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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
  

€ 

! x  →     A vector of D variables.   
  

€ 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

€ 

! x 
 
 or   

€ 

! 
X  

k   index for cluster, data source or GMM Mode 
K   Total number of clusters, or sources, of events 
M   Total number of sample events.  

   

€ 

M = Mk
k=1

K

∑  

  

€ 

{
! 
X m}   A set of M Sample Observations (a training set) 

  

€ 

{! y m}    A set of indicator vectors for the training samples in   

€ 

{
! 
X m}  

     

€ 

! y m  indicates the source  Sk for each training sample   

€ 

! 
X m  

Note that     

€ 

! y m  can be a binary vector with k rows (1 for Sk and 0 for others) o r 
     

€ 

! y m  can be the probability that   

€ 

! 
X m ∈ Sk  

 
  

€ 

h(k,m) =
! y 1 "

! y m( )  Indicator variables in matrix form.  k rows, m columns 
 
Eulers Number "e"  e = 2.718281828… 
Expected Value:   E{X} = 1

M
Xm

m=1

M

∑  

Mean:    

€ 

µ = E{X}  
Variance:   

€ 

σ 2 = E X −µ( )2{ } = E X −E X{ }( )2{ } 
 
Gaussian or Normal Density:   

1-Dimension:   N (X;µ,σ  ) = 1
2πσ

e–(X−µ )2

2σ 2  

 

D-dimensions:   

    

€ 

p(
! 
X ) = N (

! 
X ; ! µ ,Σ) =

1

(2π)
D
2 det(Σ)

1
2

e
–1
2
(
! 
X – ! µ )T Σ−1(

! 
X – ! µ )
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Probability Density Functions 
A probability density function p(X), is a function of a continuous variable X such that 
 
1)  X is a continuous real valued random variable with values between  [–∞, ∞] 
2)  

€ 

p(X)
−∞

∞

∫ =1 

 
Note that p(X) is NOT a number but a continuous function.  
 
A probability density function defines the relatively likelihood for a specific value of 
X. Because X is continuous, the value of p(X) for a specific X is infinitely small.  To 
obtain a probability we must integrate over some range of X.  
To obtain a probability we must integrate over some range V of X.  
In the case of D=1, the probability that X is within the interval [A, B] is 
 
 P(X ∈ A,B"# $%) = p(x)dx

A

B

∫  

This integral gives a number that can be used as a probability.  
 
Note that we use upper case 

€ 

P(X ∈ A,B[ ]) to represent a probability value,  
and lower case p(X) to represent a probability density function.  
 

Bayes Rule with probability density functions 
Let 

€ 

ωk  represent the statement that a random variable is a member of class Ck
: 

€ 

ωk = X ∈ Ck  .    Bayes Rule can be used to compute this probability as:  
 
 

€ 

P(ωk | X) =
p(X |ωk )
p(X)

P(ωk ) =
p(X |ωk )P(ωk )

p(X |ω j )P(ω j )
j=1

K

∑
 

  

€ 

p(X |ωk )
p(X)

 IS a number, provided that 

€ 

p(X) = p(X |ωk )
k=1

K

∑ P(ωk ) 

This requires that the set of classes are disjoint and complete. Ever sample belongs to 
one and only one class Ck. 
 
Probability density functions are easily generalized to vectors of random variables.  
Let   

€ 

! 
X ∈ RD, be a vector random variables.   

A probability density function,   

€ 

p(
! 
X ), is a function of a vector of continuous variables 

1)    

€ 

! 
X  is a vector of D real valued random variables with values between  [–∞, ∞] 

2)  
  

€ 

p(
! 
X )d! x 

−∞

∞

∫ =1 
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The Central Limit theorem and Normal Densities. 
The "Central Limit Theorem" tells us that whenever the features an observation are 
the result of a sequence of N independent random events, the probability density of 
the features will tend toward a Normal or Gaussian density.  
 
The essence of the derivation is that repeated random events are modeled as repeated 
convolutions of density functions, and for any finite density function will tend 
asymptotically to a Gaussian (or normal) function.  For any non-ideal density p(X) :  
 as M →∞    p(X)*M → N(x; µ, σ)   
We can consider a sequence of random trials as a "source" of event 
 
 

 S  Source:  X  
 

 
The central limit theorem tells us that in this case, a normalized sum of many 
independent random variables will converge to a Normal or Gaussian density 
function:  
     

€ 

p(
! 
X ) = N (

! 
X ; ! µ ,Σ) 

 

Multivariate Normal Density Function 
 

 
 

    

€ 

p(
! 
X ) = N (

! 
X ; ! µ ,Σ) =

1

(2π)
D
2 det(Σ)

1
2

e
–1
2
(
! 
X – ! µ )T Σ−1(

! 
X – ! µ )

 

 
Where the parameters   

€ 

! 
µ ,  Σ are the first and second moments of the density. 

 
There are 3 parts to     

€ 

N (
! 
X ; ! µ ,  Σ):  

 
(1) 

€ 

1

(2π)
D
2 det(Σ)

1
2

, (2) 

€ 

e,    and  (3)  d(
!
X, !µ;Σ)2 = 1

2
!
X − !µ( )

T
Σ−1
!
X − !µ( )  
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1)   e = 2.7818281828… Euler’s Constant : 

€ 

ex∫ dx = ex .  Used to simplify the algebra. 
 

2) The term    (2π)
D
2 det(Σ)

1
2 is a normalization factor to assure an integral of 1. 

 

 (2π)
D
2 det(Σ)

1
2 = ... e–

1
2
(
!
X– !µ )T Σ–1(

!
X– !µ )

dx1 dx2...dxD∫∫∫  
 
det(Σ) is the determinant of Σ. This is a scalar value that can be computed from the 
elements of a square matrix and represents the volume of the linear transformation 
described by the matrix.   
 
For 1-D   det(a)  = a    

For 2-D   det a b
c d

!

"
#

$

%
&= a ⋅d − b ⋅c  

For 3-D det
a b c
d e f
g h i

!

"

#
#
#

$

%

&
&
&
= a ⋅det e f

h i

!

"
#
#

$

%
&
&+b ⋅det

f d
i g

!

"

#
#

$

%

&
&+ c ⋅det

d e
g h

!

"
#
#

$

%
&
&  

... 
For a Normal density, the determinant represents the volume of the density function.  
 

The mean is 

  

€ 

! 
µ = E{

! 
X } =

E{X1}
E{X2}
...

E{XD}

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

µ1
µ2

...
µD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

and the Covariance is    Σ = E{(
!
X – E{

!
X})(

!
X – E{

!
X})T}=

σ11 σ12 ... σ1D

σ21 σ22 ... σ2D
... ... " ...
σD1 σD2 ... σDD

#

$

%
%
%
%
%%

&

'

(
(
(
(
((

 

where  σ ij =
1
M

(xmi −µi )(xmj −µ j )
m=1

M

∑  

 
The result can be visualized by looking at the equi-probable contours.  
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Ellipses for 99%, 95%, 90%, 75%, 50%, and 20% of the mass  

 
If xi and xj are statistically independent, then   σij

 
 =0 

 
For positive values of σij, xi and xj  vary together.  
For negative values of σij, 

 xi and xj  vary in opposite directions.  
 
For example, consider features x1 = height (meters) and x2 =  weight (kg) 
 
In most people height and weight vary together and so σ12 would be positive 
 
The exponent of the Normal is the Mahalanobis distance:  
 
d(
!
X, !µ;Σ) = 1

2
!
X − !µ( )

T
Σ−1
!
X − !µ( )  

 
This is the distance between 

!
X  and the mean !µ  normalized by the covariance, Σ . 

The Mahalanobis distance provides a convenient distance metric when the individual 
components of 

!
X  have incommensurate units, such a meters and kgs.  
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Gaussian Mixture Models 
 

A Sum of Independent Sources 
 
Sometimes a population will result from a set of K different sources, Sk, each with it 
own unique independent random variables and Normal Density function.  
 

 

 

X  

 S  S1:  

 S  S2:  

 S  S3:   
 
In this case, the probability density is better represented as a weighted sum of normal 
densities.   
 

 
    

€ 

p(
! 
X ) = αk

k=1

K

∑ N (
! 
X ; ! µ k ,Σk ) 

 
Such a sum is referred to as a Gaussian Mixture Model (GMM).   
 
A GMM can be used to represent density functions multiple sources.  It can also be 
used to discover a set of subclasses within a global class.  
 
Each normal density is considered to be produced from a different source, indicated 
by the coefficients αk. 
We can see the coefficients {αk} as the relative frequencies (probabilities) for a set of 
independent "sources", Sk, for events. The αk coefficients represent the relative 
probability that an event came from a source Sk.  
 

For this to be a probability, we must assure that  

€ 

αk
k=1

K

∑ =1  

Thus the αk are form a probability Distribution: The probability of obtaining a sample 
from each Source.  
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Estimating Gaussian Mixture models from Training Data 
Estimating a Gaussian mixture model from training data is equivalent to discovering 
the source for each sample, and to estimate the mean and covariance   

€ 

( ! µ k ,Σk ) for each 
source.   
 
We will look at two possible algorithms for this: K-Means Clustering, and 
Expectation Maximization.  In both cases, the algorithm will iteratively construct a 
table, h(k,m) that assigns each sample to one of K clusters or sources.   
 
For K-Means, this will be a hard assignment,  
with h(k, m) = 1 if observation   

€ 

! 
X m  is assigned to cluster  Sk and 0 otherwise.   

 
This can be seen as equivalent to the indicator variable   

€ 

! y m    
 

 
  

€ 

h(k,m) =
1 if sample 

! 
X m ∈ Sk

0 Otherwise

# 
$ 
% 

 

 
h(k, m) = 1 if   

€ 

! 
X m  is assigned to cluster k, 0 otherwise.  

 
In the case of EM, this will be a soft assignment, in which h(k,m) represents the 
probability that sample   

€ 

! 
X m  comes from source (or cluster), Sk.  

 
 

€ 

h(k,m) = P(Xm ∈ Sk )  
 
In either case we must initialize the estimated clusters: This can be initialized with, 

  

€ 

! 
µ k
(0) = k ! µ 0

(0)
, 

€ 

Σk
(0) = I =

1 0
0 1
# 

$ 
% 

& 

' 
(   or any other convenient values.   

A good initial estimate leads to faster convergence, so always use domain knowledge 

to initialize   

€ 

! 
µ k
(0)

 and 

€ 

Σk
(0)when possible.  

 
K-means is sensitive to the starting point and can converge to a local minimum that is 
not the best estimate. EM is less sensitive and will generally converge to the global 
best estimate.  
 
K-Means and EM can be used to discover the classes for each training sample, and 
are thus used for Unsupervised Learning.    
 
They can also be used to estimate a multimodal density for a single class.  
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K-Means Clustering 
 
Assume a set of M sample observations   

€ 

{
! 
X m} , with each observation drawn from one 

of K clusters Sk.  Our problem is to discover an assignment table h(k, m) that assigns 
each observation,   

€ 

! 
X m  in the sample set to the “best” cluster, Sk.  

 

 
  

€ 

h(k,m) =
1 if sample 

! 
X m ∈ Sk

0 Otherwise

# 
$ 
% 

 

 
Given an estimate of the mean,   

€ 

! 
µ k , and covariance 

€ 

Σk  for each cluster, Sk. we can 
use the Mahalanobis Distance to determine the best cluster.  
 
For each cluster we can then refine the estimate of the mean,   

€ 

! 
µ k , and covariance 

€ 

Σk .  
 
This suggests an iterative process composed of two steps:  
 
1) Expectation:    For each sample,   

€ 

! 
X m , determine the most likely cluster Sk. using the 

distance to the current estimate of the mean,   

€ 

! 
µ k , and covariance 

€ 

Σk .  
 
2) Maximization:  For each cluster re-calcuate the mean,   

€ 

! 
µ k , and covariance 

€ 

Σk  using 
sample assignments in h(k,m).  
 

We can initialize the process to any value. For example,   

€ 

! 
µ k
(0) = k ! µ 0 ,   

€ 

Σk
(0) = I    

 
However,  it IS possible for K-means to be stuck in a local minimum, and the closer 
we start to the best values, the faster the process converges. 
 
We will seek to minimize a quality metric:  
For K-Means this is the sum of the Mahalanobis distances.  
 
  Q(i ) =

m=1

M

∑ h(i ) (k,m)
k=1

K

∑ (
!
Xm −

!
µk
(i ) )T Σk

(i )−1(
!
Xm −

!
µk
(i ) )  

 
Initially h(o)(m, k) = 0, i=0.    
We can stop the process after a fixed number of iterations, or when the assignment 
table does not change or when Q(i) pass reaches a global minimum.   
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Expectation:   
 
 i←i+1 
 

€ 

∀m =1,M : 
  

€ 

∀k = h(i) (k,m) = 0 
  

  

€ 

k = arg−min
k

(
! 
X m −

! 
µ k )T Σk

−1(
! 
X m −

! 
µ k ){ } 

  

€ 

h(i) (k,m)←1 
 
Maximization 

Mass:    

€ 

Mk = h(i) (k,m)
m=1

M

∑   is the number of samples attributed to source k.  

If Mk≠0:  

 Mean:   
  

€ 

µk
(i) =

1
M k

h(i) (k,m) ⋅
! 
X m

m=1

M

∑  

 

 Covariance:  
  

€ 

Σk
(i) =

1
M k

h(i) (k,m) ⋅ (
! 
X m −

! 
µ k )(
! 
X m −

! 
µ k )

T

m=1

M

∑  

 
That is, for each component of the covariance, 

€ 

σ ij
(i) :  

 
  σ ij

(i ) =
1
Mk

h(i ) (k,m) ⋅ (xmi −µki )(xmj −µkj )
m=1

M

∑  

 
At the end of each cycle:  
 

Quality:   
  

€ 

Q(i) =
m=1

M

∑ h(i) (m,k)
k=1

K

∑ (
! 
X m −

! 
µ k
(i) )T Σk

(i)−1(
! 
X m −

! 
µ k
(i) ) 

 
The process stops after a fixed number of cycles, or when the sample assignment 
does not change or the quality metric does not change.  
 
Each source can be interpreted as a separate class or as a mode in a Gaussian Mixture 
model, depending on the application. 
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The Expectation Maximization Algorithm (EM) 
 
As before, assume a set of M sample observations   

€ 

{
! 
X m} , with each observation drawn 

from one of K sources Sk.  Our problem is to discover an assignment table h(k, m) 
that assigns each observation,   

€ 

! 
X m  in the sample set to the “best” cluster, Sk.  For EM 

this will be a probability.   
 
EM iteratively estimates the probability for the assignment of each observation to 
each source.    
 
Expectation Maximization has many uses, including estimating the density functions 
for a Hidden Markov Model (HMM) as well as for estimating the parameters for a 
Gaussian Mixture model.  
 
For a Gaussian Mixture model, a probability density is represented as a weighted sum 
of normal densities.   
 

 
    

€ 

p(
! 
X ) = αk

k=1

K

∑ N (
! 
X ; ! µ k ,Σk ) 

 
It is sometimes convenient to group the parameters for each source into a single 
vector:  
 
   

€ 

! v k = (αk ,
! 
µ k ,Σk )  

 
The complete set of parameters is a vector with K·P coefficients. 
For a feature vector of D dimensions,   

€ 

! 
ν k   has P = 1 + D + D(D+1)/2  coefficients.  

 
To estimate   

€ 

{αk ,
! 
µ k ,Σk}  we need the assignment of samples to source, h(k,m). 

To estimate h(k,m) we need the parameters   

€ 

{αk ,
! 
µ k ,Σk} 

 
This leads to an iterative two-step process in which we alternately estimate  h(k,m).  
and then   

€ 

{αk ,
! 
µ k ,Σk}.  

 
The EM algorithms constructs a table, h(k,m)  
Unlike  K-Means, h(k,m) will contain probabilities. 
 
   

€ 

h(k,m) = P(
! 
X m ∈ Sk )  
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Initialization:  
 Choose K (the number of sources). Use domain knowledge if possible.  
 set i=0.  
 Form an initial estimate for    

€ 

! v (0) = (αk
(0), ! µ k

(0) ,Σk
(0) ) for k = 1 to K.  

As with K-means, this can be initialized with 

€ 

αk
(0) =

1
K ,    

€ 

! 
µ k
(0) = k ! µ 0 ,  

€ 

Σk
(0) = I    

or with any reasonable first estimation. The closer the initial estimate, the faster the 
algorithm converges. Domain knowledge is useful here.  
 
Expectation step (E) 
 
let  i ← i+1 
 
Calculate the table  

€ 

h(i) (k,m) using the training data and estimated parameters. 
 
   

€ 

h(i) (k,m) = P(
! 
X m ∈ Sk | {Xm},

! 
ν (i−1) )  

 
which gives :  
 

 

    

€ 

h(i) (k,m)← αk
(i−1)N (

! 
X m ,
! 
µ k
(i−1) ,Σk

(i−1) )

α j
(i−1)N (

! 
X m ,
! 
µ j
(i−1) ,Σ j

(i−1) )
j=1

K

∑
 

 
Maximization Step (M) 
 Estimate the parameters   

€ 

! 
ν (i)  using 

€ 

h(i) (k,m) 
 

 Mass:   

€ 

Mk
(i) ← h(i) (k,m)

m=1

N

∑  (Note: Mk is a real) 

 

 Probability:  

€ 

αk
(i) ←

Mk
(i)

M
=
1
M

h(i) (k,m)
m=1

M

∑   

 

 Mean:  
  

€ 

! 
µ k
(i) ←

1
M k

(i) h(i) (k,m)
m=1

M

∑
! 
X m  

 

 Covariance:  
  

€ 

Σk
(i) ←

1
M k

(i) h(i) (k,m)
m=1

M

∑ (
! 
X m −

! 
µ k
(i) )(
! 
X m −

! 
µ k
(i) )T  
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Convergence Criteria 
 
The quality metric is the Log-likelihood of the probability of obtaining the data given 
the parameters.  
 

 
    

€ 

Q(i) = ln{p({
! 
X n} |

! 
ν (i) )} = ln

m=1

M

∑ α j
(i)N (

! 
X m |µ j

(i),Σ j
(i) )

j=1

K

∑
& 
' 
( 

) ( 

* 
+ 
( 

, ( 
 

 
It can be shown that, for EM, the log likelihood will converge to a stable maximum.  
The change in Q will monotonically decrease.  This can be used to define a halting 
condition:   
 
 If   ∆Q = Q(i) – Q(i-1) is less than a threshold, halt.  
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Using Gaussian Mixture Models with Baye's Rule 
There are many ways that Gaussian Mixture Models can be used with Bayes Rule.  
 
Supervised Learning:  
Given a set of M Training samples 

!
Xm{ }  with ground-truth indicator variables {ym}  

telling the class for each sample, most classic techniques assumed that each class was 
represented by a single Normal (or Gaussian ) density  function. This is often an 
oversimplification that can lead to poor classification performance.   
 
A Gaussian Mixture Model can be used to represent an arbitrarily complex density 
function for each class as a sum of Gaussians.   
 

 p(
!
X ; !vk ) = αn

n=1

Nk

∑ N (
!
X ; !µn ,Σn )  

 
Where !vk = {N,α1,

!
µ1,Σ1,...,αN ,

!
µN ,ΣN )  are the parameters for the density function for the  

kth class.  
 
The most likely class for an observation x can be estimated using:  
 

P(ωk |
!
X ) =

p(
!
X |ωk )
p(
!
X )

P(ωk ) =
p(
!
X |ωk )P(ωk )

p(
!
X |ω j )P(ω j )

j=1

K

∑
=
p(
!
X ; "vk )P(ωk )

p(
!
X ; "v j )P(ω j )

j=1

K

∑
=

αn
n=1

Nk

∑ N (
!
X ; !µn ,Σn )P(ωk )

αn
n=1

Nk

∑ N (
!
X ; !µn ,Σn )P(ω j )

j=1

K

∑
 

 
In this case  EM (or K-means) make it possible to estimate the parameter vectors, !vk  
for each class.  
 
Unsupervised Learning:  
Given a set of M Training samples 

!
Xm{ }without ground-truth indicator variables, 

then we can use EM (or K-means) to estimate the source for each sample.  If we 
assume that each source is a independent class with a Normal density function, then 
we can use each component of the mixture model as a class.  
 

In this case p(
!
X |ωk ) =αkN (

!
X; !µk,Σk )  and   P(ωk |

!
X) = p(

!
X |ωk )
p(
!
X)

P(ωk ) =
αkN (

!
X; !µk,Σk )

α jN (
!
X; !µ j,Σ j )

j=1

K

∑
 

  


