and solve for a least squares solution
that minimizes :

 C = || A Ms

i ||

in matrix form this gives: Ak Ms

i = 0.

 17

Rk
1 Rk

2 Rk
3 1 0 0 0 0 −ikRk

1 −ikRk
2 −ikRk

3 −ik
0 0 0 0 Rk

1 Rk
2 Rk

3 1 − jkRk
1 − jkR0

2 − j0Rk
3 − jk

"

#

$
$

%

&

'
'

M1
1

M2
1

M3
1

M4
1

M1
2

M2
2

M3
2

M4
2

M1
3

M2
3

M3
3

1

"

#

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

= 0

For example, give a cube with observed corners

 PL

o = (101, 221) PL
1 = (144, 181) PL

2 = (22, 196)
 PL

3 = (105, 88) PL
4 = (145, 59) PL

5 = (23, 67)

Least squares will give:

 MS
i =

55.88 −79.29 1.27 101.91
−22.29 −17.87 −134.34 221.30
0.100 0.038 −0.008 1

"

#

$
$
$

%

&

'
'
'

Note that the center of the retina is at pixel (102, 221).

