Training Support Vector Machines: an Application to Face

Detection
(To appear in the Proceedings of CVPR’97, June 17-19, 1997, Puerto Rico.)

Edgar Osuna'™*

Robert Freund*

Federico Girosit

fCenter for Biological and Computational Learning and *Operations Research Center
Massachusetts Institute of Technology
Cambridge, MA, 02139, U.S.A.

Abstract

We investigate the application of Support Vector
Machines (SVMs) in computer wision. SVM is a
learning technique developed by V. Vapnik and his
team (ATET Bell Labs.) that can be seen as a
new method for training polynomial, neural network,
or Radial Basis Functions classifiers. The decision
surfaces are found by solving a linearly constrained
quadratic programming problem. This optimization
problem 1is challenging because the quadratic form is
completely dense and the memory requirements grow
with the square of the number of data points.
We present a decomposition algorithm that guarantees
global optimality, and can be used to train SVM’s over
very large data sets. The main idea behind the decom-
position is the iterative solution of sub-problems and
the evaluation of optimality conditions which are used
both to generate improved iterative values, and also
establish the stopping criteria for the algorithm.
We present experimental results of our implementa-
tion of SVM, and demonstrate the feasibility of our
approach on a face detection problem that involves a
data set of 50,000 data points.

1 Introduction

In recent years problems such as object detection
or image classification have received an increasing
amount of attention in the computer vision commu-
nity. In many cases these problems involve “concepts”
(like “face”, or “people”) that cannot be expressed in
terms of a small and meaningful set of features, and
the only feasible approach is to learn the solution from
a set of examples. The complexity of these problems
is often such that an extremely large set of examples
is needed in order to learn the task with the desired
accuracy. Moreover, since it is not known what are
the relevant features of the problem, the data points
usually belong to some high-dimensional space (for ex-
ample an image may be represented by its grey level
values, eventually filtered with a bank of filters, or
by a dense vector field that puts it in correspondence
with a certain prototypical image). Therefore, there
is a need for general purpose pattern recognition tech-
niques that can handle large data sets (10° —10° data
points) in high dimensional spaces (10? — 10%).

In this paper we concentrate on the Support Vector
Machine (SVM), a pattern classification algorithm re-
cently developed by V. Vapnik and his team at AT&T

Bell Labs. [1, 3, 4, 12]. SVM can be seen as a new
way to train polynomial, neural network, or Radial
Basis Functions classifiers. While most of the tech-
niques used to train the above mentioned classifiers
are based on the idea of minimizing the training er-
ror, which is usually called empirical risk, SVMs op-
erate on another induction principle, called structural
risk minimization, which minimizes an upper bound
on the generahzatlon error. From the implementation
point of view, training a SVM is equivalent to solving
a linearly constrained Quadratic Programming (QP)
problem in a number of variables equal to the num-
ber of data points. This problem is challenging when
the size of the data set becomes larger than a few
thousands. In this paper we show that a large scale
QP problem of the type posed by SVM can be solved
by a decomposition algorithm: the original problem
is replaced by a sequence of smaller problems, that is
proved to converge to the global optimum. In order to
show the applicability of our approach we used SVM
as the core classification algorithm in a face detection
system. The problem that we have to solve involves
training a classifier to discriminate between face and
non-face patterns, using a data set of 50,000 points.
The plan of the paper is as follows: in the rest of this
section we briefly introduce the SVM algorithm and
its geometrical interpretation. In section 2 we present
our solution to the problem of training a SVM and
our decomposition algorithm. In section 3 we present
our application to the face detection problem, and in
section 4 we summarize our results.

1.1 Support Vector Machines

In this section we briefly sketch the SVM algorithm
and its motivation. A more detailed description of
SVM can be found in [12] (chapter 5) and [4].

We start from the simple case of two linearly sepa-
rable classes. We assume that we have a data set D =
{(xi,y:)}_, of labeled examples, where y; € {—1,1},
and we wish to determine, among the infinite num-
ber of linear classifers that separate the data, which
one will have the smallest generalization error. Intu-
itively, a good choice is the hyperplane that leaves the
maximum margin between the two classes, where the
margin is defined as the sum of the distances of the
hyperplane from the closest point of the two classes
(see figure 1).

If the two classes are non-separable we can still look for

Figure 1: (a) A Separating Hyperplane with small
margin. (b) A Separating Hyperplane with larger
margin. A better generalization capability is expected
from (b).

the hyperplane that maximizes the margin and that
minimizes a quantity proportional to the number of
misclassification errors. The trade off between margin
and misclassification error is controlled by a positive
constant C' that has to be chosen beforehand. In this
case it can be shown that the solution to this problem

is a linear classifier f(x) = sign(zl 1 AiyixTx; +b)

whose coefficents A; are the solution of the following
QP problem:

Minimize WW(A) =_—AT1 4 %ATDA
A
subject to
ATy =0 (1)
A-C1 <0
—A <0

where (A); = A;, (1); = 1 and Dy; = yiy x]
turns out that only a small number of coeflﬁaents /\
are different from zero, and since every coefficient cor-
responds to a particular data point, this means that
the solution is determined by the data points associ-
ated to the non-zero coefficients. These data points,
that are called support vectors, are the only ones which
are relevant for the solution of the problem: all the
other data points could be deleted from the data set
and the same solution would be obtained. Intuitively,
the support vectors are the data points that lie at the
border between the two classes. Their number is usu-
ally small, and Vapnik showed that it is proportional
to the generalization error of the classifier.

Since it is unlikely that any real life problem can
actually be solved by a linear classifier, the technique
has to be extended in order to allow for non-linear de-
cision surfaces. This is easily done by projecting the
original set of variables x in a higher dimensional fea-
ture space: x € R? = z(x) = (41(x), . .., dn(x)) € R"
and by formulating the linear classification problem
in the feature space The solution will have the form

f(x) = ﬂgn(ZZ: Niyizt (x)z(x i) +b), and therefore
will be nonlinear 1n the original input variables. One
has to face at this point two problems: 1) the choice
of the features ¢;(x), which should be done in a way

that leads to a “rich” class of decision surfaces; 2) the

computation of the scalar product z’ (x)z(x;), which
can be computationally prohibitive if the number of
features n is very large (for example in the case in
which one wants the feature space to span the set of
polynomials in d variables the number of features n
is exponential in d). A possible solution to this prob-
lems consists in letting n go to infinity and make the
following choice:

z(x) = (Vervi(x), ..., Veui(x),...)

where «; and ; are the eigenvalues and eigenfunc-
tions of an integral operator whose kernel K (x,y) is a
positive definite symmetric function. With this choice
the scalar product in the feature space becomes par-
ticularly simple because:

Z ithi(x

where the last equality comes from the Mercer-
Hilbert-Schmidt theorem for positive definite func-
tions (see [8], pp. 242-246). The QP problem that
has to be solved now is exactly the same as in eq.
(1), with the exception that the matrix D has now
elements D;; = y;y; K(x;,%;). As a result of this
choice, the SVM classifier has the form: f(x)

sign(3 .1 Miyi K(x,%x;) +b). In table (1) we list some
choices oflthe kernel function proposed by Vapnik: no-
tice how they lead to well known classifiers, whose de-
cision surfaces are known to have good approximation
properties.

Wi(y) = K(x,y)

Kernel Function Type of Classifier

K(x,x%;) = exp(—[x — x;||*) | Gaussian RBF

K(x,x;) = (xTx; + 1)¢ Polynomial of degree d

K(x,x;) = tanh(xTx; — ©) | Multi Layer Perceptron

Table 1: Some possible kernel functions and the type
of decision surface they define

2 Training a Support Vector Machine
As mentioned before, training a SVM using large data
sets (above & 5,000 samples) is a very difficult problem
to approach without some kind of problem decompo-
sition. To give an idea of some memory requirements,
an application like the one described in section 3 in-
volves 50,000 training samples, and this amounts to a
quadratic form whose matrix D has 2.5 - 10° entries
that would need, using an 8-bytes floating point rep-
resentation, 20 Gigabytes of memory.

In order to solve the training problem efficiently,
we take explicit advantage of the geometrical inter-
pretation introduced in Section 1.1, in particular, the
expectation that the number of support vectors will
be very small, and therefore that many of the compo-
nents of A will be zero.

In order to decompose the original problem, one
can think of solving iteratively the system given by
(1), but keeping fixed at zero level those components

A; associated with data points that are not support
vectors, and therefore only optimizing over a reduced
set of variables.

To convert the previous description into an algo-
rithm we need to specify:

1. Optimality Conditions: These conditions al-
low us to decide computationally, if the problem
has been solved optimally at a particular iteration
of the original problem. Section 2.1 states and
proves optimality conditions for the QP given by

(1).

2. Strategy for Improvement: If a particular so-
lution is not optimal, this strategy defines a way
to improve the cost function and is frequently
associated with variables that violate optimality
conditions. This strategy will be stated in section
2.2.

After presenting optimality conditions and a strategy
for improving the cost function, section 2.3 introduces
a decomposition algorithm that can be used to solve
large database training problems, and section 2.4 re-
ports some computational results obtained with its im-
plementation.

2.1 Optimality Conditions
The QP problem we have to solve is the following:

Minimize W(A) =-AT1+1iATDA
A
subject to
ATy =0 (1)
A-C1 <0 (Y)
—A <0 (II)
2)
where p, YT = (vy,...,v,) and 0T = (7, ..., m) are

the associated Kuhn-Tucker multipliers.

Since D is a positive semi-definite matrix (the kernel
function used is positive definite), and the constraints
in (2) are linear, the Kuhn-Tucker, (KT) conditions
are necessary and sufficient for optimality. The KT
conditions are as follows:

VW(A)+ Y —II+puy =0

YT(A-C1) =0
m’A =0
Y >0
II EO (3)
ATy =0
A-C1 <0
—A <0

In order to derive further algebraic expressions from
the optimality conditions (3), we assume the existence
of some A; such that 0 < A; < C, and consider the
three possible values that each component of A can
have:

1. Case: 0< X; < C
From the first three equations of the KT condi-
tions we have:

(DA); = 1+ pyi =0 (4)
Using the results in [4] and [12] one can easily

show that when A is strictly between 0 and C' the
following equality holds:

yz’(ZAjyjK(Xi;Xj)er)zl (5)

Noticing that

£ £
(DA)Z':Z)\jyjyi[((xi;Xj):yiz/\jyjl((xiaxj)

j=1 ji=1

and combining this expression with (5) and (4)
we immediately obtain that g = b.

. Case: \; =C

From the first three equations of the KT condi-
tions we have:

(DA); =14 vi + py; =0 (6)
By defining
£
g(xi) =Y Ay K(xi,%;) +b (7)
ji=1

and noticing that

(DA)i = 4 > Ny K (x5, %)) = yil9(x:) — b)

ji=1
we conclude from equation (6) that
vig(xi) < 1 (8)

(where we have used the fact that g = b and
required the KT multiplier v; to be positive).

. Case: A\; =0

From the first three equations of the KT condi-
tions we have:

(DA); =1 —mi+py; =0 9)

By applying a similar algebraic manipulation as
the one described for case 2, we obtain

vig(xi) > 1 (10)

2.2 Strategy for Improvement

The optimality conditions derived in the previous sec-
tion are essential in order to devise a decomposition
strategy that takes advantage of the expectation that
most A;’s will be zero, and that guarantees that at
every iteration the objective function is improved.

In order to accomplish this goal we partition the
index set in two sets B and N in such a way that the
optimality conditions hold in the subproblem defined
only for the variables in the set B, which is called the
working set. Then we decompose A in two vectors Ap
and Ay and set Ay = 0. Using this decomposition
the following statements are clearly true:

e We can replace A\; = 0, 1 € B, with A; = 0,
j € N, without changing the cost function or the
feasibility of both the subproblem and the original
problem.

e After such a replacement, the new subproblem is
optimal if and only if y;¢9(x;) > 1. This follows
from equation (10) and the assumption that the
subproblem was optimal before the replacement
was done.

The previous statements lead to the following propo-
sition:

Proposition 2.1 Given an optimal solution of a sub-
problem defined on B, the operation of replacing A; =
0, 1€ B, with \; = 0 J € N, satisfying y;9(x;) <
1 genemtes a new subpmblem that when optimized,
yields a strict improvement of the objective function

W(A).

Proof: We assume again the existence of A, such
that 0 < A, < C. Let us also assume that y, = y; (the
proof is analogous if y, = —y;). Then, there is some
€ > 0 such that A, — 6 > 0, for é € (0,¢€). Notice also
that g(x,) = y,. Now, consider A = A + de; — ey,
where ¢; and e, are the j-th and p-th unit vectors,
and notice that the pivot operation can be handled
implicitly by letting 6 > 0 and by holding A; = 0. The
new cost function W(A) can be written as:

1
W(A)=-A 1+ 2ATDA

1
=-AT1 4 §ATDA + AT D(bej — bep) +

1
+= (66] — 6ep) D(ée; — bep)

W() +6[(9(x;) = b)y;

+5 9 [K(xj, %)+ K(xp, xp) —2ypy; K (xp, %;)]

— 1+ byp] +

2

ZW(A) + 6 [g(x;)y — 1] + % (K (x;,%;)

+K (xp, Xp) — 24y K (%p, ;)]

Therefore, since g(x;)y; < 1, by choosing é small
enough we have W(A) < W(A)

2.3 The Decomposition Algorithm
Suppose we can define a fixed-size working set B,
such that |B| < ¢, and it is big enough to contain
all support vectors (A; > 0), but small enough such
that the computer can handle it and optimize it using
some solver. Then the decomposition algorithm can
be stated as follows:

1. Arbitrarily choose |B| points from the data set.

2. Solve the subproblem defined by the variables in
B.

3. While there exists some j € N, such that
g(x;)y; < 1, replace A; =0, ¢ € B, with A; =0
and solve the new subproblem.

Notice that, according to (2.1), this algorithm will
strictly improve the objective function at each iter-
ation and therefore will not cycle. Since the objective
function is bounded (WW(A) is convex quadratic and
the feasible region is bounded), the algorithm must
converge to the global optimal solution in a finite num-
ber of iterations. Figure 2 gives a geometric interpre-
tation of the way the decomposition algorithm allows
the redefinition of the separating surface by adding
points that violate the optimality conditions.

Figure 2: (a) A sub-optimal solution where the non-
filled points have A = 0 but are violating optimality
conditions by being inside the +1 area. (b) The deci-
sion surface is redefined. Since no points with A = 0
are inside the 1 area, the solution is optimal. No-
tice that the size of the margin has decreased, and the
shape of the decision surface has changed.

2.4 Implementation and Results

We have implemented the decomposition algorithm
using MINOS 5.4 as the solver of the sub-problems.
For information on MINOS 5.4 see [7]. The computa-
tional results that we present in this section have been
obtained using real data from our Face Detection Sys-
tem, which is described in Section 3.

Figures 3a and 3b show the training time and the num-
ber of support vectors obtained when training the sys-
tem with 5,000, 10,000, 20,000, 30,000, 40,000, 49,000,
and 50,000 data points. The discontinuity in the
graphs between 49,000 and 50,000 data points is due to
the fact that the last 1,000 data points were collected

in the last phase of bootstrapping of the Face Detec-
tion System (see section 3.2). This means that the last
1,000 data points are points which were misclassified
by the previous version of the classifier, which was al-
ready quite accurate, and therefore points likely to be
on the border between the two classes and therefore
very hard to classify. Figure 3¢ shows the relationship
between the training time and the number of support
vectors. Notice how this curve is much smoother than
the one in figure 3a. This means that the number of
training data is not a good predictor of training time,
which depends more heavily on the number of support
vectors: one could add a large number of data points
without increasing much the training time if the new
data points do not contain new support vectors. In fig-
ure 3d we report the number of global iterations (the
number of times the decomposition algorithm calls the
solver) as a function of support vectors. Notice the
jump from 11 to 15 global iterations as we go from
49,000 to 50,000 samples adding 1,000 “difficult” data
points.

The memory requirements of this technique are
quadratic in the size of the working set B. For the
50,000 points data set we used a working set of 1,200
variables, that ended up using only 25Mb of RAM.
However, a working set of 2,800 variables will use ap-
proximately 128Mb of RAM. Therefore, the current
technique can deal with problems with less than 2,800
support vectors (actually we empirically found that
the working set size should be about 20% larger than
the number of support vectors). In order to overcome
this limitation we are implementing an extension of
the decomposition algorithm that let us deal with very
large numbers of support vectors (say 10,000).

3 SVM Application: Face Detection in

Images

This section introduces a Support Vector Machine ap-
plication for detecting vertically oriented and unoc-
cluded frontal views of human faces in grey level im-
ages. It handles faces over a wide range of scales and
works under different lighting conditions, even with
moderately strong shadows.

The face detection problem can be defined as fol-
lows: given as input an arbitrary image, which could
be a digitized video signal or a scanned photograph,
determine whether or not there are any human faces
in the image, and if there are, return an encoding of
their location.

Face detection as a computer vision task has many
applications. It has direct relevance to the face recog-
nition problem, because the first important step of a
fully automatic human face recognizer is usually lo-
cating faces in an unknown image. Face detection
also has potential application in human-computer in-
terfaces, surveillance systems, census systems, etc.

From the standpoint of this paper, face detection
is interesting because it is an example of a natural
and challenging problem for demonstrating and test-
ing the potentials of Support Vector Machines. There
are many other object classes and phenomena in the
real world that share similar characteristics, for exam-
ple, tumor anomalies in MRI scans, structural defects
in manufactured parts, etc. A successful and general

Number of Support Vctors

05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 45 5
a Numoer of Samples ot Number of Samples et

Number of Global ferations.

300 400 500 600 700 800 900 1000 05 1 15 ZN is ,53 § 35 4 45 5 i

Figure 3: (a) Training Time on a SPARC station-20
vs. number of samples; (b)Number of Support Vec-
tors vs. number of samples; (¢) Training Time on
a SPARCstation-20 vs. Number of Support Vectors.
Notice how the number of support vectors is a bet-
ter indicator of the increase in training time than the
number of samples alone; (d) Number of global itera-
tions performed by the algorithm.

methodology for finding faces using SVM’s should gen-
eralize well for other spatially well-defined pattern and
feature detection problems.

It is important to remark that face detection, like
most object detection problems, is a difficult task due
to the significant pattern variations that are hard to
parameterize analytically. Some common sources of
pattern variations are facial appearance, expression,
presence or absence of common structural features,
like glasses or a moustache, light source distribution,
shadows, etc.

The system works by scanning an image for face-
like patterns at many possible scales and uses a SVM
as its core classification algorithms to determine the
appropriate class (face/non-face).

3.1 Previous Systems

The problem of face detection has been approached
with different techniques in the last few years. This
techniques include Neural Networks [2, 9, 11], detec-
tion of face features and use of geometrical constraints
[13], density estimation of the training data [6], la-
beled graphs [5] and clustering and distribution-based
modeling [10].

Out of all these previous works, the results of Sung
and Poggio [10], and Rowley et al. [9] reflect systems
with very high detection rates and low false positive
rates.

Sung and Poggio use clustering and distance met-
rics to model the distribution of the face and non-face
manifold, and a Neural Network to classify a new pat-
tern given the measurements. The key of the quality
of their result is the clustering and use of combined

Mahalanobis and Euclidean metrics to measure the
distance from a new pattern and the clusters. Other
important features of their approach is the use of non-
face clusters, and the use of a bootstrapping technique
to collect important non-face patterns. One drawback
of this technique is that it does not provide a prin-
cipled way to choose some important free parameters
like the number of clusters it uses.

Similarly, Rowley et al. have used problem infor-
mation in the design of a retinally connected Neural
Network that is trained to classify faces and non-faces
patterns. Their approach relies on training several
NN emphasizing subsets of the training data, in or-
der to obtain different sets of weights. Then, different
schemes of arbitration between them are used in order
to reach a final answer.

Our approach to face detection with SVM uses no
prior information in order to obtain the decision sur-
face, so that this technique could be used to detect
other kind of objects in digital images.

3.2 The SVM Face Detection System
This system detects faces by exhaustively scanning an
image for face-like patterns at many possible scales,
by dividing the original image into overlapping sub-
images and classifying them using a SVM to determine
the appropriate class (face/non-face). Multiple scales
are handled by examining windows taken from scaled
versions of the original image. More specifically, this
system works as follows:

1. A database of face and non-face 19 x 19 = 361
pixel patterns, assigned to classes +1 and -1 re-
spectively, is used to train a SVM with a 2nd-
degree polynomial as kernel function and an up-

per bound C = 200.

2. In order to compensate for certain sources of im-
age variation, some preprocessing of the data is
performed:

e Masking: A binary pixel mask is used to
remove some pixels close to the boundary
of the window pattern allowing a reduction
in the dimensionality of the input space to
283. This step is important in the reduc-
tion of background patterns that introduce
unnecessary noise in the training process.

e Illumination gradient correction: A
best-fit brightness plane is subtracted from
the unmasked window pixel values, allowing
reduction of light and heavy shadows.

e Histogram equalization: A histogram
equalization is performed over the patterns
in order to compensate for differences in il-
lumination brightness, different cameras re-
sponse curves, etc.

3. Once a decision surface has been obtained
through training, the run-time system is used over
images that do not contain faces, and misclassifi-
cations are stored so they can be used as negative
examples in subsequent training phases. Images
of landscapes, trees, buildings, rocks, etc., are
good sources of false positives due to the many

different texztured patterns they contain. This
bootstrapping step, which was successfully used
by Sung and Poggio [10] is very important in the
context of a face detector that learns from exam-
ples because:

e Although negative examples are abundant,
negative examples that are useful from a
learning point of view are very difficult to
characterize and define.

e The two classes, face and non-face are not
equally complex since the non-face class is
broader and richer, and therefore needs more
examples in order to get an accurate defi-
nition that separates it from the face class.
Figure 4 shows an image used for bootstrap-
ping with some misclassifications, that were
later used as non-face examples.

4. After training the SVM, we incorporate it as the
classifier in a run-time system very similar to the
one used by Sung and Poggio [10] that performs
the following operations:

e Re-scale the input image several times.

e Cut 19%x19 window patterns out of the
scaled image.

e Preprocess the window using masking, light
correction and histogram equalization.

e Classify the pattern using the SVM.

e If the pattern is a face, draw a rectangle
around it in the output image.

Figure 4: Some false detections obtained with the first
version of the system. This false positives were later
used as non-face examples in the training process

3.2.1 Experimental Results

To test the run-time system, we used two sets of im-
ages. The set A, contained 313 high-quality images
with one face per image. The set B, contained 23 im-
ages of mixed quality, with a total of 155 faces. Both

sets were tested using our system and the one by Sung
and Poggio [10]. In order to give true meaning to the
number of false positives obtained, it is important to
state that set A involved 4,669,960 pattern windows,
while set B 5,383,682. Table 2 shows a comparison
between the 2 systems. At run-time the SVM system
is approximately 30 times faster than the system of
Sung and Poggio. One reason for that is the use of
a technique introduced by C. Burges [3] that allows
to replace a large numbers of support vectors with a
much smaller number of points (which are not neces-
sarily data points), and therefore to speed up the run
time considerably.

In figure 5 we report the result of our system on some
test images. Notice that the system is able to handle,
up to a small degree, non-frontal views of faces. How-
ever, since the database does not contain any example
of occluded faces the system usually misses partially
covered faces, like the ones in the bottom picture of
figure 5. The system can also deal with some degree of
rotation in the image plane, since the data base con-
tains a number of “virtual” faces that were obtained
by rotating some face example of up to 10 degrees.

In figure 6 we report some of the support vectors we
obtained, both for face and non-face patterns. We
represent images as points in a fictitious two dimen-
sional space and draw an arbitrary boundary between
the two classes. Notice how we have placed the sup-
port vectors at the classification boundary, accord-
ingly with their geometrical interpretation. Notice
also how the non-face support vectors are not just ran-
dom non-face patterns, but are non-face patterns that
are quite similar to faces.

Test Set A Test Set B
Detect False Detect False
Rate | Alarms Rate | Alarms
SVM 97.1 % 4 74.2% 20
Sung et al. || 94.6 % 2 74.2% 11

Table 2: Performance of the SVM face detection sys-
tem

4 Summary and Conclusions

In this paper we have presented a novel decompo-
sition algorithm that can be used to train Support
Vector Machines on large data sets (say 50,000 data
points). The current version of the algorithm can
deal with about 2,500 support vectors on a machine
with 128 Mb of RAM, but an implementation of the
technique currently under development will be able
to deal with much larger number of support vectors
(say about 10,000) using less memory. We demon-
strated the applicability of SVM by embedding SVM
in a face detection system which performs comparably
to other state-of-the-art systems. There are several
reasons for which we have been investigating the use
of SVM. Among them, the fact that SVMs are very
well founded from the mathematical point of view, be-
ing an approximate implementation of the Structural
Risk Minimization induction principle. The only free
parameters of SVMs are the positive constant C' and
the parameter associated to the kernel K (in our case

Figure 5: Results from our Face Detection system

NON-FACES
D O

Figure 6: In this picture circles represent face patterns
and squares represent non-face patterns. On the bor-
der between the two classes we represented some of
the support vectors found by our system. Notice how
some of the non-face support vectors are very similar
to faces.

the degree of the polynomial). The technique appears
to be stable with respect to variations in both param-
eters. Since the expected value of the ratio between
the number of support vectors and the total number
of data points is an upper bound on the generalization
error, the number of support vector gives us an imme-
diate estimate of the difficulty of the problem. SVMs
handle very well high dimensional input vectors, and
therefore their use seem to be appropriate in computer
vision problems in which it is not clear what the fea-
tures are, allowing the user to represent the image as
a (possibly large) vector of grey levels .
Acknowledgements

The authors would like to thank Tomaso Poggio,

Vladimir Vapnik, Michael Oren and Constantine Pa-
pageorgiou for useful comments and discussion.

References
[1] B.E. Boser, .M. Guyon, and V.N. Vapnik. A training

algorithm for optimal margin classifier. In Proc. 5th

1 This paper describes research done within the Center for
Biological and Computational Learning in the Department of
Brain and Cognitive Sciences and at the Artificial Intelligence
Laboratory at MIT. This research is sponsored by a grant from
NSF under contract ASC-9217041 (this award includes funds
from ARPA provided under the HPCC program), by a grant
from ARPA/ONR under contract N00014-92-J-1879 and by a
MURI grant under contract N00014-95-1-0600.Additional sup-
port is provided by Daimler-Benz, Sumitomo Metal Industries,
and Siemens AG. Edgar Osuna was supported by Fundacién
Gran Mariscal de Ayacucho.

[10]

[11]

[12]

[13]

ACM Workshop on Computational Learning Theory,
pages 144-152, Pittsburgh, PA, July 1992.

G. Burel and D. Carel. Detection and localization of
faces on digital images. Pattern Recognition Letters,
15:963-967, 1994.

C.J.C. Burges. Simplified support vector decision
rules. In International Conference on Machine Learn-
ing, pages 7T1-77. 1996.

C. Cortes and V. Vapnik. Support vector networks.
Machine Learning, 20:1-25, 1995.

N. Kruger, M. Potzsch, and C. v.d. Malsburg. Deter-
mination of face position and pose with learned rep-
resentation based on labled graphs. Technical Report
96-03, Ruhr-Universitat, January 1996.

B. Moghaddam and A. Pentland. Probabilistic visual
learning for object detection. Technical Report 326,
MIT Media Laboratory, June 1995.

B. Murtagh and M. Saunders. Large-scale linearly
constrained optimization. Mathematical Program-
ming, 14:41-72, 1978.

F. Riesz and B. Sz.-Nagy. Functional Analysis. Ungar,
New York, 1955.

H. Rowley, S. Baluja, and T. Kanade. Human face
detection in visual scenes. Technical Report CMU-
CS-95-158R, School of Computer Science, Carnegie
Mellon University, November 1995.

K. Sung and T. Poggio. Example-based Learning for
View-based Human Face Detection. A.I. Memo 1521,
MIT A.L. Lab., December 1994.

R. Vaillant, C. Monrocq, and Y. Le Cun. Original
approach for the localisation of objects in images.
IEEE Proc. Vis. Image Signal Process., 141(4), Au-
gust 1994.

V. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 1995.

G. Yang and T. Huang. Human face detection in a
complex background. Pattern Recognition, 27:53-63,
1994.

