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Notation 
 
xd A feature.  An observed or measured value.  
  

€ 

! 
X  A vector of D  features.   
D The number of dimensions for the vector    

€ 

! 
X  

  

€ 

{! x m} 

€ 

{ym} Training samples for learning.  
M The number of training samples.  

€ 

aj
(l )   the activation output of the jth neuron of the lth layer.  

€ 

wij
(l )  the  weight from unit i of layer l–1 to the unit j of layer l. 

€ 

bj
l    bias for  unit j of layer l. 

€ 

η  A learning rate. Typically very small (0.01). Can be variable. 
L The number of layers in the network.  

€ 

δm
out = am

(L ) − ym( )   Output Error of the network for the mth training sample 

€ 

δ j,m
(l )  Error for the jth neuron of layer l, for the mth training sample.  
Δwij,m

(l ) = ai
(l−1)δ j,m

(l )  Update for weight from unit i of layer l–1 to the unit j of layer l.  
Δbj,m

(l ) =  δ j,m
(l )  Update for bias for unit j of layer l.  
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Introduction 
 
Key Equations  
 

 Feed Forward from Layer i to j:  

€ 

aj
(l ) = f wij

(l)ai
(l−1) +bj

(l)

i=1

N ( l−1)

∑
$ 

% 
& & 

' 

( 
) )  

 Feed Forward from Layer j to k:  

€ 

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N ( l )

∑
# 

$ 
% % 

& 

' 
( (  

 

 Back Propagation from Layer j to i:  

€ 

δi,m
(l−1) =

∂f (zi
(l−1) )

∂zi
(l−1) wij

(l )δ j,m
(l )

j=1

N ( l )

∑  

 

 Back Propagation from Layer k to j:  

€ 

δ j,m
(l ) =

∂f (z j
(l) )

∂zj
(l ) wjk

(l+1)δk ,m
(l+1)

k=1

N ( l+1)

∑  

 
 Weight and Bias Corrections for layer j: Δwij,m

(l ) = ai
(l−1)δ j,m

(l )  
         Δbj,m

(l ) =  δ j,m
(l )  

 
 Network Update Formulas:   wij

(l )← wij
(l ) −η ⋅ Δwij,m

(l )  
         bj

(l )← bj
(l ) −η ⋅ Δbj,m

(l )  
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Artificial Neural Networks  
Artificial Neural Networks, also referred to as “Multi-layer Perceptrons”, are 
computational structures composed a weighted sums of “neural” units.  Each neural 
unit is composed of a weighted sum of input units, followed by a non-linear decision 
function.   
 
The simplest possible neural network is composed of a single neuron.  

 
A “neuron” is a computational unit that integrates information from a vector of  
features,   

€ 

! 
X ,  to compute the likelihood of an activation, a. The neuron is composed of 

a weighted sum of input values   

€ 

z = w1x1 +w2x2 + ...+wDxD +b   followed by a non-
linear “activation” function,   

€ 

f (z)   
 
   

€ 

a = f ( ! w T
" 
X + b) 

 
Many different activation functions may be used.  Historically, the classic activation 
function is the sigmoid (or Logistic) activation function:  

σ(z) = 1
1+ e− z

=
ez

ez +1  

 
The sigmoid has long been used in biology and in economics to model processes that 
grow exponentially to a point of saturation.  For example, the population of bacteria 
during fermentation, or the growth in performance of a new technology.  
 
The sigmoid is useful because the derivative is:   

€ 

dσ (z)
dz

=σ (z)(1−σ (z)) 

 
Another classic decision functions is the hyperbolic tangent: 

€ 

f (z) = tanh(z) =
ez − e−z

ez + e−z
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For multiple classes, we can use the Softmax activation function.  
 

 

€ 

f (zk ) =
ezk

ezk
k=1

K
∑

 

 
The softmax function takes as input a vector 

!z  of K real numbers, and normalizes it 
into a probability distribution consisting of K probabilities.  
 
The softmax function is used to select the maximum from a vector of activations for 
K classes.  Before applying softmax, the vector components of 

!z  will generally not 
sum to 1, and some of the components may be negative, or greater than one.  After 
applying softmax, each component will be in the interval [0, 1]  and the components 
will sum to 1. Thus the output can be interpreted as a probability distribution 
indicating the likelihood of each component.  
 
Softmax is used as the last activation function of a neural network to normalize the 
output of a network to a probability distribution over predicted output classes. 
 
The rectified linear function is popular for deep learning because of a trivial 
derivative:  

relu(z) =max(0, z)  

 
 

For  z≤ 0  d(relu(z))dz
= 0    for  z > 0 :  

€ 

d(relu(z))
dz

=1   

 
Recently, a variation of RELU called GELU (Gaussian Error Linear Unit) has gained 
popularity.  

gelu(z) = 0.5z 1+ 2
π

e−x
2

0

z

2

∫ dx

$

%

&
&
&

'

(

)
)
)  

 
From Wikipedia:  By Ringdongdang -
https://commons.wikimedia.org/w/index.php?curid=95947821 
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The Multilayer Neural Network model 
 
A neural network is a multi-layer assembly of neurons.  For example, this is a 2-layer 
network:  
 

 

 
The circles labeled +1 are the bias terms.  
The circles on the left are the input terms.  Some authors, notably in the Stanford 
tutorials, refer to this as Level 1.  
 
We will NOT refer to this as a level (or, if necessary, level L=0).  
The rightmost circle is the output layer, also called L.  
The circles in the middle are referred to as a “hidden layer”.  In this example there is 
a single hidden layer and the total number of layers is L=2.  
 
The parameters carry a superscript, referring to their layer.   
We will use the following notation:  
L    The number of layers (Layers of non-linear activations).  
l     The layer index.  l ranges from 0 (input layer) to L (output layer) 
N(l)  The number of  units in layer l.  N(0)=D 

€ 

aj
(l )    The activation output of the jth neuron of the lth layer.  

€ 

wij
(l )    The  weight  from the unit i of layer l-1 for the unit j of layer l.  

€ 

bj
(l )     The bias term for jth unit of the lth layer 

f(z)  A non-linear activation function, such as a sigmoid, relu or tanh. 
 
For example:   

€ 

a1
(2) is the activation output of the first neuron of the second layer.  

€ 

W13
(2) is the weight for neuron 1 from the first level to neuron 3 in the second level.  

 
The above network would be described by:  
 

€ 

a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 +b1
(1) )  

 

€ 

a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 +b2
(1) )  

 

€ 

a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 +b3
(1) )  

 

€ 

a1
(2) = f (w11

(2)a1
(1) +w21

(2)a2
(1) +w31

(2)a3
(1) +b1

(2) ) 
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This can be generalized to multiple layers.  For example:  
 

 

 
 !am

(3)   is the vector of network outputs (one for each class) at the third layer.  
 
Each unit is defined as follows:  

 

€ 

a1
(l−1)

 … 

€ 

aN ( l−1)
(l−1)

 

+1 

€ 

f z j
(l )( ) 

€ 

zj
(l )  

€ 

aj
(l )

 
€ 

wij
(l )  

€ 

wN ( l−1) j
(l )

 

€ 

bj
(l )

 

… 
€ 

w1 j
(l )  

€ 

ai
(l−1)

 

€ 

wjk
(l+1)  

 
The notation for a multi-layer network is  
   

€ 

! a (0) =
! 
X  is the input layer. 

€ 

ai
(0) = Xd     

 l is the current layer under discussion.  
 N(l)  is the number of activation units in layer l. N(0)  = D 
 i,j,k Unit indices for layers l-1, l and l+1:   i→j→k 
 

€ 

wij
(l )  is the  weight for the unit i of layer l-1 feeding to unit j of layer l.  

 

€ 

aj
(l )   is the activation output of the jth unit of the layer  l 

 

€ 

bj
(l )   the bias term feeding to unit j of layer l. 

 

€ 

zj
(l ) = wij

(l)ai
(l−1) +bj

(l)

i=1

N ( l−1)

∑   is the weighted input to jth unit of layer l 

 f(z) is a non-linear decision function, such as a sigmoid, tanh(), or soft-max 
 

€ 

aj
(l ) = f (zj

(l ) ) is the activation output for the jth
 unit of layer l 

 
For layer l this gives:  

 

€ 

zj
(l ) = wij

(l)ai
(l−1)

i=1

N ( l−1)

∑ +bj
(l)    

€ 

aj
(l ) = f wij

(l)ai
(l−1) +bj

(l)

i=1

N ( l−1)

∑
$ 

% 
& & 

' 

( 
) )   

 
and then for l+1 :  

 

€ 

zk
(l+1) = wjk

(l+1)aj
(l)

j=1

N ( l )

∑ +bk
(l+1)  

€ 

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N ( l )

∑
# 

$ 
% % 

& 

' 
( (  
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It can be more convenient to represent the network using vectors:   
 

 

  

€ 

! z (l) =

z1
(l )

z2
(l )

"
zN l

(l )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  

  

€ 

! a (l) =

a1
(l )

a2
(l )

"
aN l

(l )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
and to write the weights and bias at each level l as a k by j Matrix,  
 

 

  

€ 

W (l ) =

w11
(l) ! w1i

(l) ! w1N ( l−1)
(l )

" # " $ "
wj1
(l) ! wji

(l) ! wjN ( l−1)
(l )

" $ " # "
wN ( l ) 1
(l) ! wN ( l )i

(l ) ! wN ( l )N ( l−1)
(l)

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

  

  

€ 

! 
b (l ) =

b1
l

"
bi

l

"
bN ( l−1)

l

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

 

 
(note: To respect matrix notation, we have reversed the order of i and j in the 
subscripts. ) 
 
We can see that the weights are a 3rd order Tensor or vector of matrices, with one 
matrix for each layer, The biases are a matrix (vector of vectors) with a vector for 
each level.  
 
   

€ 

! z (l) = W (l) ! a (l−1) +
" 
b (l)  and    

€ 

! a (l) = f (! z (l) ) = f (W (l )! a (l−1) +
! 
b (l) ) 

 
We can assemble the set of matrices 

€ 

W (l ) into an 3rd order Tensor (Vector of 
matrices), W,  and represent   

€ 

! a (l),   

€ 

! z (l)  and   

€ 

! 
b (l )  as matrices (vectors of vectors):  A, Z, 

B.  
 
So how to do we learn the weights W and biases B?   
 
We could train a 2-class detector from a labeled training set   

€ 

{
! 
X m} ,

€ 

{ym} using gradient 
descent.  For more than two layers, we will need to use the more general “back-
propagation” algorithm.  
 
Back-propagation adjusts the network the weights 

€ 

wij
(l ) and biases 

€ 

bj
(l )  so as to 

minimize an error function between the network output   

€ 

! a m
L  and the target value  

€ 

! y m  for 
the M training samples   

€ 

{
! 
X m} ,   

€ 

{! y m}.  
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This is an iterative algorithm that propagates an error term back through the hidden 
layers and computes a correction for the weights at each layer so as to minimize the 
error term.  
 
This raises two questions:  
1) How do we initialize the weights? 
2) How do we compute the error term for hidden layers? 
 

Initializing the weights 
How do we initialize the weights? 
The obvious answer is to initialize all  the weights to 0.  
However, this causes problems.  
 
If the parameters all start with identical values, then the algorithm will end up 
learning the same value for all parameters. To avoid this, the parameters should be 
initialized with small random variables that are near 0, for example computed with a 
normal density with variance ε (typically 0.01).  
 
 

  

€ 

∀
i, j ,l
wji
(l ) = N (X;0,ε) and  

  

€ 

∀
j,l
bj
(l ) = N (X;0,ε) where   

€ 

N  is a sample from a normal 

density.  
 
An even better solution is provided by Xavier GLOROT’s technique (see course web 
site for a paper on Xavier normalization).  
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Backpropagation 
 
Back propagation is a distributed parallel algorithm for computing gradient descent.  
Back-propagation propagates the error term back through the layers, using the 
weights.   We will present this for individual training samples. The algorithm can 
easily be generalized to learning from sets of training samples (Batch mode).  
 
Given a training sample,   

€ 

! 
X m , we first propagate the   

€ 

! 
X m  through the L layers of the 

network (Forward propagation) to obtain an output activation   

€ 

! a (L ) .  
 
We then compute an error term.  In the case, of a multi-class network, this is a vector, 
with k components, one output for each hypothesis. In this case the indicator vector 
would be a vector, with one component for each possible class:  
 
 

!
δm
(out ) =

!am
(L ) −
!ym( )      or for each class k:   δk,m(out ) = ak,m

(L ) − yk,m( )  
 
To keep things simple, let us consider the case of a two class network, so that 

€ 

δm
out , 

  

€ 

h(
! 
X m ), 

€ 

am
(L ) , and 

€ 

ym  are scalars. The results are easily generalized to vectors for multi-
class networks.   
 
 For a single neuron, at the output layer, the “error” for each training sample is: 
 
 δm

out = am
(L ) − ym( )  

 
The error term   

€ 

! 
δ m
out is the total error for the whole network for sample m. This error is 

used to compute an error for the weights that activate the neuron:  

 
 

€ 

δm =
∂f (z)
∂z

δm
out  

This correction is then used to determine a correction term for the weights:  
 
  Δwd,m = xdδm    
 Δbm =  δm  
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Backpropagation can be generalized for multiple neurons at multiple layers (l=1 to 
L).     The error term for unit k at layer L is:  
 

 δk ,m
(L) =

∂f (zk
(L) )

∂zk
(L)

δm
out  

 
For the hidden units in layers l < L the error 

€ 

δ j
(l )  is based on a weighted average of the 

error terms for 

€ 

δk
(l+1) .   

 

 

€ 

δ j,m
(l ) =

∂f (z j
(l) )

∂zj
(l ) wjk

(l+1)δk,m
(l+1)

k=1

N l+1

∑  

 
We compute error terms, 

€ 

δ j
(l )  for each unit j in layer l back to  layer l–1 using the sum 

of errors times the corresponding weights times the derivative of the activation 
function.  This error term tells how much the unit j was responsible for differences 
between the activation of the network   

€ 

! 
h (! x m;wjk

(l) ,bk
(l ) )  and the target value   

€ 

! y m .   
 
For the sigmoid activation function, 

€ 

σ (z) =
1

1+ e−z
 the derivative is:  

 

€ 

dσ (z)
dz

=σ (z)(1−σ (z)) 

 

For 

€ 

aj
(l ) = f (zj

(l ) ) this gives:  

€ 

δ j,m
(l ) = aj ,m

(l) (1− aj ,m
(l ) ) ⋅ wjk

(l+1)δk,m
(l+1)

k=1

N ( l+1)

∑  

 
This error term can then used to correct the weights and bias terms leading from layer 
j to layer i.  
 
  Δwij,m

(l ) = ai
(l−1)δ j,m

(l )    
 Δbj,m

(l ) =  δ j,m
(l )  

 
Note that the corrections 

€ 

Δwij,m
(l)  and 

€ 

Δbj ,m
(l)  are NOT applied until after the error has 

propagated all the way back to layer l=1, and that when l=1, 

€ 

ai
(0) = xi .  

 
For “batch learning”, the corrections terms, 

€ 

Δwji,m
(l)  and 

€ 

Δbj ,m
(l) are averaged over M 

samples of the training data and then only an average correction is applied to the 
weights.  
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€ 

Δwij
(l) =

1
M

Δwij,m
(l )

m=1

M

∑   

€ 

Δbj
(l) =

1
M

Δbj,m
(l )

m=1

M

∑  

 
then  
 
 wij

(l )← wij
(l ) −η ⋅ Δwij

(l )  bj
(l )← bj

(l ) −η ⋅ Δbj
(l )  

 
where 

€ 

η is the learning rate.  
 
Back-propagation is equivalent to computing the gradient of the loss function for 
each layer of the network.  A common problem with gradient descent is that the loss 
function can have local minimum.  This problem can be minimized by regularization.  
A popular regularization technique for back propagation is to use “momentum”  
 
 wij

(l ) ← wij
(l ) −η ⋅ Δwij

(l ) +  µ ⋅wij
(l )  

 bj
(l )← bj

(l ) −η ⋅ Δbj
(l ) +µ ⋅bj

(l )  
 
where the terms 

€ 

µ ⋅wj
(l )  and 

€ 

µ ⋅bj
(l ) serves to stabilize the estimation.   

The back-propagation algorithm may be continued until all training data has been 
used. For batch training, the algorithm may be repeated until all error terms, 

€ 

δ j,m
(l ) , are 

a less than a threshold.  
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Derivation of Backpropagation as gradient Descent.  
 
To derive the backpropagation equations, consider a simple 2 layer network with 1 
neuron at each level that maps a scalar feature, x, to a activation a(2).  
 

a(1)z(1)w(1)

f (z(1) )

+1 

b(2)b(1)

a(2)z(2)x

f (z(2) )

w(2)

+1  
 

The network equations are 
 
 z(1) = w(1)x + b(1)  
 a(1) = f (z(1) ) = f (w(1)x + b(1) )  
 z(2) = w(2)a(1)+ b(2)  
 a(2) = f (z(2) ) = f (w(2)a(1) + b(2) )  
 
The network has 4 parameters 
 

 !w =

w(1)

b(1)

w(2)

b(2)

!

"

#
#
#
##

$

%

&
&
&
&&

 

 
The “cost”, C, of the error of the network for using the parameters    
to discriminate the input, x,  with ground truth, y, is:  
 
 C = 1

2
a(2) − y( )

2 	  

 
Where we have multiplied by "1/2" to simplify the algebra. 
 
The gradient of the cost with respect to each of the parameters in !w  
tells us how much each parameter contributed to the error.  
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€ 

am
(1)

€ 

zm
(1)

€ 

f (zm
(1))

€ 

∇Cm

€ 

Δb(1)

€ 

am
(2)

€ 

zm
(2)

€ 

f (zm
(2))

€ 

Δw2)

€ 

Δw(1)

€ 

Δb(2)

 
For our 2 layer network.  
 

 
∇C = ∂C

∂
!w
=

∂C
∂w(1)

∂C
∂b(1)

∂C
∂w(2)

∂C
∂b(2)

"

#

$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'

=

∆ w(1)

∆ b(1)

∆ w(2)

∆ b(2)

"

#

$
$
$
$$

%

&

'
'
'
''

 

 
To evaluate these derivatives we use the chain rule.  For example the derivative with 
of the cost with respect to the weight of the second neuron, w(2)  is 
 
 ∂C

∂w(2) =
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
⋅
∂z(2)

∂w(2) =∆ w
(2)  

This can be seen graphically as:  

     

∂C
∂a(2)

a(2)z(2)

f (z(2) )

∂a(2)

∂z(2)

∂z(2)

∂w(2)
∆ w(2)

 
The derivative with respect to b(2)   is:   
  
 ∂C

∂b(2)
=
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
⋅
∂z(2)

∂b(2)
=∆ b(2)  

This can be seen graphically as:  

     ∆ b(2)

∂z(2)

∂b(2)

∂C
∂a(2)

a(2)z(2)

f (z(2) )

∂a(2)

∂z(2)

 
 
We can simplify the notation by defining an error term for each neuron.  
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Let δ (out ) = a(2) − y( ) = ∂C
∂a(2)

   be the error for the error for the network for training sample 

x with ground truth indicator y.  
 

The error term for 2nd neural unit is δ (2) =
∂a(2)

∂z(2)
⋅δ (out )

"

#
$

%

&
'=

∂ f (z(2) )
∂z(2)

⋅δ (out )
"

#
$

%

&
'  

 

with this notation Δw(2) =
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
#

$
%

&

'
(⋅
∂z(2)

∂w(2) =
∂z(2)

∂w(2) ⋅δ
(2)  

 
Reordering the terms and noting that ∂z

(2)

∂w(2) =
∂(w(2)a(1) + b(2) )

∂w(2) = a(1)  

 
gives: Δw(2) = a(1) ⋅δ (2)  δ (out )

a(2)z(2)

f (z(2) )

δ (2)

∂f (z(2) )
∂z(2)

Δw(2) = δ (2) ⋅a(1)

      
 

Similarly for the bias term for the 2nd neural unit: Δb(2) = ∂C
∂a(2)

⋅
∂a(2)

∂z(2)
#

$
%

&

'
(⋅
∂z(2)

∂b(2)
= δ (2) ⋅

∂z(2)

∂b(2)
 

 
Noting that ∂z

(2)

∂b(2)
=
∂(w(2)a(1) + b(2) )

∂b(2)
=1  

 

We obtain:  Δb(2) = δ (2)  
δ (2)

∆ b(2)

a(2)z(2)

f (z(2) )

∂f (z(2) )
∂z(2)

δ (out )

      
 
 
For the next layer we continue the same process recursively 
 
The derivative of the cost with respect to w(1)  is:  
 

 Δw(1) =
∂C
∂w(1) =

∂C
∂a(2)

⋅
∂a(2)

∂z(2)
$

%
&

'

(
)⋅

∂z(2)

∂a(1)
$

%
&

'

(
)⋅

∂a(1)

∂z(1)
$

%
&

'

(
)⋅
∂z(1)

∂w(1)  
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Substituting   δ (2) =
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
"

#
$

%

&
'  gives Δw(1) = δ (2) ⋅

∂z(2)

∂a(1)
#

$
%

&

'
(⋅

∂a(1)

∂z(1)
#

$
%

&

'
(⋅
∂z(1)

∂w(1)  

 

Substituting   w(2) =
∂(w(2)a(1) + b(2) )

∂a(1)
=
∂z(2)

∂a(1)
!

"
#

$

%
&  gives Δw(1) = δ (2) ⋅w(2) ⋅

∂a(1)

∂z(1)
#

$
%

&

'
(⋅
∂z(1)

∂w(1)  

 

Substituting   ∂ f (z(1) )
∂z(1)

=
∂a(1)

∂z(1)
!

"
#

$

%
&    gives Δw(1) = δ (2) ⋅w(2) ⋅

∂ f (z(1) )
∂z(1)

#

$
%

&

'
(⋅

∂z(1)

∂w(1)

#

$
%

&

'
(  

 

Substituting   x = ∂(w
(1)x + b(1) )
∂w(1) =

∂z(1)

∂w(1)

!

"
#

$

%
&  gives  Δw(1) = δ (2) ⋅w(2) ⋅

∂ f (z(1) )
∂z(1)

#

$
%

&

'
(⋅ x  

 

We define the error term for level 1 as δ (1) = δ (2) ⋅w(2) ⋅
∂ f (z(1) )
∂z(1)

"

#
$

%

&
'   

 
Rearranging the terms gives:  Δw(1) = x ⋅δ (1)  
 

∂C
∂a(2)

∂f (z(2) )
∂z(2)

w2x
∆ w(1) a(1)z(1) a(2)z(2)

f (z(2) )f (z(1) )

∂f (z(1) )
∂z(1)

δ (2) δ (out )δ (1)

 
 
Similarly for the correction factor of b(1)  

 

Δb(1) = ∂C
∂b(1)

=
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
$

%
&

'

(
)⋅

∂z(2)

∂a(1)
$

%
&

'

(
)⋅

∂a(1)

∂z
$

%
&

'

(
)⋅
∂z(1)

∂b(1)
 

∂C
∂a(2)

∂f (z(2) )
∂z(2)

w2a(1)z(1) a(2)z(2)

f (z(2) )f (z(1) )

∂f (z(1) )
∂z(1)

δ (2) δ (out )δ (1)

1

∆ b(1)  
 

Substituting   δ (2) =
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
"

#
$

%

&
'  gives Δb(1) = δ (2) ⋅ ∂z

(2)

∂a(1)
#

$
%

&

'
(⋅

∂a(1)

∂z(1)
#

$
%

&

'
(⋅
∂z(1)

∂b(1)
 

 

Substituting   w(2) =
∂(w(2)a(1) + b(2) )

∂a(1)
=
∂z(2)

∂a(1)
!

"
#

$

%
&  gives Δb(1) = δ (2) ⋅w(2) ⋅

∂a(1)

∂z(1)
#

$
%

&

'
(⋅
∂z(1)

∂b(1)
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Substituting   ∂a(1)

∂z(1)
!

"
#

$

%
&=

∂ f (z(1) )
∂z(1)

   gives Δb(1) = δ (2) ⋅w(2) ⋅
∂ f (z(1) )
∂z(1)

#

$
%

&

'
(⋅

∂z(1)

∂b(1)
#

$
%

&

'
(  

 

noting   ∂z(1)

∂b(1)
!

"
#

$

%
&=

∂(w(1)x + b(1) )
∂w(1) =1  and substituting  δ (1) = δ (2) ⋅w(2) ⋅

∂ f (z(1) )
∂z(1)

"

#
$

%

&
'  

 
Gives:  Δb(1) = δ (1)  
 

General formula for the error term 
 
In general, the chain rule ∂C

∂w(l ) =
∂C
∂a(L )

⋅
∂a(L )

∂z(L )
⋅
∂z(L )

∂a(L−1)
⋅!⋅

∂z(l+1)

∂a(l )
⋅
∂a(l )

∂w(l )  

 
Provides a recursive formula for each neural unit:  
 

 δ (l ) =
∂ f (z(l ) )
∂z(l )

⋅w(l+1) ⋅
∂ f (z(l+1) )
∂z(l+1)

⋅w(l+2) ⋅ !⋅
∂ f (z(L ) )
∂z(L )

⋅δ (out )
"

#
$

%

&
'

"

#
$$

%

&
''

"

#
$$

%

&
''

"

#
$
$

%

&
'
'  

 
 

 
Giving a simple formula for adjusting the values of weights and biases  
	
 
Δw(l ) = a(l−1)δ (l )   and Δb(l ) = δ (l )  
 

+1 

b(L )

a(L )z(L )

f (z(L ) )

w(L )… 

δ (2) =
∂ f (z(2) )
∂z(2)

⋅w(3) ⋅δ (3)
"

#
$

%

&
'δ (1) =

∂ f (z(1) )
∂z(1)

⋅w(2) ⋅δ (2)
"

#
$

%

&
'

δm
(2)δm

(1)

δ (L ) =
∂ f (z(L ) )
∂z(L )

⋅δ (out )
"

#
$

%

&
'

δm
(3) δ (out ) = (a(L ) − y)

a(1)z(1)w(1)

f (z(1) )

+1 

b(2)b(1)

a(2)z(2)xm

f (z(2) )

w(2)

+1 

w(3)

δ (3) = ...
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Formula for multiple activations 
 
In the case where there are N neural units at level l+1,  
the error at level l is the weighted sum of the errors at level l+1.   
	
 
 
 

δ (l ) =
∂ f (z(l ) )
∂z(l )

⋅ wk
l+1 ⋅δk

(l+1)

k=1

N

∑
#

$
%

&

'
(  

+1 

a(l )z(l )w(l )

b(l )

δ (l )

f (z(l ) )

w1
(l+1)

wk
(l+1)

wN
(l+1)

a(l−1)
δk
(l+1)

δ1
(l+1)

δN
(l+1)

∂ f (z(l ) )
∂z(l )
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Summary of Backpropagation 
 
The Back-propagation algorithm can be summarized as:  
 
1) Initialize the network and a set of correction vectors:  
 
 

  

€ 

∀
i, j ,l
wji
(l ) = N (X;0,ε)  

    

€ 

∀
i,l
bj
(l ) = N (X;0,ε)  

 

€ 

∀
i, j ,l
Δwji

(l) = 0 
 

€ 

∀
i,l
Δbj

(l) = 0  
 
where   

€ 

N  is a sample from a normal density, and 

€ 

ε  is a small value.  
 
2) For each training sample,   

€ 

! x m, propagate   

€ 

! x m  through the network (forward 
propagation) to obtain a network activation 

€ 

am
(L ) .  Compute the error and propagate 

this back through the network:  
 
 a) Compute the network error term:   δmout = am

(L ) − ym( )  
 

 b) Compute the error term at Layer L: 

€ 

δm
(L ) =

∂f (zj
(l ) )

∂zj
(l) δm

out  

 

 c) Propagate the error back from  l=L-1  to l=1:   

€ 

δ j,m
(l ) =

∂f (z j
(l) )

∂zj
(l ) wjk

(l+1)δk ,m
(l+1)

k=1

N ( l+1)

∑   

 
 d) Use the error at each layer to set a vector of correction weights.  
 
   Δwij,m

(l ) = ai
(l−1)δ j,m

(l )    Δbj,m
(l ) =  δ j,m

(l )  
 
3) For all layers, l=1 to L, update the weights and bias using a learning rate,  

€ 

η 
 
  wij

(l ) ← wij
(l ) −η ⋅ Δwij,m

(l ) +  µ ⋅wij
(l )  

  bj
(l )← bj

(l ) −η ⋅ Δbj,m
(l ) +µ ⋅bj

(l )  
 
Note that this last step can be done with an average correction matrix obtained from 
many training samples (Batch mode), providing a more efficient algorithm.   
 


