

Intelligent Systems: Reasoning and Recognition

James L. Crowley

MoSIG M1 Winter Semester 2021
Lesson 8 4 March 2021

Artificial Neural Networks
Outline

Notation .. 2	

Introduction .. 3	
Key Equations ... 3	
Artificial Neural Networks ... 4	
The Multilayer Neural Network model .. 6	
Initializing the weights ... 9	

Backpropagation .. 10	
Derivation of Backpropagation as gradient Descent. 13	
General formula for the error term ... 17	
Formula for multiple activations .. 18	
Summary of Backpropagation .. 19	

Artificial Neural Networks

2

Notation

xd A feature. An observed or measured value.

€

!
X A vector of D features.
D The number of dimensions for the vector

€

!
X

€

{! x m}

€

{ym} Training samples for learning.
M The number of training samples.

€

aj
(l) the activation output of the jth neuron of the lth layer.

€

wij
(l) the weight from unit i of layer l–1 to the unit j of layer l.

€

bj
l bias for unit j of layer l.

€

η A learning rate. Typically very small (0.01). Can be variable.
L The number of layers in the network.

€

δm
out = am

(L) − ym() Output Error of the network for the mth training sample

€

δ j,m
(l) Error for the jth neuron of layer l, for the mth training sample.
Δwij,m

(l) = ai
(l−1)δ j,m

(l) Update for weight from unit i of layer l–1 to the unit j of layer l.
Δbj,m

(l) = δ j,m
(l) Update for bias for unit j of layer l.

Artificial Neural Networks

3

Introduction

Key Equations

 Feed Forward from Layer i to j:

€

aj
(l) = f wij

(l)ai
(l−1) +bj

(l)

i=1

N (l−1)

∑
$

%
& &

'

(
))

 Feed Forward from Layer j to k:

€

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N (l)

∑

$
% %

&

'
((

 Back Propagation from Layer j to i:

€

δi,m
(l−1) =

∂f (zi
(l−1))

∂zi
(l−1) wij

(l)δ j,m
(l)

j=1

N (l)

∑

 Back Propagation from Layer k to j:

€

δ j,m
(l) =

∂f (z j
(l))

∂zj
(l) wjk

(l+1)δk ,m
(l+1)

k=1

N (l+1)

∑

 Weight and Bias Corrections for layer j: Δwij,m

(l) = ai
(l−1)δ j,m

(l)
 Δbj,m

(l) = δ j,m
(l)

 Network Update Formulas: wij

(l)← wij
(l) −η ⋅ Δwij,m

(l)
 bj

(l)← bj
(l) −η ⋅ Δbj,m

(l)

Artificial Neural Networks

4

Artificial Neural Networks
Artificial Neural Networks, also referred to as “Multi-layer Perceptrons”, are
computational structures composed a weighted sums of “neural” units. Each neural
unit is composed of a weighted sum of input units, followed by a non-linear decision
function.

The simplest possible neural network is composed of a single neuron.

A “neuron” is a computational unit that integrates information from a vector of
features,

€

!
X , to compute the likelihood of an activation, a. The neuron is composed of

a weighted sum of input values

€

z = w1x1 +w2x2 + ...+wDxD +b followed by a non-
linear “activation” function,

€

f (z)

€

a = f (! w T
"
X + b)

Many different activation functions may be used. Historically, the classic activation
function is the sigmoid (or Logistic) activation function:

σ(z) = 1
1+ e− z

=
ez

ez +1

The sigmoid has long been used in biology and in economics to model processes that
grow exponentially to a point of saturation. For example, the population of bacteria
during fermentation, or the growth in performance of a new technology.

The sigmoid is useful because the derivative is:

€

dσ (z)
dz

=σ (z)(1−σ (z))

Another classic decision functions is the hyperbolic tangent:

€

f (z) = tanh(z) =
ez − e−z

ez + e−z

Artificial Neural Networks

5

For multiple classes, we can use the Softmax activation function.

€

f (zk) =
ezk

ezk
k=1

K
∑

The softmax function takes as input a vector

!z of K real numbers, and normalizes it
into a probability distribution consisting of K probabilities.

The softmax function is used to select the maximum from a vector of activations for
K classes. Before applying softmax, the vector components of

!z will generally not
sum to 1, and some of the components may be negative, or greater than one. After
applying softmax, each component will be in the interval [0, 1] and the components
will sum to 1. Thus the output can be interpreted as a probability distribution
indicating the likelihood of each component.

Softmax is used as the last activation function of a neural network to normalize the
output of a network to a probability distribution over predicted output classes.

The rectified linear function is popular for deep learning because of a trivial
derivative:

relu(z) =max(0, z)

For z≤ 0 d(relu(z))dz
= 0 for z > 0 :

€

d(relu(z))
dz

=1

Recently, a variation of RELU called GELU (Gaussian Error Linear Unit) has gained
popularity.

gelu(z) = 0.5z 1+ 2
π

e−x
2

0

z

2

∫ dx

$

%

&
&
&

'

(

)
)
)

From Wikipedia: By Ringdongdang -
https://commons.wikimedia.org/w/index.php?curid=95947821

Artificial Neural Networks

6

The Multilayer Neural Network model

A neural network is a multi-layer assembly of neurons. For example, this is a 2-layer
network:

The circles labeled +1 are the bias terms.
The circles on the left are the input terms. Some authors, notably in the Stanford
tutorials, refer to this as Level 1.

We will NOT refer to this as a level (or, if necessary, level L=0).
The rightmost circle is the output layer, also called L.
The circles in the middle are referred to as a “hidden layer”. In this example there is
a single hidden layer and the total number of layers is L=2.

The parameters carry a superscript, referring to their layer.
We will use the following notation:
L The number of layers (Layers of non-linear activations).
l The layer index. l ranges from 0 (input layer) to L (output layer)
N(l) The number of units in layer l. N(0)=D

€

aj
(l) The activation output of the jth neuron of the lth layer.

€

wij
(l) The weight from the unit i of layer l-1 for the unit j of layer l.

€

bj
(l) The bias term for jth unit of the lth layer

f(z) A non-linear activation function, such as a sigmoid, relu or tanh.

For example:

€

a1
(2) is the activation output of the first neuron of the second layer.

€

W13
(2) is the weight for neuron 1 from the first level to neuron 3 in the second level.

The above network would be described by:

€

a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 +b1
(1))

€

a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 +b2
(1))

€

a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 +b3
(1))

€

a1
(2) = f (w11

(2)a1
(1) +w21

(2)a2
(1) +w31

(2)a3
(1) +b1

(2))

Artificial Neural Networks

7

This can be generalized to multiple layers. For example:

 !am

(3) is the vector of network outputs (one for each class) at the third layer.

Each unit is defined as follows:

€

a1
(l−1)

 …

€

aN (l−1)
(l−1)

+1

€

f z j
(l)()

€

zj
(l)

€

aj
(l)

€

wij
(l)

€

wN (l−1) j
(l)

€

bj
(l)

…
€

w1 j
(l)

€

ai
(l−1)

€

wjk
(l+1)

The notation for a multi-layer network is

€

! a (0) =
!
X is the input layer.

€

ai
(0) = Xd

 l is the current layer under discussion.
 N(l) is the number of activation units in layer l. N(0) = D
 i,j,k Unit indices for layers l-1, l and l+1: i→j→k

€

wij
(l) is the weight for the unit i of layer l-1 feeding to unit j of layer l.

€

aj
(l) is the activation output of the jth unit of the layer l

€

bj
(l) the bias term feeding to unit j of layer l.

€

zj
(l) = wij

(l)ai
(l−1) +bj

(l)

i=1

N (l−1)

∑ is the weighted input to jth unit of layer l

 f(z) is a non-linear decision function, such as a sigmoid, tanh(), or soft-max

€

aj
(l) = f (zj

(l)) is the activation output for the jth
 unit of layer l

For layer l this gives:

€

zj
(l) = wij

(l)ai
(l−1)

i=1

N (l−1)

∑ +bj
(l)

€

aj
(l) = f wij

(l)ai
(l−1) +bj

(l)

i=1

N (l−1)

∑
$

%
& &

'

(
))

and then for l+1 :

€

zk
(l+1) = wjk

(l+1)aj
(l)

j=1

N (l)

∑ +bk
(l+1)

€

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N (l)

∑

$
% %

&

'
((

Artificial Neural Networks

8

It can be more convenient to represent the network using vectors:

€

! z (l) =

z1
(l)

z2
(l)

"
zN l

(l)

"

$
$
$
$

%

&

'
'
'
'

€

! a (l) =

a1
(l)

a2
(l)

"
aN l

(l)

"

$
$
$
$

%

&

'
'
'
'

and to write the weights and bias at each level l as a k by j Matrix,

€

W (l) =

w11
(l) ! w1i

(l) ! w1N (l−1)
(l)

" # " $ "
wj1
(l) ! wji

(l) ! wjN (l−1)
(l)

" $ " # "
wN (l) 1
(l) ! wN (l)i

(l) ! wN (l)N (l−1)
(l)

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

€

!
b (l) =

b1
l

"
bi

l

"
bN (l−1)

l

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

(note: To respect matrix notation, we have reversed the order of i and j in the
subscripts.)

We can see that the weights are a 3rd order Tensor or vector of matrices, with one
matrix for each layer, The biases are a matrix (vector of vectors) with a vector for
each level.

€

! z (l) = W (l) ! a (l−1) +
"
b (l) and

€

! a (l) = f (! z (l)) = f (W (l)! a (l−1) +
!
b (l))

We can assemble the set of matrices

€

W (l) into an 3rd order Tensor (Vector of
matrices), W, and represent

€

! a (l),

€

! z (l) and

€

!
b (l) as matrices (vectors of vectors): A, Z,

B.

So how to do we learn the weights W and biases B?

We could train a 2-class detector from a labeled training set

€

{
!
X m} ,

€

{ym} using gradient
descent. For more than two layers, we will need to use the more general “back-
propagation” algorithm.

Back-propagation adjusts the network the weights

€

wij
(l) and biases

€

bj
(l) so as to

minimize an error function between the network output

€

! a m
L and the target value

€

! y m for
the M training samples

€

{
!
X m} ,

€

{! y m}.

Artificial Neural Networks

9

This is an iterative algorithm that propagates an error term back through the hidden
layers and computes a correction for the weights at each layer so as to minimize the
error term.

This raises two questions:
1) How do we initialize the weights?
2) How do we compute the error term for hidden layers?

Initializing the weights
How do we initialize the weights?
The obvious answer is to initialize all the weights to 0.
However, this causes problems.

If the parameters all start with identical values, then the algorithm will end up
learning the same value for all parameters. To avoid this, the parameters should be
initialized with small random variables that are near 0, for example computed with a
normal density with variance ε (typically 0.01).

€

∀
i, j ,l
wji
(l) = N (X;0,ε) and

€

∀
j,l
bj
(l) = N (X;0,ε) where

€

N is a sample from a normal

density.

An even better solution is provided by Xavier GLOROT’s technique (see course web
site for a paper on Xavier normalization).

Artificial Neural Networks

10

Backpropagation

Back propagation is a distributed parallel algorithm for computing gradient descent.
Back-propagation propagates the error term back through the layers, using the
weights. We will present this for individual training samples. The algorithm can
easily be generalized to learning from sets of training samples (Batch mode).

Given a training sample,

€

!
X m , we first propagate the

€

!
X m through the L layers of the

network (Forward propagation) to obtain an output activation

€

! a (L) .

We then compute an error term. In the case, of a multi-class network, this is a vector,
with k components, one output for each hypothesis. In this case the indicator vector
would be a vector, with one component for each possible class:

!
δm
(out) =

!am
(L) −
!ym() or for each class k: δk,m(out) = ak,m

(L) − yk,m()

To keep things simple, let us consider the case of a two class network, so that

€

δm
out ,

€

h(
!
X m),

€

am
(L) , and

€

ym are scalars. The results are easily generalized to vectors for multi-
class networks.

 For a single neuron, at the output layer, the “error” for each training sample is:

 δm

out = am
(L) − ym()

The error term

€

!
δ m
out is the total error for the whole network for sample m. This error is

used to compute an error for the weights that activate the neuron:

€

δm =
∂f (z)
∂z

δm
out

This correction is then used to determine a correction term for the weights:

 Δwd,m = xdδm
 Δbm = δm

Artificial Neural Networks

11

Backpropagation can be generalized for multiple neurons at multiple layers (l=1 to
L). The error term for unit k at layer L is:

 δk ,m
(L) =

∂f (zk
(L))

∂zk
(L)

δm
out

For the hidden units in layers l < L the error

€

δ j
(l) is based on a weighted average of the

error terms for

€

δk
(l+1) .

€

δ j,m
(l) =

∂f (z j
(l))

∂zj
(l) wjk

(l+1)δk,m
(l+1)

k=1

N l+1

∑

We compute error terms,

€

δ j
(l) for each unit j in layer l back to layer l–1 using the sum

of errors times the corresponding weights times the derivative of the activation
function. This error term tells how much the unit j was responsible for differences
between the activation of the network

€

!
h (! x m;wjk

(l) ,bk
(l)) and the target value

€

! y m .

For the sigmoid activation function,

€

σ (z) =
1

1+ e−z
 the derivative is:

€

dσ (z)
dz

=σ (z)(1−σ (z))

For

€

aj
(l) = f (zj

(l)) this gives:

€

δ j,m
(l) = aj ,m

(l) (1− aj ,m
(l)) ⋅ wjk

(l+1)δk,m
(l+1)

k=1

N (l+1)

∑

This error term can then used to correct the weights and bias terms leading from layer
j to layer i.

 Δwij,m

(l) = ai
(l−1)δ j,m

(l)
 Δbj,m

(l) = δ j,m
(l)

Note that the corrections

€

Δwij,m
(l) and

€

Δbj ,m
(l) are NOT applied until after the error has

propagated all the way back to layer l=1, and that when l=1,

€

ai
(0) = xi .

For “batch learning”, the corrections terms,

€

Δwji,m
(l) and

€

Δbj ,m
(l) are averaged over M

samples of the training data and then only an average correction is applied to the
weights.

Artificial Neural Networks

12

€

Δwij
(l) =

1
M

Δwij,m
(l)

m=1

M

∑

€

Δbj
(l) =

1
M

Δbj,m
(l)

m=1

M

∑

then

 wij

(l)← wij
(l) −η ⋅ Δwij

(l) bj
(l)← bj

(l) −η ⋅ Δbj
(l)

where

€

η is the learning rate.

Back-propagation is equivalent to computing the gradient of the loss function for
each layer of the network. A common problem with gradient descent is that the loss
function can have local minimum. This problem can be minimized by regularization.
A popular regularization technique for back propagation is to use “momentum”

 wij

(l) ← wij
(l) −η ⋅ Δwij

(l) + µ ⋅wij
(l)

 bj
(l)← bj

(l) −η ⋅ Δbj
(l) +µ ⋅bj

(l)

where the terms

€

µ ⋅wj
(l) and

€

µ ⋅bj
(l) serves to stabilize the estimation.

The back-propagation algorithm may be continued until all training data has been
used. For batch training, the algorithm may be repeated until all error terms,

€

δ j,m
(l) , are

a less than a threshold.

Artificial Neural Networks

13

Derivation of Backpropagation as gradient Descent.

To derive the backpropagation equations, consider a simple 2 layer network with 1
neuron at each level that maps a scalar feature, x, to a activation a(2).

a(1)z(1)w(1)

f (z(1))

+1

b(2)b(1)

a(2)z(2)x

f (z(2))

w(2)

+1

The network equations are

 z(1) = w(1)x + b(1)
 a(1) = f (z(1)) = f (w(1)x + b(1))
 z(2) = w(2)a(1)+ b(2)
 a(2) = f (z(2)) = f (w(2)a(1) + b(2))

The network has 4 parameters

 !w =

w(1)

b(1)

w(2)

b(2)

!

"

#
#
#
##

$

%

&
&
&
&&

The “cost”, C, of the error of the network for using the parameters
to discriminate the input, x, with ground truth, y, is:

 C = 1

2
a(2) − y()

2 	

Where we have multiplied by "1/2" to simplify the algebra.

The gradient of the cost with respect to each of the parameters in !w
tells us how much each parameter contributed to the error.

Artificial Neural Networks

14

€

am
(1)

€

zm
(1)

€

f (zm
(1))

€

∇Cm

€

Δb(1)

€

am
(2)

€

zm
(2)

€

f (zm
(2))

€

Δw2)

€

Δw(1)

€

Δb(2)

For our 2 layer network.

∇C = ∂C

∂
!w
=

∂C
∂w(1)

∂C
∂b(1)

∂C
∂w(2)

∂C
∂b(2)

"

#

$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'

=

∆ w(1)

∆ b(1)

∆ w(2)

∆ b(2)

"

#

$
$
$
$$

%

&

'
'
'
''

To evaluate these derivatives we use the chain rule. For example the derivative with
of the cost with respect to the weight of the second neuron, w(2) is

 ∂C

∂w(2) =
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
⋅
∂z(2)

∂w(2) =∆ w
(2)

This can be seen graphically as:

∂C
∂a(2)

a(2)z(2)

f (z(2))

∂a(2)

∂z(2)

∂z(2)

∂w(2)
∆ w(2)

The derivative with respect to b(2) is:

 ∂C

∂b(2)
=
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
⋅
∂z(2)

∂b(2)
=∆ b(2)

This can be seen graphically as:

 ∆ b(2)

∂z(2)

∂b(2)

∂C
∂a(2)

a(2)z(2)

f (z(2))

∂a(2)

∂z(2)

We can simplify the notation by defining an error term for each neuron.

Artificial Neural Networks

15

Let δ (out) = a(2) − y() = ∂C
∂a(2)

 be the error for the error for the network for training sample

x with ground truth indicator y.

The error term for 2nd neural unit is δ (2) =
∂a(2)

∂z(2)
⋅δ (out)

"

#
$

%

&
'=

∂ f (z(2))
∂z(2)

⋅δ (out)
"

#
$

%

&
'

with this notation Δw(2) =
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
#

$
%

&

'
(⋅
∂z(2)

∂w(2) =
∂z(2)

∂w(2) ⋅δ
(2)

Reordering the terms and noting that ∂z

(2)

∂w(2) =
∂(w(2)a(1) + b(2))

∂w(2) = a(1)

gives: Δw(2) = a(1) ⋅δ (2) δ (out)

a(2)z(2)

f (z(2))

δ (2)

∂f (z(2))
∂z(2)

Δw(2) = δ (2) ⋅a(1)

Similarly for the bias term for the 2nd neural unit: Δb(2) = ∂C
∂a(2)

⋅
∂a(2)

∂z(2)
#

$
%

&

'
(⋅
∂z(2)

∂b(2)
= δ (2) ⋅

∂z(2)

∂b(2)

Noting that ∂z

(2)

∂b(2)
=
∂(w(2)a(1) + b(2))

∂b(2)
=1

We obtain: Δb(2) = δ (2)
δ (2)

∆ b(2)

a(2)z(2)

f (z(2))

∂f (z(2))
∂z(2)

δ (out)

For the next layer we continue the same process recursively

The derivative of the cost with respect to w(1) is:

 Δw(1) =
∂C
∂w(1) =

∂C
∂a(2)

⋅
∂a(2)

∂z(2)
$

%
&

'

(
)⋅

∂z(2)

∂a(1)
$

%
&

'

(
)⋅

∂a(1)

∂z(1)
$

%
&

'

(
)⋅
∂z(1)

∂w(1)

Artificial Neural Networks

16

Substituting δ (2) =
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
"

#
$

%

&
' gives Δw(1) = δ (2) ⋅

∂z(2)

∂a(1)
#

$
%

&

'
(⋅

∂a(1)

∂z(1)
#

$
%

&

'
(⋅
∂z(1)

∂w(1)

Substituting w(2) =
∂(w(2)a(1) + b(2))

∂a(1)
=
∂z(2)

∂a(1)
!

"
#

$

%
& gives Δw(1) = δ (2) ⋅w(2) ⋅

∂a(1)

∂z(1)
#

$
%

&

'
(⋅
∂z(1)

∂w(1)

Substituting ∂ f (z(1))
∂z(1)

=
∂a(1)

∂z(1)
!

"
#

$

%
& gives Δw(1) = δ (2) ⋅w(2) ⋅

∂ f (z(1))
∂z(1)

#

$
%

&

'
(⋅

∂z(1)

∂w(1)

#

$
%

&

'
(

Substituting x = ∂(w
(1)x + b(1))
∂w(1) =

∂z(1)

∂w(1)

!

"
#

$

%
& gives Δw(1) = δ (2) ⋅w(2) ⋅

∂ f (z(1))
∂z(1)

#

$
%

&

'
(⋅ x

We define the error term for level 1 as δ (1) = δ (2) ⋅w(2) ⋅
∂ f (z(1))
∂z(1)

"

#
$

%

&
'

Rearranging the terms gives: Δw(1) = x ⋅δ (1)

∂C
∂a(2)

∂f (z(2))
∂z(2)

w2x
∆ w(1) a(1)z(1) a(2)z(2)

f (z(2))f (z(1))

∂f (z(1))
∂z(1)

δ (2) δ (out)δ (1)

Similarly for the correction factor of b(1)

Δb(1) = ∂C
∂b(1)

=
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
$

%
&

'

(
)⋅

∂z(2)

∂a(1)
$

%
&

'

(
)⋅

∂a(1)

∂z
$

%
&

'

(
)⋅
∂z(1)

∂b(1)

∂C
∂a(2)

∂f (z(2))
∂z(2)

w2a(1)z(1) a(2)z(2)

f (z(2))f (z(1))

∂f (z(1))
∂z(1)

δ (2) δ (out)δ (1)

1

∆ b(1)

Substituting δ (2) =
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
"

#
$

%

&
' gives Δb(1) = δ (2) ⋅ ∂z

(2)

∂a(1)
#

$
%

&

'
(⋅

∂a(1)

∂z(1)
#

$
%

&

'
(⋅
∂z(1)

∂b(1)

Substituting w(2) =
∂(w(2)a(1) + b(2))

∂a(1)
=
∂z(2)

∂a(1)
!

"
#

$

%
& gives Δb(1) = δ (2) ⋅w(2) ⋅

∂a(1)

∂z(1)
#

$
%

&

'
(⋅
∂z(1)

∂b(1)

Artificial Neural Networks

17

Substituting ∂a(1)

∂z(1)
!

"
#

$

%
&=

∂ f (z(1))
∂z(1)

 gives Δb(1) = δ (2) ⋅w(2) ⋅
∂ f (z(1))
∂z(1)

#

$
%

&

'
(⋅

∂z(1)

∂b(1)
#

$
%

&

'
(

noting ∂z(1)

∂b(1)
!

"
#

$

%
&=

∂(w(1)x + b(1))
∂w(1) =1 and substituting δ (1) = δ (2) ⋅w(2) ⋅

∂ f (z(1))
∂z(1)

"

#
$

%

&
'

Gives: Δb(1) = δ (1)

General formula for the error term

In general, the chain rule ∂C

∂w(l) =
∂C
∂a(L)

⋅
∂a(L)

∂z(L)
⋅
∂z(L)

∂a(L−1)
⋅!⋅

∂z(l+1)

∂a(l)
⋅
∂a(l)

∂w(l)

Provides a recursive formula for each neural unit:

 δ (l) =
∂ f (z(l))
∂z(l)

⋅w(l+1) ⋅
∂ f (z(l+1))
∂z(l+1)

⋅w(l+2) ⋅ !⋅
∂ f (z(L))
∂z(L)

⋅δ (out)
"

#
$

%

&
'

"

#
$$

%

&
''

"

#
$$

%

&
''

"

#
$
$

%

&
'
'

Giving a simple formula for adjusting the values of weights and biases
	

Δw(l) = a(l−1)δ (l) and Δb(l) = δ (l)

+1

b(L)

a(L)z(L)

f (z(L))

w(L)…

δ (2) =
∂ f (z(2))
∂z(2)

⋅w(3) ⋅δ (3)
"

#
$

%

&
'δ (1) =

∂ f (z(1))
∂z(1)

⋅w(2) ⋅δ (2)
"

#
$

%

&
'

δm
(2)δm

(1)

δ (L) =
∂ f (z(L))
∂z(L)

⋅δ (out)
"

#
$

%

&
'

δm
(3) δ (out) = (a(L) − y)

a(1)z(1)w(1)

f (z(1))

+1

b(2)b(1)

a(2)z(2)xm

f (z(2))

w(2)

+1

w(3)

δ (3) = ...

Artificial Neural Networks

18

Formula for multiple activations

In the case where there are N neural units at level l+1,
the error at level l is the weighted sum of the errors at level l+1.
	

δ (l) =
∂ f (z(l))
∂z(l)

⋅ wk
l+1 ⋅δk

(l+1)

k=1

N

∑
#

$
%

&

'
(

+1

a(l)z(l)w(l)

b(l)

δ (l)

f (z(l))

w1
(l+1)

wk
(l+1)

wN
(l+1)

a(l−1)
δk
(l+1)

δ1
(l+1)

δN
(l+1)

∂ f (z(l))
∂z(l)

Artificial Neural Networks

19

Summary of Backpropagation

The Back-propagation algorithm can be summarized as:

1) Initialize the network and a set of correction vectors:

€

∀
i, j ,l
wji
(l) = N (X;0,ε)

€

∀
i,l
bj
(l) = N (X;0,ε)

€

∀
i, j ,l
Δwji

(l) = 0

€

∀
i,l
Δbj

(l) = 0

where

€

N is a sample from a normal density, and

€

ε is a small value.

2) For each training sample,

€

! x m, propagate

€

! x m through the network (forward
propagation) to obtain a network activation

€

am
(L) . Compute the error and propagate

this back through the network:

 a) Compute the network error term: δmout = am

(L) − ym()

 b) Compute the error term at Layer L:

€

δm
(L) =

∂f (zj
(l))

∂zj
(l) δm

out

 c) Propagate the error back from l=L-1 to l=1:

€

δ j,m
(l) =

∂f (z j
(l))

∂zj
(l) wjk

(l+1)δk ,m
(l+1)

k=1

N (l+1)

∑

 d) Use the error at each layer to set a vector of correction weights.

 Δwij,m

(l) = ai
(l−1)δ j,m

(l) Δbj,m
(l) = δ j,m

(l)

3) For all layers, l=1 to L, update the weights and bias using a learning rate,

€

η

 wij

(l) ← wij
(l) −η ⋅ Δwij,m

(l) + µ ⋅wij
(l)

 bj
(l)← bj

(l) −η ⋅ Δbj,m
(l) +µ ⋅bj

(l)

Note that this last step can be done with an average correction matrix obtained from
many training samples (Batch mode), providing a more efficient algorithm.

