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Notation 
xd   A feature.  An observed or measured value.  
  

! 

! 
X    A vector of D  features.   
D   The number of dimensions for the vector    

! 

! 
X  

K   Number of classes 

! 

Ck    The kth class  
  

! 

! 
X " Ck     Statement that an observation  

! 

! 
X is a member of class Ck 

! 

ˆ C k    The estimated class  
  

! 

R(
! 
X )   A Recognition function  

  

! 

ˆ C k = R(
! 
X )  A recognition function that predicts

! 

ˆ C k  from   

! 

! 
X   

    For a detection function (K=2), 

! 

Ck " P,N{ } 

! 

y    The true class for an observation   

! 

! 
X    

  

! 

{
! 
X m}  

! 

{ym} Training samples of  

! 

! 
X  for learning, along with ground truth   

! 

! y  

! 

ym    An annotation (or ground truth) for sample m 
M   The number of  training samples.  
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 1. Course Organisation 
This course gives an introduction to techniques for Pattern Recognition and Machine 
Learning, with a performance based approach, using detection of faces as running 
example. The course takes a performance based approach, requiring a series of 
programming projects performed in Python using OpenCV and Keras.  Projects are 
performed in teams and focus on experimental performance evaluation of  techniques 
using benchmark data sets.  Access to a personal computer for use in projects is 
strongly advised. All lectures are in given in English. Labs my be reported in French 
or English.  
 
In the introductory lecture we introduce the problem of pattern recognition, and 
review performance evaluation metrics for pattern detection.  We also discuss the use 
of Conda Python, OpenCV and Jupyter Notebooks for practical exercises.  In the 
following lectures we review  sliding window pattern detectors and discuss the use of 
the Viola-Jones face detector found in OpenCV.   
 
The course will then focus on the design and training of Artificial Neural Networks.  
We introduce the Perceptron and discuss training with gradient descent. We present 
multi-layer networks and derive the Back-propagation algorithm as a distributed 
algorithm for gradient descent. We present convolutional neural networks, generative 
networks and Support Vector Machine. 
 
In this course, we will use face detection as a running example to illustrate different 
learning techniques.  We will implement and experimentally evaluate three different 
techniques for face detection in images.  
 

Lab 1: Face detection using the Viola Jones cascade detector   
Lab 2: Face detection using multilayer fully connected neural networks.  
Lab 3: Face detection using convolutional neural networks.  

 
Lab exercises will be programmed, evaluated and reported by teams of 3 students.  
Each team will make an oral presentation on one of the 3 labs. With 30 students we 
will have 3 presentations for 2 of the labs,  
 
Labs will be performed using the OpenCV environment running under conda Python.  
Groups will be encouraged to be creative in implementing, evaluating and reporting 
the labs.  The labs may use code found downloaded from the internet PROVIDED 
that you document the origin of the code. The primary task is performance 
evaluation.  
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Grades are determined 50% from the labs and 50% from a final exam.  
The lab grade is the average from the grades of 3 written reports of the team members 
plus the oral reports.  Written reports will be due 1 week after the oral reports.  
 
Team compositions are to be finalized at the second lecture. 
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2. Pattern Recognition and Machine Learning  
 
Pattern Recognition is the process of assigning observations to categories. 
Observations are produced by some form of sensor. A sensor transforms some 
physical phenomena into one or more measurements, .   

 
These measurements are classically called features and   

! 

! 
X  is called a feature vector.  

Features may be Boolean, natural numbers, integers, real numbers or symbolic labels.  
 
In most interesting problems, the sensor provides a vector of D features,   

! 

! 
X .  

 

 

  

! 

! 
X =

x1
x2
"

xD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 
 

Discriminant and Decision Functions 
 
A classifier,   

! 

R(
! 
X ), maps the feature vector,   

! 

! 
X  into a statement that the observation 

belongs to a class 

! 

ˆ C k  from a set of K possible classes.   

! 

R(
! 
X )" ˆ C k  

 

 
In most classic techniques, the class 

! 

ˆ C k  is from a set of K known classes 

! 

Ck{ }.  The 
set 

! 

Ck{ } is generally a closed set. Almost all current classification techniques require 
the number of classes, K, to be fixed.  An interesting research problem is how to 
design classification algorithms that allow

! 

Ck{ } to grow with experience.  
 
The classification function   

! 

R(
! 
X ) can typically be decomposed into two parts:  

   

! 

ˆ C k " R(
! 
X ) = d ! g 

! 
X ( )( )  

where     

! 

d ! g 
! 
X ( )( ) is a decision function and  is a learned discriminant function.  

   

! 

d ! g 
! 
X ( )( ) :  A non-linear decision function chosen by the system designer.  

    RK

! 

" 

! 

ˆ C k " {Ck } 
   

! 

! g 
! 
X ( ) :  A discriminant function that transforms:      

! 

! 
X "RK 

      The discriminant function is typically learned from the data.  
 



Performance Evaluation  
 

6 

The classifier "guesses" or "predicts" the most likely class   

! 

ˆ C k " R(
! 
X ) = d ! g 

! 
X ( )( )  

The discriminant function is typically learned from a set of labeled training data, 
composed of M independent examples,   

! 

{
! 
X m}  for which we know the true class

! 

{ym}.  
The quality of the recognizer depends on the degree to which the training data   

! 

{
! 
X m}  

represents the range of variations of real data. 
 

Machine Learning for Pattern Recognition 
Machine learning explores the study and construction of algorithms that can learn 
functions from data. Machine Learning for Pattern Recognition is the most common 
form of Machine Learning, but this is only one of many forms. Over the last 50 years, 
machine-learning techniques have been developed for many different problems 
involving function estimation, including speech synthesis, music and art.  
 
Machine learning uses a set of set of M samples   

! 

{
! 
X m} , to estimate the discriminant 

function   

! 

! g 
! 
X ( ) . A variety of algorithms have been developed, each with its own 

advantages and disadvantages.  
 
Classic techniques for machine learning use probability theory to make this 
prediction.   

   
  

! 

ˆ C k = arg"max
Ck

P(Ck |
! 
X ){ } 

where   

! 

P(Ck |
! 
X ) is the conditional probability of the class Ck given the vector   

! 

! 
X . 

 
In this case the decision function 

! 

d "( )  is 

! 

arg"max "{ } and the  discriminant function, 
  

! 

! g 
! 
X ( )   is the conditional probability   

! 

P(Ck |
! 
X ).  

We can use Bayes Rule to estimate   

! 

P(Ck |
! 
X ):  

  

! 

P(Ck |
! 
X ) =

P(
! 
X |Ck )P(Ck )

P(
! 
X )

 

 
Our problem is then reduced to using the training data to estimate the probabilities:  

! 

P(Ck ) ,  

! 

P(
! 
X ), and   

! 

P(
! 
X |Ck ). 

 
This can be done with a variety of parametric and non-parametric techniques. The 
most widely used parametric models include the multivariate Gaussian (normal) 
density and the Gaussian Mixture model:  

Gaussian (Normal) Density: 

    

! 

p(
! 
X ) = N (

! 
X ; ! µ ,") =

1

(2#)
D
2 det(")

1
2

e
–1
2
(
! 
X – ! µ )T "$1(

! 
X – ! µ )

 

Gaussian Mixture Models: 
    

! 

p(
! 
X ) = "k

k=1

K

# N (
! 
X ; ! µ k ,$k ) 
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Non-parametric techniques use the training data as a model for the probability. These 
include Histograms, Kernel Density Estimators, and K-Nearest Neighbors.  
 
I assume that you have seen such techniques in your first two years at ENSIMAG. 
We will concentrate on more modern technique based on Neural Networks.   
 
Supervised Learning: Having the true class 

! 

{ym} for each of the M training samples, 
  

! 

{
! 
X m} , makes it much easier to estimate the functions   

! 

gk (
! 
X ).  This is known as  

supervised learning.   
 
Unsupervised Learning techniques learn the discriminant function   

! 

gk (
! 
X ) without a 

labeled training set.  Such methods typically require a much larger sample of data for 
learning.  A number of hybrid algorithms exist that initiate learning from a labeled 
training set and then extend the learning with unlabeled data.  
 
Machine learning is an empirical science. New techniques are continuously 
introduced with rapid progress in reliability.  To publish a technique it is necessary to 
demonstrate a gain in performance compared to previous techniques, using a publicly 
available benchmark data set.  
 
3. Performance Evaluation 
 
We will illustrate performance evaluation with pattern detection.  A pattern detector 
is a form of classifier that returns a yes/no decision. This is a special case of 
recognition.  
 
For a pattern detector, there are 2 classes (K=2). The possible classes are 

! 

Ck " P,N{ } 
Class 1 (C1) is a positive detection P.  
Class 2 (C2) is a negative detection, N.    

 
Pattern detectors are used in computer vision, for example, to detect faces, road signs, 
publicity logos, or other patterns of interest. They are also used in speech recognition, 
acoustic sensing, signal communications, data mining and many other domains.  
 
The pattern detector is learned as a discriminant function   

! 

g
! 
X ( ) followed by a decision 

rule, d().  For K=2 this can be reduced to a single function, as 
 
   

! 

g1
! 
X ( ) > g2

! 
X ( )    is equivalent to   

! 

g
! 
X ( ) = g1

! 
X ( )" g2

! 
X ( ) > 0 
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The discriminant function is learned from a set of training data composed of M 
sample observations   

! 

{
! 
X m}  where each sample observation is labeled with an indicator 

variable 

! 

{ym} 
 
 ym =  P  or Positive for examples of the target pattern (class k=1) 
 ym =  N or Negative for all other examples (class k=2) 
 
Observations for which   

! 

g
! 
X ( ) > 0   are estimated to be members of the target class. This 

will be called  POSITIVE or P.    
 
Observations for which   

! 

g
! 
X ( ) " 0   are estimated to be members of the background.  

This will be called NEGATIVE or N. (N includes the Neutral class where   

! 

g
! 
X ( ) = 0.) 

 
We combine the discriminant with a decision function to define a classifier,   

! 

R(
! 
X ). 

 

 
  

! 

R(
! 
X ) = d(g(

! 
X )) =

P if g(
! 
X ) >  0 

N if g(
! 
X ) "  0

# 
$ 
% 

 

 
For training we need ground truth (annotation).  For each training sample the 
annotation or ground truth tells us the real class 

! 

ym  
 

 
  

! 

ym =
P
! 
X m " Target -Class

N otherwise

# 
$ 
% 

 

 
The Classification can be TRUE or FALSE.  
 
  if   

! 

R(
! 
X m ) = ym  then T else F 

 
This gives 
   

! 

R(
! 
X m ) = ym  AND   

! 

R(
! 
X m ) = P  is a TRUE POSITIVE or TP 

   

! 

R(
! 
X m ) = ym  AND   

! 

R(
! 
X m ) = N  is  a TRUE NEGATIVE or TN 

   

! 

R(
! 
X m ) " ym  AND   

! 

R(
! 
X m ) = P  is a FALSE POSITIVE or FP 

   

! 

R(
! 
X m ) " ym  AND   

! 

R(
! 
X m ) = N  is a FALSE NEGATIVE or FN 

 
To better understand the detector we need a tool to explore the trade-off between 
making false detections (false positives) and missed detections (false negatives).  The 
Receiver Operating Characteristic (ROC) provides such a tool 
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ROC Curves 
 
Two-class classifiers have long been used for signal detection problems in 
communications and have been used to demonstrate optimality for signal detection 
methods. The quality metric that is used is the Receiver Operating Characteristic 
(ROC) curve. This curve can be used to describe or compare any method for signal or 
pattern detection.  
 
The ROC curve is generated by adding a variable Bias term to a discriminant 
function.  
 
   

! 

R(
! 
X ) = d(g(

! 
X )+ B) 

 
and plotting the rate of true positive detection vs false positive detection as the bias 
term, B, is swept through a range of values.  
 
For example, if  

! 

g(
! 
X m ) is a probability ranging from 0 to 1, the decision function would 

be 

 
  

! 

R(
! 
X ) = d(g(

! 
X )) =

P if g(
! 
X )+ B >  0.5 

N if g(
! 
X )+ B "  0.5

# 
$ 
% 

 

 
in this case, B can range from  –0.5 to more than +0.5.   
When B = –0.5  all detections will be Negative.   
When  B > +0.5  all detections will be Positive. 
Between –0.5 and +0.5   

! 

R(
! 
X ) will give a mix of TP, TN, FP and FN.  

 
The ROC plots True Positive Rate (TPR) against False Positive Rate (FPR) as a 
function of B for the  training data   

! 

{
! 
X m} , 

! 

{ym}. 
 
The bias term, B, can act as an adjustable gain that sets the sensitivity of the detector. 
The bias term allows us to trade False Positives for False Negatives.  
 
In some practical cases, we can replace B with any adjustable parameter for the 
discriminant function. Thus we can use the ROC to determine the optimum parameter 
values for an architecture for machine learning.  We can also use an ROC curve to 
compare architectures.  
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True Positives and False Positives 
 
For each training sample, the detection as either Positive (P) or Negative (N) 
 
 IF  

! 

g(
! 
X m )+B > 0.5  THEN P else N 

 
The detection can be TRUE (T) or FALSE (F) depending on the indicator variable  ym 
 
 IF   

! 

ym = R(
! 
X m )  THEN T else F 

 
Combining these two values, any detection can be a True Positive (TP), False 
Positive (FP), True Negative (TN) or False Negative (FN).  
 
For the M samples of the training data   

! 

{
! 
X m} , 

! 

{ym} we can define:  
 #P as the number of Positives in the training data. 
 #N as the number of Negatives in the training data. 
 #T as the number of training samples correctly labeled by the detector.  
 #F as the number of  training samples incorrectly labeled by the detector.  
From this we can define:  
 #TP as the number of training samples correctly labeled as Positive  
 #FP as the number of training samples incorrectly labeled as Positive  
 #TN as the number of training samples correctly labeled as Negative  
 #FN as the number of training samples incorrectly labeled as Negative 
 
Note that #P = #TP + #FN  (positives in the training data) 
And #N = #FP+ #TN  (negatives in the training data) 
 
The True Positive Rate (TPR) is 

! 

TPR =
#TP
#P

=
#TP

#TP+#FN
 

 
The False Positive Rate (FPR) is 

! 

FPR =
#FP
#N

=
#FP

#FP+#TN
 

 
The ROC plots the TPR against the FPR as a bias B is swept through a range of 
values.  
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When B is at its minimum, all the samples are detected as N, and both the TPR and 
FPR are 0. As B increases both the TPR and FPR increase. Normally TPR should rise 
monotonically with FPR.  If TPR and FPR are equal, then the detector is no better 
than chance.  
 
The closer the curve approaches the upper left corner,  the better the detector.  
 

   

! 

ym = R(
! 
X m )     

! 

ym " R(
! 
X m )  

  

! 

d(g(
! 
X m )+B > 0.5)  True Positive (TP) False Positive (FP) 

  

! 

d(g(
! 
X m )+B " 0.5)  True Negative (TN) False Negative (FN) 

 
Precision and Recall 
 
Precision, also called Positive Predictive Value (PPV), is the fraction of retrieved 
instances that are relevant to the problem.  
 

 

! 

PPV =
TP

TP+FP
 

 
A perfect precision score (PPV = 1.0) means that every result retrieved by a search 
was relevant, but says nothing about whether all relevant documents were retrieved.  
 
Recall, also known as sensitivity (S), hit rate, and True Positive Rate (TPR) is the 
fraction of relevant instances that are retrieved. 

  

 

! 

S =TPR =
TP
T

=
TP

TP+FN
 

 
A perfect recall score (TPR=1.0) means that all relevant documents were retrieved by 
the search, but says nothing about how many irrelevant documents were also 
retrieved.    
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Both precision and recall are therefore based on an understanding and measure of 
relevance. In our case, “relevance” corresponds to “True”.  
Precision answers the question “How many of the Positive Elements are True ?” 
Recall answers the question “How many of the True elements are Positive”?  
 
In many domains, there is an inverse relationship between precision and recall. It is 
possible to increase one at the cost of reducing the other. 
 

F-Measure 
The F-measures combine precision and recall into a single value. The F measures 
measure the effectiveness of retrieval. The best value is 1 when Precision and Recall 
are perfect. The worst value is at Zero. 
 
F1 Score:  

 

! 

F1 =
2

1
Recall

+
1

Precision

= 2
Precision "Recall
Precision+Recall

 

 
The F1 score is the harmonic mean of precision and recall.  
 

Accuracy  
Accuracy is the fraction of test cases that are correctly classified (T).  
 

 

! 

ACC =
T
M

=
TP+TN
M

 

 
where M is the quantity of test data.  
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4.  Tools and Data Sets 
 
Programming exercises should be performed using the OpenCV environment running 
under Python. You should use Jupyter notebooks to perform your project.  However, 
your project reports should be handed in as written report written in English or 
French, and describing performance evaluation under different configurations and 
parameters.  
 
To install Open CV running under Python, go to the conda web site at 
(https://docs.conda.io/en/latest/miniconda.html), download the shell script for 
miniconda and follow the installation instructions. Create a workspace (for example 
named Machine-Learning), and install Juypiter notebooks and OpenCV.  The 
following is a trace of these steps from an Mac OS.  The actual commands will 
depend on your operating system.  
 
> bash /Users/Crowley/Downloads/Miniconda3-latest-MacOSX-x86_64.sh 
> conda 
Open a new terminal window 
> conda create -n Machine-Learning 
> conda activate Machine-Learning 
> conda env list 
> conda install -c conda-forge opencv 
> conda install -c conda-forge jupyter 
> conda install matplotlib 
> python  
Python 3.8.5 | packaged by conda-forge | (default, Sep 16 2020, 17:43:11)  
[Clang 10.0.1 ] on darwin 
Type "help", "copyright", "credits" or "license" for more information. 
>>> import cv2 
>>> import numpy 
>>> jupyter notebook 
 
Several sets of annotated images of faces are available on the course web site. In 
general we will use  the “FDDB: Face Detection Data Set and Benchmark Home” of 
the University of Massachusetts. The data set can be found at http://vis-
www.cs.umass.edu/fddb/ and is described in the paper (Jain and Learned-Miller 
2010) available on the course web site.  
http://crowley-coutaz.fr/jlc/Courses/2020/GVR.VO/GVR-VO.html 
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The FDDB data set contains 2845 images with a total of 5171 faces extracted from 
news articles selected using an automatic face detector. Faces with a height or width 
less than 20 pixels, as well as faces that are looking away from the camera were 
rejected. The remaining 5171 faces have been noted in a ground-truth data set and 
labeled with a bounding box. The images in this data set exhibit large variations in 
pose, lighting, background and appearance due to factors such as motion, occlusions, 
and facial expressions, which are characteristic of the unconstrained setting for image 
acquisition.  Each face is also described with an ellipse parameterized by center 
location, the lengths of its major and minor axes, and its orientation, as shown in the 
following images:  
 

  
 Face Boxes Face Ellipses 
 
Annotations of face regions as an ellipse in FDDB are represented by a 6-tuple (ra, rb, 
θ, cx, cy, 1) where ra and rb refer to the half-length of the major and minor axes,  θ is 
the angle of the major axis with the horizontal axis,  and  cx and cy are the column and 
row image coordinates of the center of this ellipse. For example:  
Ellipse Data:  
2002/07/24/big/img_82 
1 
59.268600 35.142400 1.502079 149.366900 59.365500  1 
 
the standard form of an ellipse with a major axis along the horizontal (x) axis is:   

 

! 

x " cx( )2

ra
2 +

y" cy( )2

rb
2 =1 

for any pixel x,y inside the ellipse, 

! 

x " cx( )2

ra
2 +

y" cy( )2

rb
2 <1 
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For a hypothesis of a face 

  

! 

! 
X =

cx

cy

ra

rb

"

# 

$ 

% 
% 
% 
% 
% % 

& 

' 

( 
( 
( 
( 
( ( 

 can define a ground truth function as   

! 

y(
! 
X m ) 

 

 
  

! 

y(
! 
X m ) = if (

x " cx( )2

ra
2 +

y" cy( )2

rb
2 #1) then P else N. 

 
If it is necessary to rotate the face to an angle θ we can use:  
 

  

! 

(x " cx )cos(#)+ (y" cy )sin(#)( )2

ra
2 +

(x " cx )sin(#)+ (y" cy )cos(#)( )2

rb
2 =1 

 
 


