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Notation 
 
xd   A feature.  An observed or measured value.  
!
X    A vector of D  features.   
D   The number of dimensions for the vector   

  

€ 

{
! 
X m}    Training samples for learning.  

€ 

{ym}      The indicator variable for each training sample,  
   ym =  +1 for examples of the target pattern (class 1) 
   ym =  –1 for all other examples (class 2) 
M   The number of training samples.  
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! w =

w1
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  The coefficients for a linear model the model.  

b  bias so that     

€ 

! w T
" 
X m + b  ≥ 0 for Class 1 and   

€ 

! w T
" 
X m + b  < 0 for Class 2.  

 

sgn(z)   The sign function 

€ 

sgn(z) =
1 if z ≥ 0
−1 if z < 0
$ 
% 
& 

 

 

  

€ 

γ =min ym ⋅
! w T
" 
X m + b( ){ } margin for a classifier:    

 

⋅, ⋅   inner product operator 
!
X,
!
Z =

!
XT
!
Z = xdzd

d=1

D

∑  
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The Margin for a Linear Classifier 
 

Linear Discriminant Functions 
The equation   

€ 

! w T
" 
X + b = 0 is a hyper-plane in a D-dimensional space,  
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  is the normal to the hyperplane and b is proportional to the perpendicular 

distance to the origin.  
 
For any point,   

€ 

! 
X    if   

€ 

! w T
" 
X + b > 0  then the point is above the hyperplane.  

     if   

€ 

! w T
" 
X + b = 0  then the point is on the hyperplane.  

     if   

€ 

! w T
" 
X + b < 0  then the point is below the hyperplane.  

 
We can use the sign to build a linear classifier:  IF   

€ 

! w T
" 
X + b ≥ 0 THEN C1 else C2 

The hyperplane is called a "decision surface".  
g(
!
X) = "wT !X + b is a linear discriminant function.  

 
If the coefficients are normalized (  

€ 

! w =1) then b becomes the perpendicular distance 
to the origin and   

€ 

d =
! w T
" 
X + b  is the signed distance of the point   

€ 

! 
X  from the plane.  

Normalization allows us to compare different decision surfaces based on the distance 
of training data from the surface.  
 

Margin  
For a 2-Class classifier, the "margin", γ, is the smallest separation between the two 
classes.    
 
Assume a training set of M observations  

€ 

{
! 
X m}

€ 

{ym} where   
 ym =  +1 for examples of the target class (class 1) 
 ym =  –1 for all others (class 2) 
 

If there exists a decision surfaces   

€ 

! w  with bias b, such that for all training data,   

€ 

{
! 
X m}   

a training sample is correctly classified by:   
 
    

€ 

ym ⋅
! w T
" 
X m + b( ) ≥ 0    

 
then the training data is said to be separable. Separable training data was an 
important criteria for many early classifiers (including perceptrons).  
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The margin, γm,  for each sample, m, is the distance from the decision surface.  
 
    

€ 

γm = ym ⋅
! w T ! x m + b( ) 

 
The margin for a linear classifier is the minimum margin for the training data. 
 
      γ =min

m
ym ⋅
!wT
!
Xm + b( ){ }  

 
 

γ 

 
 

Support Vector Machines 
Support Vector Machines (SVM) are a form of maximum margin classifier used for 
classification, regression and novelty detection.  
 
A Support Vector Machine is defined by the small subset of  the training samples that 
are closest to the decision surface.   The selection of the subset of training samples 
that defines the model corresponds to a convex optimization problem that can require 
a substantial computational cost. While the computational load for training an SVM 
can be high, the runtime computation can be extremely light-weight, making SVMs 
ideal for embedded systems.  
 
The subset of the training data that define the classifier are referred to as the “support 
vectors).  The support vectors define an "optimal" decision surface between two 
classes, where the optimality criteria is defined as the largest margin.  
 
The simplest case, the hard margin SVM, require that the training data be completely 
separated by at least one hyper-plane.  This is generally achieved by using very high 
dimensional feature vectors to classify the data.  
 
In the following, we will use a two class problem, K=2, with separable training data 
to illustrate the principle.  We will then generalize to non-separable training data by 
showing an SVM with soft margins. We will show how a Kernel function can be 
used to provide a powerful form of general purpose classifier.  
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Hard-Margin SVMs - a Simple Binary Classifier. 
 
Assume that we have M training samples 

!
Xm{ }  with an indicator variable, 

€ 

ym{ }, 

where , ym is -1 or +1, with +1 representing P and -1 representing N.  
 
The linear classifier trained from separable data is 
 
 g(!x) = !wT !x + b  with the decision rule :   IF   

€ 

g(! x ) ≥ 0 THEN P else N 
 
This is sometimes written using the sgn() function as  ŷ = sgn !wT

!
X + b( )  

where the sgn() function is:  
 

 

€ 

sgn(z) =
1 if z ≥ 0
−1 if z < 0
$ 
% 
& 

  

 
For a hard margin SVM we assume that the two classes are separable for all of the 
training data:  
 
 ∃{ !w,b} :∀m :   ym ( !wT

!
Xm + b) ≥ 0  

 
We will use a subset 

!
Xs{ }  of the training samples, 

!
Xs{ }⊂

!
Xm{ }  composed of Ms 

training samples to define the “best” decision surface 
!wT
!
X + b = 0 .  

 
The Ms selected training samples 

!
Xs{ }  are called the support vectors. The number of 

support vectors depends on the number of features, D.  
 
In general:   
 
 Ms = D+1  
 
D features are required to define the decision surface and 1 additional feature is 
required to define the margin.  For example, in a 2D feature space we need only 3 
training samples to serve as support vectors.  
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To define the classifier we will look for the subset if Ms training samples that 
maximizes the margin (

€ 

γ )  between the two classes.   
 
Margin:     

€ 

γ =min ym ⋅
! w T ! x m + b( ){ } 

 
 

γ 

 
 
This is equivalent to a search for a pair of parallel surfaces a distance γ from the 
decision surface.  
 

Finding the Support Vectors 
Classically, the support vectors are selected using Lagrange Multipliers.   
 
For each possible decision surface, 

!wT
!
X + b , assume that we have normalized the 

coefficients of the hyperplane such at  
 
 !w =1  
 
Then it becomes possible to compare margins for different decision surfaces.     
 
The learning algorithm must choose the subset of training samples that provide  a 
decision surface with the largest margin.  This is equivalent to a search for a pair of 
parallel surfaces a distance γ from the decision surface.  
 
The distance from the decision surface for any training point, m, is   
 
  dm = ym ⋅

!wT
!
Xm + b( )  

 
For the D+1 support vectors

!
Xm ∈ {

!
Xs} :  dm = γ 

For all other training samples 
!
Xm ∉ {

!
Xs} :  dm ≥ γ 
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The scale of the margin is determined by   

€ 

! w .   To find the support vectors, we can 
arbitrarily define the margin as γ = 1 and then renormalize   

€ 

! w =1 once the support 
vectors have been discovered.  
 
With  γ = 1,  we will look for two separate hyper-planes that “bound” the decision 
surface, such that for points on the surfaces:    

€ 

! w T ! x m + b =1  and   

€ 

! w T ! x m + b = −1 
 
The distance  between these two planes is 

  

€ 

2
! w 

. The inverse of the distance is 1
2
!w  

Maximizing the distance is the same as minimizing 1
2
!w .  

If we note that minimizing   

€ 

! w  is equivalent minimizing 
  

€ 

1
2
! w 2 ,  

 
We will add the constraint that for all support vectors  ym

!wT
!
Xm + b( ) =1    

while for all other samples:    ym
!wT
!
Xm + b( ) ≥1  

 
Thus the problem is to maximize 

  

€ 

argmin
! w ,b

1
2
! w 2

" 
# 
$ 

% 
& 
' 
 while minimizing the number of 

samples, Ms. This can be solved as a quadratic optimization problem using Lagrange 
Multipliers. 
 
For a subset of Ms ≥ D+1 samples,  am > 0.  These are the support vectors and the 
mutiplier am is set to 1:   am=1.  
 
For all other samples am ≤ 0.  The mutiplier am is set to 0:    am = 0 
 

The Lagrangian function is:  
  

€ 

L( ! w ,b, ! a ) =
1
2
! w 2 − am ym (

! w T ! x m + b)−1{ }
m=1

M

∑  

Setting the derivatives to zero, we obtain:  
 

  
  

€ 

∂L
∂
! w 

= 0⇒  
  

€ 

! w = am ym

" 
X m

m=1

M

∑    

€ 

∂L
∂b

= 0⇒  
  

€ 

b =
1

M s

! w T
! 
X s

xs∈{xs}
∑ − ys  

 

The normal of the decision surface is then: 
  

€ 

! 
W = am ym

! 
X m

m=1

M

∑    

 
where most of the am are zero. The Ms nonzero am select the support vectors.  
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and the offset can be found by solving for:  
  

€ 

b =
1

M S

! 
W T
! 
X m − ym

m∈S
∑  

 
Giving    

€ 

g(
! 
X ) =

! w T
! 
X + b . 

 
Note that only S=D+1 of the coefficients am are non-zero.    These S non-zero 
coefficients select the support vectors from within the complete set of training data. 
 
The terms am are used to compose a set 

!
XS{ }  of Ms support vectors.  

 
The bias should the same for any support vector.  
 
Thus we can use any of the support vectors to compute the bias:  
 
 b = !wT !xS − ys   for any  !xS ∈

!
XS{ }  

 
Alternatively we can compute b as the average bias for all the support vectors. 
 

  
  

€ 

b =
1

M s

! w T
! 
X m

xm∈S
∑ − ym   

 
This solution can be generalized for use with non-separable training data using Soft 
margin Support Vector Machines and  non-linear decision surfaces using kernels. 
 

Soft Margin SVMs 
 
We can extend the SVM to the case where the training data are not separable by 
introducing the “hinge loss” function.  
 
hinge loss:   Lm =max 0, 1− ym (

!wT !xm + b)( ){ }  
 
This loss is 0 if the data is separable, and non-zero if the data is non-separable.  
 
Using the hinge loss, we can minimize 
 

 1
M

max 0, 1− ym (
!wT !xm + b)( ){ }

m=1

M

∑
"

#
$

%

&
'+λ

!w 2  
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To set this up as an optimization problem, we note that  
 
  

€ 

Lm =max 0,1− ym (
! w T ! x m + b){ } is the smallest non-negative that satisfies 

 
    

€ 

ym ( ! w T ! x m + b) ≥  1− Lm  
 
we rewrite the optimization as  
 

 minimize 
  

€ 

1
M

Lm
m=1

M

∑ +λ
! w 2  subject to   

€ 

ym ( ! w T ! x m + b) ≥  1− Lm   and Lm ≥ 0 for all m.  

 
This is classically solved as a quadratic optimization problem with Lagrange 
multipliers.   
 

Maximize 
  

€ 

am
m=1

M

∑ −
1
2

yiai (
! x i

T ! x j )
j=1

M

∑
i=1

M

∑ yjaj  

subject to 

€ 

amym
m=1

M

∑ = 0  and 

€ 

0 ≤ am ≤
1

2Mλ
 for all m 

The resulting Normal for the decision surface is:  
  

€ 

! w = am ym
" x m

m=1

M

∑  

 
We can compute b as the average bias for all the support vectors. 
 

  
  

€ 

b =
1

M s

! w T
! 
X m

xm∈S
∑ − ym   

 
To obtain the linear classifier   

€ 

g(
! 
X ) =

! w T
! 
X + b  

 
However, modern approaches use Gradient Descent to solve for   

€ 

! w  and b, offering 
important advantages for large data sets.  
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Kernel Methods 
 
Support Vector Machines can be generalized for use with non-linear decision 
surfaces using kernel functions. This provides a very general and efficient classifier. 
The idea of for use of a kernel functions first appeared in the perceptron literature in 
the 1960's. However, Kernel methods were not widely used until the mid 1990's 
when Support Vector Machines using quadratic kernels were shown to outperform 
multi-layer perceptrons in both accuracy and computational cost for problems such as 
handwriting analysis.  
 
Technically, a kernel function is a weighted sum. For example, the filters learned in 
neural networks are sometimes called kernels.  
 

The kernel is the inner product K(
!
X,
!
Xs ) =

!
f (
!
X),
!
f (
!
Xs ) = fn (

n=1

N

∑
!
X) fn (

!
Xs )  

Where fn (
!
Xs )  are the N components of the vector  function

!
f (
!
Xs ) .  

 
Kernel functions are sometimes explained as projecting the training data into higher 
dimensional space where the classes are separable.   
 

 
 
Instead of a decision function: g(

!x) = sgn( !wT !x + b)  we obtain a decision surface 

g(!x) = ws

!
f (!xs )

T
!
f (!x)+ b  where 

!
f (!x) is an N component vector function.  

 

Quadratic Kernels 
 
Quadratic kernels are as special case for Polynomial kernels.   A polynomial kernel is 
defined as  
 
K(
!
X,
!
Z ) =

!
XT
!
Z + c( )

N  
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Where 
!
X  and 

!
Z  d-dimensional vectors (e.g. feature vectors) and c ≥ 0 is a free 

parameter  used to trade off the influence of higher-order versus lower-order terms in 
the polynomial. When c = 0, the kernel is called homogeneous.   
 
A Quadratic kernel is the special case where N=2. In this case we can show that  
 

K(
!
X,
!
Z ) =

!
XT
!
Z + c( )

2
= (xd

2 )(zd
2 )

d=1

D

∑ + 2xix j( ) 2ziz j( )
j=1

i−1

∑
i=2

D

∑ + ( 2cxd )( 2czd )
d=1

D

∑ + c2  

  
This was sometimes referred to as the "Kernel Trick" and explained as mapping the 
features to a higher dimensional space where the data was separable.  
 
In the late 1990's Quadratic kernels were popular, and quadratic kernels continue to 
be used in natural language processing (NLP).   
 
When used with Support Vector Machines,  it can be more convenient to think of 
kernel methods as instance-based learners in which the kernel acts as a similarity 
function, and the training algorithm learns by example.  
 
A small representative set 

!
Xs{ }  of the training data 

!
Xm{ }  is selected and 0used to 

construct a discriminant function as a weighted sum of vector products between the 
observation and the selected examples. An observation is classified based on a 
weighted sum of similarity scores.  
 
For instance, a kernalized binary classifier is defined as   
 

ŷ = sgn ws
s=1

Ms

∑ ysk(
!
X,
!
Xs )

"

#
$

%

&
'  

 
Where the weights, ws , are learned in training.  
 
In computer vision, Radial Basis Functions have emerged as a popular choice for 
kernel function.  
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Radial Basis Function Kernels  
A radial basis function (RBF) is a real-valued function whose value depends only on 
the distance from the origin.  

For example, the Gaussian function    g(z) = e
−
z2

2σ 2   
 
is a popular Radial Basis Function with   

€ 

z =||
! 
X − ! x s ||   defined by samples from training 

data.  In this case:  
 

 K (
!
X −
!
xs ) = e

−

!
X−
!
xs

2

σ2  
 
Where each center point, !xs , is one of the support vectors.  
 
We can use a sum of Ms radial basis functions to define a discriminant function, 
where the support vectors are drawn from the M training samples.  
This gives a discriminant function of the form:  
 

g(
!
X ) = wi yiK (||

!
X −
!
xi ||)+bi

i=1

Ms

∑ , 

 
Where the training samples !xi ∈

!
X s{ }  are the support vectors.  

 
The standard deviation, σ, provides a free variable that constrains the rigidity (or 
curvature) of the decision surface. The standard deviation, σ, provides a compromise 
between generality and over-fitting and is chosen according to the distance between 
the classes.  If σ is small compared to the distance between classes, the surface will 
over-fit the samples.    If σ is large compared to the distance between the classes, then 
the decision surface is overly flat and may not capture the special cases in the training 
data. The standard deviation, σ is generally chosen to be the estimated distance 
between the closest members of the two classes.  

 
(images from "A Computational Biology Example using Support Vector Machines", 

Suzy Fei, 2009) 
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Kernel Functions for Symbolic Data 
 
Kernel functions can be defined over graphs, sets, strings and text! Consider for 
example, a non-vector space composed of a set of words {W}.  
We can select a subset of discriminant words {S} ⊂ {W} 
 
Given a set of words (a probe), {A} ⊂ {W}, we can define a kernel function of A and 
S using the intersection operation.  
 
 

€ 

k(A,S) = 2 A∩S    
 
where | . | denotes the cardinality (the number of elements)  of a set. 


