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Bayesian Detection and Tracking  
A Bayesian Tracker is a cyclic process composed of the cycles predict, detect and 
update.  
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Tracking  
1) Focusing computing resources 
2) Improves reliability by compensating for lost detections 
3) Improves precision by avoiding distractors 
4) Makes it possible to estimate motion derivatives.  

 

Pixel Level Target Detection 
 
A pixel level detector estimates the likelihood that a pixel belongs to a target.  
Many possible estimation processes can be used. Popular pixel level detectors 
include:  
 
1) Background Difference Subtraction 
2) Ratio of Color Histograms 
3) Ratio of Receptive field histograms 
4) Motion (temporal image differences).  
 
It is sometimes possible to combine 2 or more of these techniques! 
 
One of my doctoral students demonstrated reliable face detection with histograms of 
color-opponent receptive fields. Another student combined a Bayesian tracker with 
face detection using a Cascade of Linear Detectors learned with AdaBoost.   
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Face Detection with a Ratio of Histograms of color pixel 
 
Last time we saw that we could calculate the probability that a pixel belonged to a 
target class using a lookup table constructed from a ratio of color histograms.  
 
We allocate two tables h(

!
X)  and hT (

!
X)where  hT (

!
X)  is the histogram of colors for  

target  pixels and h(
!
X)  is the histogram of colors for all pixels.    

 
Training data is M color pixels 

!
Xm{ }  for which we have an indicator function y(

!
Xm ) .  

The data contains MT pixels that are target (skin color) pixels:    
 
The histogram of all colors is constructed with ∀m=1

M :  h(
!
Xm )← h(

!
Xm )+1 

And the histogram of skin color pixels is constructed using a ground truth function 
y(
!
Xm )  that returns P is 

!
Xm  is skin else N.  

 
  ∀m=1

M :  IF y(
!
Xm ) = P THEN hT (

!
Xm )← hT (

!
Xm )+1;  MT ←MT +1;  

  
The probabilities for obtaining a color vector are  
 P(

!
X) = 1

M
h(
!
X)and P(

!
X | Skin) = 1

MT

hT (
!
X)  

The probability that a pixel belongs to the target class is:  P(Skin) = MT

M
 

 
From this we can show that the probability that a pixel is skin, is simply the ratio of 
the two histograms.  

 P(Skin |
!
X) = P(

!
X | Skin)P(Skin)

P(
!
X)

=

1
MT

hT (
!
X) ⋅MT

M
1
M
h(
!
X)

=
hT (
!
X)

h(
!
X)

 

We can use this to compute a lookup table  LSkin (
!
X) = hT (

!
X)

h(
!
X)

 

 
if h(
!
X) = 0  then hSkin (

!
X) = 0  because hSkin (

!
X)  is a subset of h(

!
X) .  

we will need to test this case to avoid an error from divide by 0.  
 
If we ASSUME that a new image, P(i,j), has similar illumination and color 
composition then we can use this technique to assign a probability to each pixel by 
table lookup.  
 
The result is an image in which each pixel is a probability S(i,j)  that the pixel (i,j)  
belongs to class skin.  
 
 S(i, j) = LSkin (P(i, j))  
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<Karl Schwertd Skin Tracking Demo - 1995> 
 

This method can be generalised to ANY vector of features.   
For example, the appearance of a neighborhood given by the receptive field vector.  
 
  

!
A(i, j,σ i )  =P(i,j) * (Gx, Gy, Gxx, Gxy, Gyy) at some σi  

 
Given M samples of pixels  S={

!
Am }  with a subset  T ⊂ S composed of MT target 

pixels.  
 
We construct a probability image for the target, t(i,j) as    
  

 T (i, j) = p(target |
!
A(i, j)) = hT (

!
A(i, j))

h(
!
A(i, j))

 

 
We must, however assure that the number of sample Mk >> Q the number of cells in 
the histogram.  For D features and a quantification of N levels per feature   Q=ND 

 
Gaussian Blobs 
Rather than represent a skin region as a collection of pixels, we can calculate a 
Gaussian Blob.  A "Blob" represents a region of an image.  Gaussian blobs express a 
region in terms of moments.   

 A typical representation for a Gaussian blob is  
!
B =

x
y
l
w
θ

!

"

#
#
#
#
#
#
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&
&
&
&
&

 with confidence CF 

 
Position (x, y) is estimated from the center of gravity.  Spatial extent (length, l, width, 
w,  and Orientation, θ) are estimated from the principal components of the second 
moment (covariance).  
 
The confidence factor at time t, CFt,  is estimated recursively using a weighted sum 
of the previous confidence and the sum of the detection probability pixels in the ROI.  
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Target Blobs may be detected in an entry region, or by a scanning window detector 
or by random positioning of a detection window.   
 
Given a ROI (t,l,b,r) of detected pixels  T(i,j)   
 

 Sum:   S =
i=l

r

∑ T
j=t

b

∑ (i, j)  

 
 Confidence:   

€ 

CF =
S

(b − t)(r − l)
 

 

First moments:   x = µi =
1
S i=l

r

∑ T
j=t

b

∑ (i, j) ⋅ i   y = µ j =
1
S i=l

r

∑ T
j=t

b

∑ (i, j) ⋅ j  

Second Moments:  σ i
2 =
1
S i=l

r

∑ T
j=t

b

∑ (i, j) ⋅ (i−µi )
2  

    σ j
2 =
1
S i=l

r

∑ T
j=t

b

∑ (i, j) ⋅ ( j −µ j )
2  

    σ ij
2 =
1
S i=l

r

∑ T (i, j) ⋅ (i−µi ) ⋅ ( j −µ j )
j=t

b

∑  

These compose the covariance matrix:  Σ =
σ i
2 σ ij

2

σ ij
2 σ j
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Principle components (λ1, λ2) determine the length, l, width , w, and orientation, θ. 
 

 RΣRT = Λ =
λ1
2 0

0 λ2
2

#

$
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(
 where R = cos(θ ) −sin(θ )

sin(θ ) cos(θ )
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 l = λ1, w=  λ2   and Orientation, θ = R11

R21
=
cos(θ )
sin(θ )

 

It is convenient to retain the first and second moment vectors, !µ =
µi

µ j

!

"

#
#
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&
&
 and 

Σ =
σ i
2 σ ij

2

σ ij
2 σ j
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' ,  as we will need these to predict the ROI for the next image.  
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Bayesian Tracking   
 
A Bayesian tracker is a recursive estimator, composed of the phases:  
Predict, Detect, Update.  
 

 
 
Temporal Prediction 
We use the current position and spatial extent to predict a region of interest for the 
next image.  

 
 
However, the scene evolves.  Targets move with unknown   velocity and 
acceleration.  To compensate we enlarge the spatial extent of the target with an 
uncertainty, expressed as a covariance of possible positions.    The uncertainty 
captures the possible loss of information during the time from the most recent 
observation.  
 
Let us represent the position and spatial extent of the  blob, 

!
Bt  at time t as:  with  µ̂t , 

Σ̂t . We will use these to predict a position and spatial extent for the ROI at time t+1t 
as: !µt+1

* , Σt+1
*  

 
The Zeroeth order (constant position) Tracker 
In the absence of a model for target movement, we use the observed position at time 
t to predict  the position at time t+1.  This is referred to as a zeroth order model.  
 
 !

µt+1
* ← µ̂t  

 
The target may move with an unknown velocity and acceleration.  We can model the 
loss in precision of the blob position as an error covariance, Q . This covariance can 
be learned as the movements (∆x, ∆y) of targets from one frame to another of targets 
in the training set of image sequences.  
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For each cycle, the error covariance is added to the blob covariance to provide the 
spatial extent of the predicted ROI.  
 
 Σt+1

* = Σ̂t +Q  
 
This sum of covariance results in a new larger covariance.  We use the predicted Σt+1

*  
to determine the spatial extent for the ROI in the next image.  
 
Computing the ROI from a predicted covariance 
 
We can use principle components analysis to compute the bounding box from the 
new predicted position !µt

*  and covariance,  Σt
* .  The principle components of Σt

*  tell 
us the length and orientation of the major axis of Σt

* .  The dimensions of the ROI are 
determined from the eigenvectors.  
 
 ∆i= max{abs(λ1 Cos(θ), abs(λ2 Sin(θ)}  
 ∆j= max{abs(λ1 Sin(θ), abs(λ2 Cos(θ)} 
 
We regardless of the angle, θ, the bounding upper left corner, (l, t) of the bounding 
box is:  l =  µi –∆i t = µj – ∆j 
 
The lower right corner, (b, r) is :   r =  µi +∆i b = µj+ ∆j 
 
Weighting the ROI by a Gaussian Mask. 
 
The likelihood of detection can be improved by doubling the size of the ROI and to 
weighting the ROI with a Gaussian mask.   In this case, the ROI becomes:  
 
 l =  µi – 2· abs(∆i)  t = µj –2 · abs(∆j) 
 r =  µi + 2· abs(∆i)  b = µj + 2· abs(∆j) 
 
Detected target pixels within the enlarged ROI (l,t,r,b) in the ROI are then weighted 
with:   

 T (i, j)←T (i, j) ⋅e
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This has the effect of reducing the influence of detected pixels that are further from 
the predicted position.  We then compute the new target position and spatial extent 
within the enlarged ROI as described above.  
 
Note that this is NOT done for initial target detection in "entry" regions.  
 
Estimating target confidence 
 
Targets can disappear due to occlusion or other errors.  As explained above, we 
estimate the confidence in the detection, CF,  as the average detection probability 
within the ROI.  
 

  

€ 

CF =
S

(b − t)(r − l)
  where  S =

i=l

r

∑ T
j=t

b

∑ (i, j)   

 
When the target is initially detected, the confidence factor for the blob is initialized 
from the confidence factor of the detection.  
 
 CF0 = CF 
 
Subsequently, during tracking, the detection  confidence can be used to recursively 
update the confidence for the tracked blob,  CFt, with an update factor α.  
 
 
 CFt =  α · 

€ 

S
(b − t)(r − l)

 +  (1-α) · CFt–∆t  

 
We test the resulting  
 
 if CFt   ≤  CFmin   Target Lost . 
 
CFmin is the minimum required average probability per pixel to detect a target.  
In this case the target is removed.  
 
 


