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Abstract 
 

This paper presents a method for object detection based 
on a cascade of scale and orientation normalized 
Gaussian derivative classifiers learnt with Adaboost. 
Normalized Gaussian derivatives provide a small but 
powerful feature set for rapid learning using Adaboost. 
Real time detection is made possible by use of a fast 
integer coefficient algorithm that computes a half-octave 
Gaussian pyramid with linear algorithmic complexity 
using a cascade of binomial kernel filters. The method is 
demonstrated by training a boosted classifier for frontal 
face detection using standard data sets. Experiments 
demonstrate that this approach can provide detection 
rates that are comparable or superior to those obtained 
with integral images while dramatically reducing the 
required training effort. 
 

1. Introduction 
Viola and Jones [24] have demonstrated that a rapid and 

robust object detector can be constructed using the 
adaboost algorithm to train a cascade of linear classifiers 
from image descriptors provided by integral images. 
Integral images have the interesting property that a very 
large number of descriptors (180 000 for a 24 x 24 image), 
can be computed by a very fast integer algorithm, leading 
to real time algorithms suitable for use in embedded 
systems. Unfortunately, integral images also have 
drawbacks. As an image descriptor they are not invariant 
to image scale or rotation. Furthermore the very large 
space of detectors can lead to extremely long learning 
times (on the order of weeks or months) for training a 
robust classifier.  

In this paper we propose an alternative image descriptor 
using scale normalized Gaussian derivatives. We describe 
a fast (integer coefficient) pyramid algorithm for 
computing Gaussian derivatives in real time, and show 
that this algorithm can be used to provide Gaussian 
derivatives that are normalized in scale and orientation in 
linear time. We demonstrate that such normalized 
Gaussian derivatives can be used to learn a boosted object 
detector that is comparable to integral images in 
robustness and computation time, while derived from a 

much shorter training effort.  
As with Viola and Jones, we demonstrate our approach 

using the problem of frontal face detection from static 
images. Face detection is an important problem in 
computer vision, with numerous practical applications 
including image stabilization for photography and video 
telephones, mug-shot recognition, facial expression 
recognition, and visual surveillance.   

A variety of statistical learning techniques have been 
demonstrated for appearance based face detection [26]. 
For example, Garcia and Delakis describe a convolutional 
neural network architecture for frontal face detection with 
a high variability in position [8]. Osadchy et al. used 
similar neural-network architecture for simultaneous 
multi-view face detection and facial pose estimation [18]. 
While it is possible to use such neural networks to build 
detectors that are robust to pose changes, there is no 
systematic method for training such detectors. 
Determining the appropriate parameters such as number of 
layers remains a difficult problem.  

Support vector machines (SVM) have recently been 
used for a number of object detectors.  Heisele et al has 
proposed at hierarchy of SVM’s to reduces the dimension 
of a feature space and thus optimize detection in images 
[12]. While SVM methods are known for generalization, a 
number of open problems remain including choice of 
kernel. They are also known to provide detection 
algorithms that have a high computational cost.  Neither 
Neural network approaches nor support vector machine 
methods have surpassed the use of adaboost and integral 
images for building robust real time object detectors.   

Many authors have explored extensions to Viola and 
Jones' method.  Meynet and al have demonstrated 
detection using a cascade of boosted anisotropic Gaussian 
classifiers [17]. Other recent works have explored use of 
extended feature sets [15] or modifications to the learning 
algorithm or the cascade structure [2, 19, 22] for such 
problems as pedestrian detection [25]. The difficulty with 
these approaches has been the high dimensionality of the 
feature space, resulting in learning times that can span 
several weeks.  

In this paper, we show that similar results can be 
obtained with a greatly reduced feature space provided by 
normalized Gaussian derivatives features.  Gaussian 
derivatives have been known to provide a scale and 
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rotation invariant image description [3] since the 1980s.  
Freeman and Adelson [6] demonstrated that Gaussian 
derivatives are steerable, providing a means to compute 
derivatives in arbitrary directions from linear sums of 
canonical derivatives computed from separable filters. 
Lowe demonstrated that local orientation statistics of scale 
normalized gradients (SIFT) [16] could provide a robust 
and stable image descriptor for tracking and matching 
interest points. Delal and Triggs [5] demonstrated that 
such detectors could be used for learning to detect object 
categories. Yokono and Poggio have recently 
demonstrated the use of Gaussian derivatives filters for 
object recognition [27].  Hall and Crowley used the 
Gaussian derivatives to generate a face template with log 
polar histograms [11]. This work was extended by Gourier 
and al who used chromatic Gaussian derivatives features 
for face detection and pose estimation [9].  

A critical problem with Gaussian derivatives is 
computational cost. Direct computation of derivatives 
using FIR filters for scale normalization can give rise to 
algorithms with quadratic complexity. Even with recursive 
filters, algorithmic complexity and computational cost can 
make real time computation unfeasible.  In this paper we 
propose the use of a half octave binomial pyramid to 
provide a fast algorithm for scale normalized Gaussian 
derivatives. This algorithm has been shown to have O(N) 
complexity, and to be computable using only integer 
operations [4]. 

2. Gaussian Derivatives as Image Features 
This section describes the use of a cascaded binomial 

kernel to obtain a Gaussian pyramid in which each layer 
has an identical ratio of impulse response to sample rate  

2.1. The Gaussian Jet 
Koenderink has described how the visual appearance of 

a neighborhood can be represented by a local Taylor series 
expansion [13]. The coefficients of this Taylor series 
constitute a feature vector, referred to as the "Local Jet” 
that compactly represents the neighborhood appearance 
for indexing, matching and recognition. Ter Haar Romeny 
and others [23], have shown that invariance to scale and 
orientation can be obtained when the local jet is computed 
using Gaussian Derivatives. The basis functions for this 
expansion are local derivatives computing using a 
Gaussian support: 

G(x,y;σ) = e
− x 2 +y 2

2σ 2
 

 
Where σ is a scale factor that expresses the size of the 

support in terms of the second moment (or variance) 
Schiele [21] has referred to this as a Gaussian Receptive 
Field. The Gaussian support measures the average 

intensity of the neighborhood. This information does not 
contribute to the identification of the neighborhood, and 
can therefore be omitted in detection and recognition. 

The first and second derivatives of the Gaussian support 
are:  
 

Gx (x, y;σ) = ∂G(x, y;σ)
∂x

= − x
σ 2 G(x, y;σ)  

 

Gy (x, y;σ) = ∂G(x, y;σ )
∂y

= − y
σ 2 G(x, y;σ )  

 
These capture information about changes of the surface 

normal and measure the intensity of edges. The second 
order derivates are given by: 

 

Gxx (x,y;σ ) = ∂ 2G(x,y;σ)
∂x 2 = (

x 2

σ 4 − 1
σ 2 )G(x,y;σ)  

Gyy (x, y;σ ) = ∂2G(x,y;σ)
∂y 2 = (

y 2

σ 4 − 1
σ 2 )G(x, y;σ)

 

Gxy (x, y;σ ) = ∂2G(x,y;σ)
∂x∂y

= xy
σ 4 G(x, y;σ) 

 
The second order derivatives are good descriptors for 

image features such as bars, blobs and corners. Higher 
order Gaussian derivatives are more sensitive to the image 
noise and only provide useful information in cases where 
the second order derivatives are strong. 

A local jet based on Gaussian derivatives has been 
proposed as a model for receptive fields in the primary 
visual cortex [28]. The use of Gaussian derivatives is 
motivated by their capacity of describe image 
neighborhoods and also by their representation of image in 
specific orientations and frequencies. This representation 
allows an excellent support in object detection and 
learning processes.  

A key problem in computing the local jet is determining 
the scale at which to evaluate the derivatives. Lindeberg 
[14] has described scale invariant features based on 
profiles of Gaussian derivatives across scales. In 
particular, the maximun of the Laplacian, evaluated over a 
range of scales at an image point is known to be 
"equivariant" to scale. Lowe has referred to this as the 
"natural" scale and has used this scale to construct a 
detector for scale normalized interest points [16] for the 
SIFT descriptor.   

Just as the local jet can be normalized in scale, it can 
also be normalized in orientation. Since the early years of 
computer vision, the arc-tangent of the ratio of first 
derivatives (the angle of the gradient) has been used to 



 

estimate the orientation of the gradient at any image point. 
Freeman and Adelson [6] have shown how a basis set of 
Gaussian derivatives can be "steered" to a desired 
orientation by weighting the derivative terms with the 
appropriate sine and cosines terms. Using their technique 
it is relatively easy to define a steerable basis for the local 
jet.  Such a basis can be normalized to the intrinsic scale 
using the Laplacian profile and then normalized in 
orientation to the intrinsic orientation.   

In order for normalized Gaussian derivatives to provide 
an effective means for real time object detection, we need 
an algorithm for computing such features that is 
competitive with Integral Images.  Such an algorithm is 
provided by computing a half-octave Gaussian pyramid 
using a Binomial filter as kernel. 

2.2. Half-Octave Gaussian Pyramid 
Computing a scale invariant local Jet for an NxN image 

requires computing second order derivatives (Laplacian of 
the Gaussian) of the image at Log(N) scales. A linear time 
pyramid algorithm for this calculation has been known 
since the 1980's [1, 3]. The result of this algorithm is a 
Half-Octave Gaussian Pyramid. An integer coefficient 
version of this algorithm [4] has been demonstrated using 
repeated convolutions of the binomial kernel (1,2,1). 
Implementations that compute such pyramids on PAL 
sized images at video rates exist for the current generation 
of computer work-stations.  

The pyramid algorithm is composed of an initial 
convolution with a Gaussian kernel filter G(x,y,σο) 
followed by a series of processing stages, k=1 to K, as 
shown in figure 1. In our experiments we used σ0=1.  For 
each stage k, the pyramid is composed of three images 
p0(x, y, k), p1(x, y, k), p2(x, y, k). At the kth stage, the 
image p0(x, y, k) is produced by resampling the image 
p2(x, y, k–1) by a factor of 2 in the x and y directions, 
using a re-sampling operator, S2{.}. 

 
p0(x, y, k) = S2{p2(x, y, k–1)} 
 

The image p1(x, y, k) is the result of 
 

p1(x, y, k) = p0(x, y, k) * G(x, y, σο) 
 

where "*" is the convolution operator. The image 
p2(x, y, k) is produced by   
 

 p2(x, y, k) = p1(x, y, k) * G(x, y, 2 σο) 
 

This scaled copy can be obtained by cascaded convolution 
with the Gaussian kernel filter: 

p2(x, y, k) = p1(x, y, k) * G(x, y, σο) * G(x, y, σο) 

 
 

G(x,y, o) 

G(x,y, 2 o) 

p0(x,y,k)  

p1(x,y,k)  

p2(x,y,k)  

S2{.} 

p2(x,y,kŠ1) 

 
Figure 1. Schema for the kth level in the pyramid. 

 
The result of repeating these stages is a sequence of 

images in which the scale factor grows a power of 2, while 
the computational cost decreases by a factor of 2. The 
process can be further accelerated by using a separable 
form of binomial approximation for the Gaussian filter, as 
shown by Riff [4].  
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Because each image in the pyramid has been smoothed 

by a Gaussian impulse response of σk=2kσo, differences of 
adjacent image pixels in the row and column directions are 
equivalent to convolution with Gaussian derivatives.   

 
∂p(x,y,k)

∂x
= p * Gx (x,y;2kσ 0) ≈ p(x + 1,y,k) − p(x −1, y,k)  

 
∂p(x,y,k)

∂y
= p * Gy (x,y;2kσ 0) ≈ p(x, y +1,k) − p(x, y −1,k)   

 
∂2 p(x, y,k)

∂x 2 = p *Gxx (x,y;2kσ 0)

≈ p(x +1, y,k) − 2p(x,y,k) + p(x −1,y,k)
 

 
∂ 2 p(x, y,k)

∂y 2 = p *Gyy (x,y;2kσ 0)

≈ p(x,y +1,k) − 2p(x,y,k) + p(x,y −1,k)
 

 
∂ 2 p(x,y,k)

∂y∂x
= p*Gxy (x,y;2kσ 0) ≈ p(x +1,y +1,k) − p(x +1,y −1,k)

−p(x −1,y +1,k) + p(x −1,y −1,k)

 

 
Derivative values may be easily determined for image 

positions between image samples using bilinear 
interpolation. Derivatives for scale values between the 
pyramid levels can be computed using quadratic 



 

interpolation between adjacent levels in the pyramid. In 
this way, Gaussian derivatives may be determined for any 
required value of x, y, σ.  

3. Adaboost with Gaussian Derivatives 
Adaboost has been proposed by Freund and Schapire 

[7] as an efficient learning algorithm for constructing a 
strong classifier as an additive combination of boosted 
weak classifiers that are individually only slightly better 
than random. At each iteration, adaboost determines a new 
weak classifier relative of the lowest value in the weight 
distribution in the training set. The principal advantage of 
Adaboost is that the training error converges exponentially 
towards zero and the generalization performance grows at 
each iteration when the null training error is reached by 
the algorithm [7]. 

3.1. Gaussian Derivative Feature Vector 
In our experiments we used a 24 x 24 window size. A 

half-octave pyramid for a 24 by 24 image window gives 
five pyramid levels with a total of 10 images, providing 
11140 Gaussian derivative features. These features are 
calculated in ten sub-levels between the first and fourth 
levels in the pyramid. In this feature set we ignore the 
initial stage of the pyramid, as well as regions within four 
pixels of the image boundaries.  Figure 2 illustrates the 
feature set, by showing the derivative impulse responses at 
different levels of a pyramid computed for an image 
window that contained a single impulse pixel surrounded 
by zeros.  

3.2. Cascade of Weak Classifiers 
The cascade of weak classifiers is successively applied 

to all image sub-windows. The first layer has a small 
number of weak classifiers that reject a pre-defined 
percentage of negative sub-windows and detect nearly 
100% of the positive sub-windows in the image. The next 
layer is then trained to reject the same percentage of 
negative sub-windows and detect nearly 100% of positive 
sub-windows using the sub-windows that were improperly 
classified by the previous layer. This procedure is repeated 
to provide a cascade of classifiers that increasingly 
concentrate on a reduced number of difficult sub-
windows. This technique allows an improvement in the 
detection speed with excellent detection and false 
positives rates. Viola and Jones [24] have shown that 
adaboost could be used to train a cascade of boosted 
classifiers using integral image features as simple 
classifiers.  

4. Experimental Results 
 In this section we report on our experiments comparing   

scale and orientation normalized Gaussian derivative 
features with integral image features for face detection by 
cascade of classifiers.  

4.1. Performance of Gaussian Derivatives 
Features vs. Integral Image Features  

To compare Gaussian derivative features with integral 
image features, we used Adaboost to train 400 weak 
classifiers for face detection in 24 x 24 pixel image 
windows with Gaussian Derivative features and with the 
Haar-like features provided by integral images. The 
training set consisted of 1000 face images and 1000 non-
faces images, while the test set consisted of 1000 face 
images and 30000 non-face images. Figure 3 compares the 
performance of the two detectors. In this figure we see that 
Gaussian derivative features systematically outperformed 
integral images for all 400 weak classifiers. 

The error rate of detection with Gaussian derivatives 
features decreases quickly with the number of Adaboost 
iterations. For the first ten iterations the error rate with 
Gaussian derivatives is less than half of the error rate for 
integral images, in the consecutive iterations the error rate 
detection for the Gaussian Features is less than one fourth 
of the error rate detection for integral images.  The false 
positive rate is also slightly better with Gaussian 
derivatives features gaining about 1%.  

Figure 2. Impulse responses for derivative features (py(x,y,1),
pyy(x,y,1), pxy(x,y,1), px(x,y,1), and  pxx(x,y,1),  calculated at
steps of ¨σ=0.3 by interpolation..  
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4.2. Cascade of Gaussian Derivatives Features 
To evaluate our approach, we have constructed a 

cascade of Gaussian classifiers with 15 layers. During the 
learning process we used a training set with 2000 face 
images. A training set of 4000 non-face images was used 
for the first layer; for each subsequent layer the non-face 
datasets contained 4000 non-face sub-windows 
bootstrapped from 3500 images without faces. The 
training process has been performed on a typical desktop 
2.0 Ghz Pentium-4 computer. The total training time was 
about 2 days. In comparison, Viola and Jones have used 
training data with 10000 face images, and 10000 non-face 
images with a feature set of 180000, for each layer, their 
training time seems to be in the order of weeks [24]. 

When applying the classifier for detection on arbitrary 
images, the pixels classified as “face” are clustered in 
order to obtain a single response for adjacent pixels. For 
detection, we retain a median window, supported by a 
sufficient number of face pixels.  

We tested the learned cascade on the MIT+CMU frontal 
face database [20].  Figure 4 shows the global result 
represented by a ROC curve. The test data set is composed 
of 130 images with 507 labeled faces (about 2% of the 
faces are cartoons, which we do not want our system to 
detect. Nevertheless, we include them in the results [15]). 
For this data set, we achieved a detection rate of 92% with 
a total of 350 false positives (operating point in the ROC 
curve).  

5. Conclusions 
The primary advantage of the integral images 

computation for Haar-like features is that it provides a 
very fast calculation for a very large set of image features. 
The resulting features are essentially binary coefficient 

image filters that tend to be sensitive to small changes in 
image position, scale and rotation. A cascade of boosted 
classifiers overcomes these sensitivities by brute force. 
However, the very large number of features used results in 
prohibitively long training times, making construction of 
new classifiers difficult. Furthermore, the resulting 
detector is only robust to changes in scale and orientation 
if the training data set contains positive examples at 
different scales and orientations.  

Gaussian Derivative features provide a natural 
alternative to integral images. As with integral images, a 
fast O(N) integer coefficient algorithm exists to provide a 
rich feature space, whit the advantage that the detectors in 
this feature space are much less sensitive to changes in 
scale and orientation. More importantly, the resulting 
detectors can easily be made invariant to scale and 
orientation effects by adapting the feature set to a 
reference scale and orientation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Error Detection and false positive rate values for a 400 weak classifiers trained with Gaussian features (yellow star) and Haar
Features (blue circle) using adaboost. (Notice: for best visualization we used a log scale for # selected features axis) 
 

Figure 4. ROC curve for our face detector on the MIT+CMU 
test set. The detector was run once using a step size of 1.1 and 
starting scale of 1.25 (73,130,500 sub-windows scanned) 
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Figure 5. Output of our face detector on a number of test
images from the MIT+CMU test set. 


