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Background Reading  
• Turk, M. and Pentland, A., Eigenfaces for Recognition. Journal of cognitive 

neuroscience, vol. 3, no 1, p. 71-86, 1991. 
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learning with deep generative models. In Advances in neural information 
processing systems (pp. 3581-3589), NIPS 2014.  

• Radford A, Metz L, Chintala S. Unsupervised representation learning with 
deep convolutional generative adversarial networks.   

Notation 
W(i,j)  An RxC image window (Imagette).  
!
W    A flattened 1-D Vector representing the imagette. 
{
!
Wm}   A training set of M imagettes 
!
µ = E{

!
Wm}  Average (mean) imagette 

!
Vm =

!
Wm −

!
µ  Zero-mean normalized imagette 

V =
!
V1
!
V2 "

!
VN( )  Training Matrix of Zero-mean imagettes 

Σ =VVT   Covariance of imagettes 
ϑ    NxN rotation matrix (N Eigenvectors of Σ ) 
Λ    Diagonal matrix of eigen values  for Σ  
xd   A feature.  An observed or measured value.  
!
X    A vector of D  features.   
D   The number of dimensions for the vector   
  

€ 

{
! 
X m}  

€ 

{ym} Training samples for learning.  
M   The number of training samples.  

€ 

aj
(l )      the activation output of the jth neuron of the lth layer.  

€ 

wij
(l )     the  weight for the unit i of layer l–1 and the unit j of layer l.  

€ 

bj
l      the bias term for jth unit of layer l.  

€ 

ρ    The sparsity parameter  
    
 
Key Equations  
Principal Components Analysis:   ϑ TΣϑ = Λ  
 

The average activation at layer l:   ρ̂ j =
1
M

aj,m
(1)

m=1

M

∑  

The autoencoder cost function :  
  

€ 

Lsparse(W , B;
! 
X m , ym ) =

1
2

(! a m
(2) −
! 
X m )2 +β KL(ρ ||

j=1

N (1)

∑  ˆ ρ j ) 

the Kullback-Leibler Divergence:   

€ 

KL(ρ ||
j=1

N (1)

∑  ˆ ρ j ) = ρ log
ρ
ˆ ρ j

+ (1−ρ)log
1−ρ
1− ˆ ρ j

% 

& 
' ' 

( 

) 
* * 

j=1

N (1)

∑  
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Generative Networks 
Deep learning was originally invented for recognition.  The same technology can be 
used for generation.   Up to now we have looked at what are called “discriminative” 
techniques.  These are techniques that attempt to discriminate a class label, y from a 
feature vector,   

€ 

! 
X . 

 

€ 

ˆ y 
 

  

€ 

D(
! 
X )   

€ 

! 
X  

 
 
The same process can be used to learn a network that generates   

€ 

! 
X  given a code y.  

This is called a “generative” process.  
 

 

€ 

y
 

€ 

G(y)   

€ 

! 
X  

 
 
Given an observable random variable   

€ 

! 
X , and a target variable, gradient descent 

allows us to learn a joint probability distribution,   

€ 

P(
! 
X ,
! 
Y ), where   

€ 

! 
X , is generally 

composed of continuous variables, and   

€ 

! 
Y  is generally a discrete set of classes 

represented by a binary vector.  
 
A discriminative model gives a conditional probability distribution   

€ 

P(
! 
Y |
! 
X ). 

A generative model gives a a conditional probability   

€ 

P(
! 
X |
! 
Y ) 

 
We can combine a discriminative process for one data set with a generative process 
from another and use these to make synthetic outputs.  
 

 

€ 

ˆ y 
 

  

€ 

D(
! 
X )   

€ 

! 
X  

 

 

€ 

y
 

€ 

G(y)   

€ 

! 
X  

 
 
A classic example is an autoencoder.  But before we see how to learn an autoencoder, 
I would like to review a similar classic technique from computer vision:  
Eigen-Space Coding.  
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Principal Components Analysis and Eigen-Space Coding 
 
Principal Components Analysis (PCA) is a popular method to reduce the number of 
dimensions in high dimensional feature vectors. In some cases this can provide an 
important reduction in computing time with little or no impact on recognition rates. It 
can also be used to determine an orthogonal basis set for highly redundant features, 
such as the raw pixels in small windows extracted from images.  
 
While PCA is primarily a data compression method for encoding, it has been 
successfully used as a method for generating features for detection and recognition. 
An important example occurred in 1991, with the thesis of Mathew Turk at MIT 
Media Lab. (Turk and Pentland - CVPR 1991). This paper won “best paper” at CVPR 
and marked the beginning of the use of appearance-based techniques in Computer 
Vision. 
 
To use the method we require a training set of M face windows (imagettes) {Wm} of 
size R rows and C columns.  We will use the set   

€ 

! 
W m{ } to learn a set of D orthogonal 

basis images   

€ 

! 
ϕ d . These can serve as feature detectors for detection, and recognition. 

 
We can then project an imagette onto basis vectors to obtain a feature vector.  
!
Xm =ϕ

T
!
Wm  where each component is 

€ 

xdm = Wm ,ϕd = Wm (i, j) 
j−1

R

∑
i=1

C

∑ ϕd (i, j) 

 
We can reconstruct the imagette by as a weighted sum of basis images.  
 

 

€ 

ˆ W (i, j) = µ(i, j)+ xdϕd (i. j)
d=1

D

∑    

 
where 

€ 

µ(i, j) is the “average” imagette from the training data.  
 
The energy of the difference between the original imagette and reconstructed 
imagette is a measure of similarity of the imagette to a face.  
 

 εR
2 = R(i, j)2

i=1

C

∑
j=1

R

∑   where R(i, j) =W (i, j)−Ŵ (i, j)  

 
We can also train a classifier for subsets of face images, for example all images of a 
particular person.  Other recognition techniques are also possible.  
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Principal Components Analysis of Face Imagettes.  
 
For notation reasons, it is often convenient to map (or flatten) the 2D window W(i,j) 
imagettes onto a 1-D vector 

!
W . This allows us to express using classical vector 

algebra.  
 
For an imagette of size C columns by R rows,  
allocate a vector W(n) with N=R x C coefficients 
For any pixel (i,j),  compute   n = j*C + i  
Then  W(n) = W(i, j).  
 
Principal components analysis is a method to determine a linear subspace that is 
optimal for reconstructing a set of vectors.  
 
Assume a set of M training vectors (imagettes)  

!
Wm{ }  of N pixels.  

The training data are used to compute an orthogonal basis set of D vectors  to 
represent the training set, !ϕd  where D ≤ N.  
   
This basis is provided by the principal components of the covariance matrix of 

!
Wm{ } .  

First, normalize the imagettes to zero mean:  
 

Compute the average vector:    !
µ = E{

!
Wm}  that is:  µ(n) = 1

M
Wm (n)

m=1

M

∑  

 
Normalize to zero mean the training data:   

!
Vm =

!
Wm −

!
µ  

 
The covariance matrix is then constructed from the matrix of normalized training 
imagettes.  Compose the matrix V as 
 

V =
!
V1,
!
V2,...,

!
Vm( ) =

V1(1) V2 (1) ... VM (1)
V1(2) V2 (2) ... VM (2)
! ! " !

V1(n) V2 (n) ... VM (n)

!

"

#
#
#
#
#

$

%

&
&
&
&
&

 

 
V has N lines and M columns.  Each column is a training image, 

!
Vm . Each row is a 

pixel n← (i,j). 
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The outer product V ⋅VT  is a covariance matrix, Σ: 
 
 Σ =V ⋅VT  
 
This covariance matrix has N x N = N2 coefficients.  
 

 Σ =VVT =

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

#

$

%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

#

$

%
%
%
%

&

'

(
(
(
(

=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

#

$

%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(

 

 
The coefficients of Σ  are the covariances for the pixels, i and j.  
 

 

€ 

σ ij
2 =

1
M

Vm (i)Vm ( j)
m=1

M

∑  

 

For small imagettes, the covariance matrix, Σ , is easily diagonalized using standard 
algorithms for diagonalizing large matrices, such as Householder's method. (See 
numerical recipes in C or any other numerical methods toolkit).   This will work for 
up to 32 x 32 imagettes (covariance matrices of 1024 x 1024).  
 

  (ϕ, Λ) ← PCA(Σ).   Giving:     ϕTΣϕ = Λ  
 
Where ϕ, is an NxN rotation matrix and Λ is a diagonal matrix with N non-zero 
diagonal values. 
 
The N columns of the rotation matrix, ϕ, are the eigenvectors of Σ .  These 
eigenvectors provide an orthogonal set of N normalized vectors, 

!
ϕn , that provide a 

set of orthogonal code vectors for describing the imagettes of size N.  
 
The square root of the diagonal terms of Λ are the eigenvalues, λn.  The N 
eigenvalues tell the average energy for each eigenvector for the imagettes in the 
training set. This can be used to indicate the average squared error that would result 
from reconstructing an image without the corresponding eigenvector .  
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Diagonalisation generally work well for matrices up to 1024 x 1024.  Thus we can 
easily use this method for imagettes up to 32 x 32 pixels.  Other more exotic 
algorithms can be used for larger matrices. 
 
The eigenvectors provide an orthogonal basis for the training data. We can project 
any imagette 

!
W  onto this basis with:  

 

 
!
X =ϕT

!
W = W (n) ⋅ !ϕ(n)

n=1

N

∑    

 

where  the coefficients are  xd = W (n) ⋅ϕd (n)
n=1

N

∑   for d=1,…,D with D ≤ N 

 
This projection acts as a "code"  for the imagette.  We can reconstruct an imagette 
this code as a weight sum of the bases plus the average image. 
 

Reconstruction:   

€ 

ˆ W (n) = µ(n)+ xdϕd (n)
d=1

D

∑  

This reconstruction will only produce imagettes that resemble the training data.  
Patterns not in the training data will not appear in the reconstruction!  This is 
classically used as a filter to eliminate noise.  It can also be used as a pattern detector! 
 
We can determine an error image:  
 
Error image:   

€ 

R(n) = W (n)− ˆ W (n) 
 

Error Energy:   

€ 

εR
2 = R(n)2

n=1

N

∑  

 

For  

€ 

xd = W (n),ϕd (n) = W (n) ⋅ϕd (n)
n=1

N

∑  

 
The error energy gives an indication of how similar the input imagette is to the 
training data.   The reconstructed image shows where the difference occurs.  
 
When used with a set of face imagettes, the error energy is called the "difference 
from Face Space".  
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Example   
 
16 images randomly selected from a 2 minute video of Francois Berard.  (1995).  

 
 
Average Image 

 
 

Eigen Values 

-5.0000E+06
0.0000E+00
5.0000E+06
1.0000E+07
1.5000E+07
2.0000E+07
2.5000E+07
3.0000E+07
3.5000E+07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 
Principals Component images  
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  Note that for this to work well for face images, the images should be normalized in 
position and scale.  This is generally accomplished by aligning the eyes to standard 
positions.  
 
If the images are note aligned, then the eigenvalues will remain large and a larger 
code is required.  

Reconstruction  
 

The code can be used to reconstruct an image:   

€ 

ˆ W (n) = µ(n)+ xdϕd (n)
d=1

D

∑  

Example reconstructed image  (120 bytes) Error Image. 
 

   
 
 Reconstruction (120 bytes) 

     
Image Error  
 

Face Detection using Distance from Face Space 
 
The residue image can be used to determine if a new face imagette, W(n), is "similar" 
to the eigenspace (linear subspace).  In this case, the residue is called the "Distance 
from Face Space" (DFS) 
 
The distance from Face Space can be used as a face detector! 
 
We scan the image with different size windows, texture map each window to a 
standard size, then computer the residue distance from face space.  If the distance is 
small, the window contains a face similar to the Face space.   
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If all N bases used, then any imagette from 

!
Wm{ }  can be perfectly reconstructed 

(except for round off error).     
 

Reconstruction:   

€ 

ˆ W (n) = µ(n)+ xdϕd (n)
d=1

D

∑  

 
Residue image:   

€ 

R(n) = W (n)− ˆ W (n) 
 

Residue Energy:   

€ 

εR
2 = R(n)2

n=1

N

∑  

 
Test if an imagette is a face:   if  (

€ 

εR
2  < Threshold) THEN Face ELSE NOT Face 

 

 
 

In practice, this method is less effective and more expensive than the cascade 
classifiers seen last lecture.  
 

Eigenspace coding for transmission.  
 
Eigen space coding is a very effective method for signal compression!  

 
 

In 1996 we were able to demonstrate video telephony in real time (video rates) over a 
9600 baud serial line!   We ran a video conf with MIT with very low band-width 
phone line.  In this demo, we used 32 coefficients per image!  (32 x 4 - 128 
bytes/image).  
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Eigenspace Coding for Face Recognition.  
 
We can use the coefficients   

€ 

! 
X = W (n), ! ϕ (n)  as a feature vector for recognition.  

 
This technique typically used with Gaussian Mixture models,  
Let us define the parameters for an I component model as   

€ 

ν = (αi ,
! 
µ i ,Σi ) 

then  
 

 
    

€ 

p(
! 
X ;ν ) = αi

i=1

I

∑ N (
! 
X ; ! µ i ,Σi )  where : 

    

€ 

N (
! 
X ; ! µ ,Σ) =

1

(2π)
D
2 det(Σ)

1
2

e–1
2
(
! 
X – ! µ )T Σ−1 (

! 
X – ! µ )

 

 
We use an algorithm such as EM to learn a model 

€ 

ν k  for Mk samples of images 

€ 

Wm
k (n){ } of the face for each individual, k, from a population of K individuals.  

 

Given an unknown face, W(n):  
  

€ 

! 
X = W (n), ! ϕ (n) = W (n) ⋅ ! ϕ (n)

n=1

N

∑  

 
from Bayes rule we can determine the most probable individual, Ck as :  
 

 P(Ck |
!
X) = p(

!
X |Ck )P(Ck )

p(
!
X |Ck )P(Ck )

k=1

k

∑
 

In 1991, Eigen-space coding was a revolutionary technique for face recognition, 
because it was the first technique to actually seem to work! 
 
However, testing soon revealed that it could only work with:  
1) Controlled lighting 
2) Pre-defined face orientation (i.e. Cooperating Subject) 
3) Normalized image position and size.  
4) Minimal occlusions  
5) Limited size population 
In other conditions the results are unreliable.  
 
In practice, if there are variations in illumination, these will dominate the first 
eigenvectors.  In this case the corresponding eigenvectors are not useful for 
recognition and can be omitted.  
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AutoEncoders 
 

  
 
An auto-encoder is an unsupervised learning algorithm that uses back-propagation to 
learning a sparse set of features for describing the training data.  Rather than try to 
learn a target variable, ym, the auto-encoder tries to learn to reconstruct the input X 
using a minimum set of features (latent variables).  
 
An Autocoder learns to reconstruct (generate) clean copies of data without noise.  
The Key concepts are:  
1) The training data is the target. The error is the difference between input and output 
2) Training is with standard back-propagation (or gradient descent), with the addition 
of a “sparsity term” to the loss function 
3) Sparsity encodes the data with a minimum number of independent hidden units 
(Code vectors) 
 

  
 

Using the notation from our 2 layer network, given an input feature vector   

€ 

! 
X m  the 

auto-encoder learns 

€ 

{wij
(1) ,bj

(1)}  and 

€ 

{wjk
(2) ,bk

(2)}  such that for each training sample,  

  

€ 

! a m
(2) = ˆ X m ≈

! 
X m  using as few hidden units as possible.  

 
Note that N(2) =D  and that N(1) << N(2) 
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When the number of hidden units N(2)  is less than the number of input units, D,  
 
   

€ 

! a m
(2) = ˆ X m ≈

! 
X m   is necessarily an approximation.  The hidden unites provide 

a “lossy” encoding for   

€ 

! 
X m .  This encoding can be used to suppress noise! 

 
The error for back-propagation for each unit is  a vector    

€ 

! 
δ m
(2) =
" a m
(2) –
" 
X m  

with a  component  δi,m  for component xi,m of the  training sample   

€ 

! 
X m  

 
The hidden code is composed of independent “features” that capture some 
component of the input vector. Each cell of the code vector is driven by a receptive 
field whose sum of products with the receptive fields of other code cells is almost 
zero. That is, the code vectors are almost orthogonal.   However, rather than 
minimizing the product of code vectors, sparsity seeks to generate the smallest set of 
code vectors that can reconstruct the training data without the noise. With an 
autoencoder the components may have some slight overlap.  The average degree of 
independence is captured by a “sparsity parameter”, 

€ 

ˆ ρ . 
 
The Sparsity Parameter 
The sparsity 

€ 

ˆ ρ j  is the average activation for each of the hidden units j=1 to N(1).  
The auto-encoder will learn weights subject to a sparseness constraints specified by a 
target sparsity parameter 

€ 

ρ , typically set close to zero.     
 
The simple, 2-layer auto-encoder is described by:  
 

Level 0:   

  

€ 

! 
X m =

x1,m
"

xD,m

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
  an input vector 

 

level 1:  
!
Ym = aj,m

(1) = f ( wij
(1)xi,m + bj

(1)

i=1

D

∑ )  the code vector 

 

level 2:  X̂m = ak,m
(2) = f ( wjk

(2)aj,m
(1) + bk

(2)

j=1

N (1)

∑ )  the reconstruction of the input.  

 
The  output  should approximate the input.  
 

  

  

€ 

! a m
(2) =

a1
(2)

"
aD

(2)

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

= ˆ X m ≈
! 
X m ,   with error   

€ 

! 
δ m
(2) =
" a m
(2) –
" 
X m  
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The sparsity 

€ 

ˆ ρ j  for each hidden unit (code component) is computed as the average 
activation for the M training samples:  
 

 

€ 

ˆ ρ j =
1
M

aj,m
(1)

m=1

M

∑  

 
The auto-encoder is trained to minimize the average sparsity.  This is accomplished 
using  back propagation, with a simple tweak to the cost function.  
 
Standard back propagation tries to minimize a loss based on the sum of squared 
errors. The loss for each sample is.  
 
 Lm (

!
Xm, ym ) =

1
2
(!am

(L ) − ym )
2  

 
For an auto-encoder, the target output is the input vector, and the loss is squared 
difference from the input vector:  
 
 Lm (

!
Xm, ym ) =

1
2
(!am

(L ) −
!
Xm )

2  

 
To impose “sparsity” we add an additional term to the loss.  
 

 Lm (
!
Xm, ym ) = 1

2
(!am

(L ) −
!
Xm )2 +β KL(ρ ||

j=1

N (1)

∑  ρ̂ j )  

where 

€ 

KL(ρ ||
j=1

N (1)

∑  ˆ ρ j ) is the Kullback-Leibler Divergence of the vector of hidden unit 

activations  and 

€ 

β  controls the importance of the sparsity parameter.  
 
Kullback-Leibler Divergence 
 
The KL divergence between the desired and average activation is:  
 

 

€ 

KL(ρ ||
j=1

N (1)

∑  ˆ ρ j ) = ρ log
ρ
ˆ ρ j

+ (1−ρ)log
1−ρ
1− ˆ ρ j

% 

& 
' ' 

( 

) 
* * 

j=1

N (1)

∑  
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To incorporate the KL divergence into back propagation, we replace 
 

 

€ 

δ j
(1) =

∂f (zj
(1) )

∂zj
(1) wjk

(2)δk
(2)

k=1

N (2)

∑  

with  
 

 

€ 

δ j
(1) =

∂f (zj
(1) )

∂zj
(1) wjk

(2)δk
(2)

k=1

N (2)

∑ +β −
ρ
ˆ ρ j

+
1−ρ
1− ˆ ρ j

( 

) 
* * 

+ 

, 
- - 

( 

) 
* * 

+ 

, 
- -  

 
where  N(2) = D, the size of the size of the input and output vectors.    
(The network output has the same number of components as the input).  
 
The average activation 

€ 

ˆ ρ j  is used to compute the correction. Thus you need to 
compute a forward pass on a batch of training data, before computing the back-
propagation. Thus learning is necessarily batch mode.   
 
The auto-encoder forces the hidden units to become approximately orthogonal, 
allowing a small correlation determined by the target sparsity, 

€ 

ρ .  Thus the hidden 
units act as a form of basis space for the input vectors.  The values of the hidden code 
layer are referred to as latent variables. The latent variables provide a compressed 
representation that reduces dimensionality and eliminates random noise.  
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Auto-Encoders vs Principal Components Analysis 
 
What is the difference between an Auto-Encoder and Principle Components analysis? 
Both techniques project a high-dimensional data set onto a lower dimensional 
manifold (variété différentielle in french).  
 

Affine Transformations of a Bitmap Image Face Expressions for an individual 

The Manifold Learning Hypothesis 
•  Examples%concentrate%near%a%lower%dimensional%

“manifold”%(region%of%high%density%where%small%changes%are%only%
allowed%in%certain%direcGons)%

83%  

The Manifold Learning Hypothesis 
•  Examples%concentrate%near%a%lower%dimensional%

“manifold”%(region%of%high%density%where%small%changes%are%only%
allowed%in%certain%direcGons)%

83%
 

(Illustration from the NAACL 2013 lecture from R. Socher and C. Manning) 
 

PCA projects the data onto a high-dimensional linear manifold.  AutoEncoders 
project the data onto a non-linear manifold that (should) provide a better 
representation of the latent space.  
 

PCA = Linear Manifold = Linear Auto-
Encoder 

reconstrucGon%error%vector%

Linear%manifold%

reconstrucGon(x)%

x$

input%x,%0Jmean%
features=code=h(x)=W$x$
reconstrucGon(x)=WT$h(x)$=$WT$W$x$
W%=%principal%eigenJbasis%of%Cov(X)%

LSA%example:%
x%=%(normalized)%distribuGon%
of%coJoccurrence%frequencies%

82%
 84%

Auto-Encoders Learn Salient 
Variations, like a non-linear PCA 

Minimizing%reconstrucGon%error%
forces%latent%representaGon%of%%

“similar%inputs”%to%stay%on%%
manifold%  

AutoEncoder 
 
So which one works better as a general face detector?  Try it and see. 
 
An experimental comparison of face detection using difference from Face Space 
computed with PCA vs AutoEncoders is work +2 points on the second programming 
project.  
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Variational Autoencoders 
 
The output of an auto-encoder can be used to drive a decoder to produce a filtered 
version of the encoded data or of another training set.    However, the output from an 
auto-encoder is discrete.  We can adapt an auto-encoder to generate a *nearly* 
continuous output by replacing the code with a probabilistic code represented by a 
mean and variance.  
 

  
 
This is called a Variational Autoencoder (VAE).  VAEs combine a discriminative 
network with a generative network.  VAEs can be used to generate "deep fake" 
videos sequences.  
 
For a fully connected network, decoding is fairly obvious.  The network input is a 
binary vector   

€ 

! 
Y  with k binary values 

€ 

yk , with one for each target class.  This is a 
code.  The output for a training sample   

€ 

! 
Y m  is an approximation of a feature vector 

belonging to the code class,   

€ 

! ˆ X m   
 
   

€ 

! a m
(2) = ˆ X m ≈

! 
X m  

 
and the error is the difference between a output and the actual members of the class.  
 
   

€ 

! 
δ m
(2) =
" a m
(2) –
" 
X m  

 
The average error for at training set   

€ 

! 
Y m{ },   

€ 

! 
X m{ }  can be used to drive back-

propagation.  
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Generative Adversarial Networks.  
Generative Networks 
It is possible to put a discriminative network together with a generative network and 
have them train each other.  This is called a Generative Adversarial Network (GAN).  
 
A Generative Adversarial Network places a generative network in competition with a 
Discriminative network.  

 
 
The two networks compete in a zero-sum game, where each network attempts to fool 
the other network. The generative network generates examples of an image and the 
discriminative network attempts to recognize whether the generated image is realistic 
or not.  Each network provides feedback to the other, and together they train each 
other.  The result is a technique for unsupervised learning that can learn to create 
realistic patterns. Applications include synthesis of images, video, speech or 
coordinated actions for robots.  
 
Generally, the discriminator is first trained on real data. The discriminator is then 
frozen and used to train the generator.  The generator is trained by using random 
inputs to generate fake outputs. Feedback from the discriminator drives gradient 
ascent by back propagation. When the generator is sufficiently trained, the two 
networks are put in competition.  
 

GAN Learning as Min-Max Optimization.  
The generator is a function   

€ 

! ˆ X = G(! z ,θg ) , where 

€ 

G() is a differentiable function computed 
as a multi-layer perceptron, with trainable parameters,  

€ 

θg,  and z is an input random vector 

with model   

€ 

pz (
! z ) , and   

€ 

! ˆ X  is a synthetic (fake) pattern.  

The discriminator is a differentiable function   

€ 

D(
! 
X ,θd ) computed as a multi-layer 

perceptron with parameters 

€ 

θd  that estimates the likelihood that  belongs to the set 
described by the model 

€ 

θd .  
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The generator 
!̂
X =G(!z,θg )  is trained to minimize Log(1−D(G(!z,θg )))  

The perceptrons D()  and G()  play a two-player zero-sum min-max game with a value 
function V(D, G):  
 

  
 
In practice, this may not give sufficient gradient to learn. To avoid this, the 
discriminator is first trained on real data. The generator is then trained with the 
discriminator held constant. When the generator is sufficiently trained, the two 
networks are put in competition, providing unsupervised learning. 

The discriminator is trained by ascending the gradient to seek a max:  

  

The generator is trained by seeking a minimum of the gradient: 

   

 
 


