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Abstract. Artificial neural networks provide a distributed computing technolo-
gy that can be trained to approximate any computable function, and have ena-
bled substantial advances in areas such as computer vision, robotics, speech 
recognition and natural language processing. This chapter provides an introduc-
tion to Artificial Neural Networks, with a review the early history of perceptron 
learning. It presents a mathematical notation for multi-layer neural networks 
and shows how such networks can be iteratively trained by back-propagation of 
errors using labeled training data. It derives the back-propagation algorithm as a 
distributed form of gradient descent that can be scaled to train arbitrarily large 
networks given sufficient data and computing power. 
 
Learning Objectives: This chapter provides an introduction to the training and 
use of Artificial Neural Networks, and prepares students to understand funda-
mental concepts of deep-learning that are described and used in later chapters. 

Keywords: Machine Learning, Perceptrons, Artificial Neural Networks, Gradi-
ent Descent, Back-Propagation. 
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Glossary of Symbols 
xd  A feature.  An observed or measured value.  !
X   A vector of D  features.   
D   The number of dimensions for the vector

!
X . 

y   A dependent variable to be estimated.  

a = f (
!
X; !ω,b)  A model that predicts an activation a  from a vector 

!
X . 

!w,b   The parameters of the model f (
!
X; !ω,b) . 

{
!
Xm}  {ym}   A set of training samples with indicator values.  
!
Xm   A feature vector from a training set.  

ym  An indicator or target value for 
!
Xm  

M  The number of training samples in the set {
!
Xm}  

am = f (
!
Xm;
!
ω,b)  The output activation for a training sample, 

!
Xm  

δm
out = am − ym  The error from using 

!
ω and b to compute ym  from 

!
Xm  

C(
!
Xm, ym;

!
ω,b)   The cost (or loss) for computing am from 

!
Xm  using ( !ω,b)  

!
∇C(
!
Xm, ym;

!
ω,b)   The gradient (vector derivative) of the cost.  

L   The number of layers in a neural network.  
l  An index for the lth  layer in a network 1≤ l ≤ L  
aj
(l )    The activation output of the jth neuron of the lth layer.  

wij
(l )    The weight from unit i of layer l–1 to the unit j of layer l. 

bj
(l )    The bias for  unit j of layer l. 
η    A variable learning rate. Typically very small (0.01) 

δ j,m
(l )   Error for the jth neuron of layer l, from sample

!
Xm  

Δwij,m
(l ) = −ai

(l−1)δ j,m
(l )  Update for the weight from unit i of layer l–1 to the  

  unit j layer l.  
Δbj,m

(l ) =  – δ j,m
(l )  Update for bias for unit j of layer l.  
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1 Machine Learning 

Machine learning explores the study and construction of algorithms that can learn 
from and make predictions about data.   The term machine learning was coined in 
1959 by Arthur Samuel, a pioneer in the field of computer gaming and inventor of the 
first computer program capable of learning to play checkers.  Machine Learning is 
now seen as a core enabling technology for artificial intelligence. 

Many of the foundational techniques for machine learning were originally devel-
oped in the late 19th and early 20th for problems of detecting signals for telegraph and 
radio communications. Throughout much of the 20th century, the science of machine 
learning was primarily concerned with recognizing patterns in data. For example, a 
key reference was the 1973 text-book by Duda and Hart named "Pattern Recognition 
and Scene Analysis" [1]. However, as the scientific study of machine learning has 
matured, and as computing and data have become increasingly available, it has be-
come clear that, given enough data and computing, machine learning can be used to 
learn to imitate any computable function. In particular, machine learning and can be 
used to learn to control machines, to interact with humans with natural language, and 
to imitate intelligent behavior. Much of this progress has been due to the emergence 
of a technology for training artificial neural networks. 

Over the last 50 years, artificial neural networks have emerged as a key enabling 
technology for machine learning. Such networks are composed of layers of identical 
units, each computing a weighted sum of inputs followed by a non-linear activation 
function. Such networks are computed as a form of Single-Instruction-Multiple-Data 
(SIMD) parallel algorithm, and thus can be scaled using parallel computers to arbi-
trarily large numbers of trainable parameters.  The parameters can be learned from 
training data by a parallel form of gradient descent referred to as back propagation. 
Back propagation is also a SIMD algorithm. Thus both network computation (forward 
propagation) and network training (backward propagation) can be implemented using 
the highly parallel Graphical Processing Units (GPUs) now found in many personal 
computers, tablets and cell phones.  

Many machine learning techniques, including neural networks, were originally de-
veloped for pattern recognition.  In this case, the classic approach is to use a set of  
training data {

!
Xm}  to learn the parameters for a model that can compute a vector of 

activation functions  !a(
!
X) . A decision function, d !a

!
Xm( )( ) , is then used to select a 

pattern label from a predefined set of possible labels.  The full model has the form 
f (
!
Xm ) = d

!a
!
Xm( )( ) = ŷm where ŷm is a predicted value for the target label, ym .  

For signal generation, a generator function g !a
!
X( )( )  can be designed (or trained) 

to approximate (or imitate) a desired output function such as a word, text, sound, im-
age or video. In this case, the full model is f (

!
Xm ) = g

!a
!
Xm( )( ) =

!
Ym  where Ŷm  is a 

prediction of the desired output for 
!
Xm . During learning, a cost function, C(-), is used 
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to evaluate the quality of the category label or generated signal. The learning process 
involves adjusting the parameters of the model in order to minimize this cost function, 
computed from the difference between the actual and desired function.  

A variety of techniques have been developed to learn the function f (
!
X) .  

Supervised Learning. Most classical methods for machine learning learn to estimate 
a function from a set of training data with known ground truth labels. The data set is 
composed of M independent examples, {Xm}, for which target values {ym} are known.  
Having a target value for each training sample makes it much easier to estimate the 
function.  Examples of popular techniques include K-nearest neighbors [1], Support 
Vector Machines [2], and Bayesian Estimation [3].  

Semi-Supervised Learning. A number of hybrid algorithms exist that initiate learn-
ing from a labeled training set and then extend the learning with unlabeled data, using 
the initial algorithm to generate synthetic labels for new data [4].  

Unsupervised Learning. Unsupervised Learning techniques learn the function with-
out a labeled training set.  Most unsupervised learning algorithms are based on clus-
tering techniques that associate data based on statistical properties. Examples include 
K-nearest neighbors, and Expectation-Maximization [5].  

Reinforcement Learning.  Reinforcement learning refers to techniques were a sys-
tem learns through interaction with an environment. While originally developed for 
training robots to interact with the world, reinforcement learning combined with deep 
learning has recently produced systems that outperform humans at games such as Go 
or Chess. Deep reinforcement learning uses training with realistic simulators adapted 
through additional training with a target domain by transfer learning [6].  

Transfer Learning. With transfer learning a system is first trained using supervised 
learning with a very large general-purpose data set or simulator, and then refined 
through additional training in a target domain. Transfer learning has provided a very 
useful method for overcoming the need for very large training data sets for most mod-
ern machine learning techniques based on Neural networks. [7] 

Self-Supervised Learning. Self-supervised learning learns to reconstruct missing 
data and to predict associated data from examples. Two classic self-supervised tech-
niques are masked-token replacement and next-token prediction. With Self-
Supervised learning, indicator variables are not needed. The data set is its own ground 
truth. Self-supervised learning makes it possible to pretrain a general purpose system 
with a very large collection unlabeled training data, followed by transfer learning 
using supervised learning or reinforcement learning to specialize for a particular prob-
lem [8]. 
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2 Perceptrons 

The Perceptron is an incremental learning algorithm for linear classifiers. The percep-
tron was first proposed by Warren McCullough and Walter Pitts in 1943 as a possible 
universal computational model [9]. In 1957 Frank Rosenblatt at Cornell University, 
constructed a Perceptron as a room-sized analog computer and demonstrated it for the 
popular press [10].  Rosenblatt claimed that the Perceptron was "the embryo of an 
electronic computer that would someday be able to walk, talk, see, write, reproduce 
itself and be conscious of its existence.” Journalists called it the electronic brain. The 
obvious limitations of the perceptron led serious scientists to denounce such claims as 
fantasy. 

The perceptron is an on-line learning algorithm that learns a linear decision bound-
ary (hyper-plane) for separable training data.  As an "on-line" learning algorithm, new 
training samples can be used at any time to update the recognition algorithm.   The 
Perceptron algorithm uses errors in classifying the training data to iteratively update 
the hyper-plane decision boundary. Updates may be repeated until no errors exist. 
However, if the training data cannot be separated by a linear surface, the learning 
algorithm will not converge, and must be stopped after a certain number of iterations.  

Assume a training set of M observations {
!
Xm} of vectors composed of D compo-

nents (features), with indicators variables, 

€ 

{ym}  where  ym  = {–1, +1}. The indicator 
variable, ym,  indicates the class label for a sample, 

!
Xm .  For a binary pattern detec-

tion,  
 ym =  +1 for examples of the target class (class 1) 
 ym =  –1 for all others (class 2) 

The Perceptron will learn the coefficients, 
!w,  b  for a linear boundary such that for 

all training data, 
!
Xm ,    

 f (
!
Xm ) =

1 if "wT !Xm + b ≥ 0

−1 if "wT !Xm + b < 0

#
$
%

&%
 (1) 

Note that !wT
!
Xm +b ≥ 0  is the same as !wT

!
Xm ≥ −b .  Thus b can be considered as a 

threshold on the product: !wT
!
Xm .  

A training sample is correctly classified if:  

  ym ⋅
!wT
"
Xm +b( ) ≥ 0   (2) 

The algorithm requires a learning rate, η, typically set to a very small number such 
as  η = 10–3. Lack of a theory for how to set the learning rate, or even an explanation 
for why such a small learning rate was required was a frequent criticism. In 1969, 
Marvin Minsky and Seymour Papert at MIT published a monography entitled “Per-
ceptrons”, that claimed to document the fundamental limitations of the perceptron 
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approach [11].  Notably, they observed that a linear classifier could not be constructed 
to perform an Exclusive OR (XOR) function. Ironically, in their final chapter, they 
noted that while this is true for a single perceptron, it is not true for multi-layer per-
ceptrons. However, they argued that a multi-layer perceptron would require exces-
sively expensive computations, exceeding what was reasonable for computers at the 
time.  

A more fundamental criticism was that if the data was not separable, then the Per-
ceptron would not converge, and learning would continue as an infinite loop. Thus it 
was necessary to set a limit for the number of iterations.   

3 Artificial Neural Networks 

In the 1970s, frustrations with the limits of Artificial Intelligence based on Symbolic 
Logic led a small community of researchers to explore the use of multi-layer percep-
trons for recognizing patterns.  As noted above, many of the problems described by 
Minsky and Papert could be solved with multilayer networks. For example, around 
this time, Fukushima demonstrated a mult-layered network for the interpretation of 
handwritten characters known as the Cognitron [12]. It was soon recognized that a 
perceptron could be generalised to non-separable training data by replacing the "hard" 
discontinuous decision function with a soft, differentiable "activation function", mak-
ing it possible to train a perceptron with the classic gradient descent algorithm.   

In 1975, Paul Werbos reformulated gradient descent as a distributed algorithm re-
ferred to as "Back-propagation" [13]. Back-propagation implements gradient descent 
as a backwards flow of "correction energy" mirroring the forward flow of activation 
energy computed by a multi-layer network of perceptrons.  Back-propagation made it 
possible to train and operate arbitrarily large layered networks using SIMD (single-
instruction-multiple-data) parallel computing.  Multi-layer perceptrons were increas-
ingly referred to as "Artificial Neural Networks".  

Artificial Neural Networks are computational structures composed a network of 
“neural” units.  Each neural unit is composed of a weighted sum of inputs, followed 
by a non-linear decision function.   

x1 

… 

xD 

+1 
Layer 1 

Layer 2 

Layer 0 

+1 

a1
(1) 

a2
(1) 

a3
(1) 

w11 
(1) 

w11 
(2) 

b1 
(1) b1 

(2) 

a1
(2) a 

 
Fig. 1. A fully connected two-layer neural network, with 3 units in the hidden layer (layer 1) 
and a single unit in the output layer (layer 2). The input vector is composed of the D compo-
nents of a feature vector, 

!
X , plus a constant term that provides a trainable bias for each unit.  
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During the 1980’s, neural networks went through a period of popularity with re-
searchers showing that networks could be trained to provide simple solutions to prob-
lems such as recognizing handwritten characters, recognizing spoken words, and 
steering a car on a highway. However, the resulting systems were fragile and difficult 
to duplicate. The popularity of Artificial Neural Networks was overtaken by more 
mathematically sound approaches for statistical pattern recognition based on Bayesian 
learning [1], [3].  These methods were, in turn, overtaken by techniques such support 
vector machines and kernel methods [2].   

The Artificial Neuron. The simplest possible neural network is composed of a 
single neuron.  

w2 

x1 

x2 

+1 

z 
w1 

b 

f(z) 

…
 

a=f(z) 

 
Fig. 2. A single neural unit.  On the left side, z is the weighted sum of the coefficients of the 
input vector, X plus a bias. This is used to compute a non-linear activation, a=f(z) shown on the 
right.  

A “neuron” is a computational unit that integrates information from a vector of  
features, 

!
X ,  to compute an activation, a.  

 a = f (z)  (3) 

The neuron is composed of a weighted sum of input values   

 z = w1x1 +w2x2 + ...+wDxD +b =
!
wT
!
X +b  (4) 

followed by a non-linear activation function, f (z) .  
A classic non-linear decision function is the hyperbolic tangent. This function pro-

vides a soft, differentiable, decision surface between +1 and +1, shown in Figure 4.  

 f (z) = tanh(z) = e
z − e− z

ez + e− z
 (5) 
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Fig. 4. The hyperbolic tangent is a soft decision function ranging from –1 to 1. 

The hyperbolic tangent can be used to define a simple decision function:   

  if f ( !wT "X + b) ≥ 0  then P else N (6) 

Most importantly, the hyperbolic tangent has a simple derivative function, making it 
possible to use gradient descent to train the unit.  The derivative of the hyperbolic 
tangent is:  

 ∂ tanh(z)
∂z

=1− tanh2(z)  (7) 

3.1 Gradient Descent 

Gradient descent is a first-order iterative optimization algorithm for finding the local 
minimum of a differentiable function. Gradient descent is generally attributed to Au-
gustin-Louis Cauchy, who first suggested it in 1847, and has long been a popular 
algorithm for estimating parameters for a large variety of models.  

The gradient of a scalar-valued differentiable function of several variables, f (
!
X)  

is a vector of derivatives:  

 !
∇f (
"
X ) = ∂f (

"
X )

∂
"
X

=

∂f (
"
X )

∂x1
∂f (
"
X )

∂x2
#

∂f (
"
X )

∂xD

#

$

%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(

 (8) 

The gradient of the function f (
!
X)  tells the direction and rate of change for the great-

est slope of the function at the point 
!
X . The direction of the gradient is the direction 

of greatest slope at that point. The magnitude of the gradient is the slope at that point. 
Following the direction of greatest change provides an iterative algorithm that leads to 
a local minimum of the function.  



9 

Interestingly, the components of the gradient of a function with respect to its pa-
rameters tells how much to correct each parameter to move towards the minimum. 
Subtracting the components of the gradient from the parameters of the function moves 
the function toward a local minimum.  To use this to determine the parameters for a 
perceptron (or neural unit), we must introduce the notion of cost (or loss) for an error 
for that function, and then use the gradient to correct the parameters of the function 
until the cost reaches a minimum.   

Cost (Loss) Function. A cost or loss function represent the cost of making an error 
when classifying or processing data. Assume a training sample 

!
X  with ground truth y 

and a network function a = f (
!
X; !w,b)  with network parameters 

!w and b. The error 
for a function is δ = a− y . We can compute a cost for this error as 1/2 the square of 
the error.    

 C(
!
X, y; !ω,b) = 1

2
a− y( )2  (9) 

where the term 1/2 has been included to simplify the algebra when working with the 
derivative. 

The gradient of the cost indicates how sensitive the cost is to each parameter of the 
network and can be used to determine how much to correct the parameter to minimize 
errors, as shown in equation 10.   

 !
∇C(
!
X, y; !ω,b) = ∂C(

!
X, y; !ω,b)
∂( !w,b)

=

∂C(
!
X, y; !ω,b)
∂w1
!

∂C(
!
X, y; !ω,b)
∂wD

∂C(
!
X, y; !ω,b)
∂b

"

#

$
$
$
$
$
$
$
$
$$

%

&

'
'
'
'
'
'
'
'
''

=

∆ w1
!

∆ wD

∆ b

"

#

$
$
$
$$

%

&

'
'
'
''

 (10) 

 
Fig. 5.  Descending a gradient to the local minimum. 

However, the gradient of the function depends on the point at which the function is 
evaluated. Real data tend to contain random variations (generally referred to as noise). 
As a result, while the ensemble of gradients will point in a general direction that im-
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proves the network, individual data points generally yield gradients that point in dif-
ferent directions.  These random effects are minimized by multiplying the correction 
by a small learning rate, and using multiple passes through the training data to slowly 
converge towards a global minimum.  

The derivative of the cost with respect to each parameter can be evaluated by using 
the chain rule.  For example, suppose that we have a single neural unit composed of D 
inputs. The unit will have D weights indexed with the letter d, where 1≤ d≤ D. The 
contribution of the weight, wd, to this error is given by the derivative of the cost with 
respect wd . This can be evaluated by the chain rule, working back from the cost with 
respect to the activation, a, the derivative of the activation, a, with respect to the line-
ar sum, z, and the derivative of the linear sum, z, with respect to wd. as shown in equa-
tion 11. 

 ∆ wd =
∂C(
!
X, !ω,b)
∂wd

=
∂C(
!
X, !ω,b)
∂a

⋅
∂a
∂z

⋅
∂z
∂wd

 (11) 

The network can be improved by subtracting a fraction of gradient from each of the 
network parameters. Because the training data typically contains un-modelled phe-
nomena, the correction is weighted by a (very small) learning rate “η” to stabilize 
learning, as shown in equation 12.  

 
!w(i) =

!w(i−1) −ηΔ
!w  and b(i) = b(i−1) −ηΔb  (12) 

Typical values for η are from η=0.01 to  η=0.001 and are often determined dynami-
cally be an optimization algorithm.  The superscripts (i) and (i-1) refer to successive 
iterations for the values of !w  and b .  

The optimum network parameters are the parameters that provide the smallest cost 
or loss. To determine the best parameters, the network is iteratively refined by sub-
tracting a small fraction of the gradient from the parameters. Ideally, at the optimum 
parameters, both the loss and the gradient would be zero. This can occur when train-
ing a network to approximate a mathematical function or a logic circuit from exam-
ples of uncorrupted outputs. However, this is almost never the case for real data, be-
cause of the intrinsic variations of samples within the data.  As a result, if you evalu-
ate gradient descent by hand with real world data samples, do not expect to easily see 
a path to convergence. Arriving at an optimum typically requires many passes through 
the training data, where each pass is referred to as an “epoch”. Gradient descent may 
require many epochs to reach an optimal (minimum loss) model.  

Feature Scaling. For a training set {
!
Xm} of M training samples with D values, if the 

individual features do not have a similar range of values, than features with a larger 
range of values will dominate the gradient resulting in non-optimal convergence.  One 
way to assure sure that features have similar ranges is to normalize the range of each 
feature with respect to the entire training set.  For example, the range for each feature 
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can be normalized by subtracting the minimum for that feature from the training data 
and dividing by the range, as shown in equation 13. 

 ∀m=1
M : "xdm :=

xdm −min(xd )
max(xd )−min(xd )

 (13) 

This has the effect of mapping a highly elongated cloud of training data into a sphere, 
as shown in figure 6.  Ideally this will lead to a spherical cost function with the mini-
mum at the center.  

 

  

 

 
Fig. 6. Feature scaling improves gradient descent by projecting the data to a space where fea-

tures have a similar range if values. This reduces the effects of small variations in the gradient.  

Note that the 2-D surface shown in figure 6 is an idealized representation that portrays 
only two parameters, for example w, b for a single neural unit with a scalar input x. 
The actual cost surfaces are hyper-dimensional and not easy to visualize.  

Local Minima. Gradient descent assumes that the loss function is convex.  However, 
the loss function depends on real data with un-modeled phenomena (noise).  Varia-
tions in the training samples can create a non-convex loss with local minima.  

 
Fig. 7. Variations in the training samples can create a non-convex loss with local 

minima.    
 
In most networks, the gradient has many parameters, and the cost function is evaluat-
ed in a very high dimensional space. It is helpful to see the data as a hyper-
dimensional cloud descending (flowing over) a complex hyper-dimensional surface, 
as shown in figure 8.  
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Fig. 8. The data can be seen as a hyper-dimensional cloud descending (flowing over) 
a complex hyper-dimensional surface. (Drawing recovered from the internet - Source 
unknown) 

Batch Mode: A popular technique to reduce the random variations of corrections is to 
average the gradients from many samples, and then correct the network with this av-
erage.  This is referred to as "“batch mode”. The training data is divided into “folds” 
composed of M samples, and an average correction vector is computed from the aver-
age of the gradients of the M samples.  

 Δ
!w = 1

M
Δ
!wm

m=1

M

∑ =
1
M

!
∇Cm

m=1

M

∑  (14)
 

 The model is then updated with the average gradient, using a learning rate  “η” to 
stabilize learning as described above. 

 
!w(i) =

!w(i−1) −ηΔ
!w  (15) 

While batch mode tends to be more efficient than updating the network with each 
sample, it is more likely to learning that is stuck in a local minimum. This likelihood 
can be reduced using stochastic gradient descent.  

Stochastic Gradient Descent.  With Stochastic gradient descent, individual training 
samples are randomly selected and used to update the model. This will send the model 
in random directions that eventually flow to the global minima. While much less effi-
cient than batch mode, this is less likely to become stuck in local minima.  

3.2 Multilayer Neural Networks 

Artificial Neural Networks are typically composed of multiple layers of neural units, 
where each each neural unit is composed of a weighted sum of inputs, followed by a 
non-linear decision function.  Such structures are often referred to as multi-layer per-
ceptrons, abbeviated as MLP. For example, figure 1 shows a 2-layer network with 3 
hidden units at layer l=1 and a single output unit at level l=2.   
 

We will use the following notation to describe MLPs:   
L    The number of layers (Layers of non-linear activations).  
l     The layer index.  l ranges from 0 (input layer) to L (output layer).  
N(l)  The number of  units in layer l.  N(0)=D 
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!a(0) =
!
X  is the input layer. For each component ai

(0) = xd  

aj
(l )    The activation output of the jth neuron of the lth layer.  

wij
(l )     The  weight  from the unit i of layer l-1 for the unit j of layer l.  

bj
(l )     The bias term for jth unit of the lth layer 

f(z)  A non-linear activation function, such as a sigmoid, relu or tanh. 
 

Note that all parameters carry a superscript, referring to their layer. For example: 
a1
(2)  is the activation output of the first neuron of the second layer.  
w13
(2)  is the weight for neuron 1 from the first level to neuron 3 in the second layer.  

The network in figure 1 would be described by:  

 a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 + b1
(1) )   

 a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 + b2
(1) )   

 a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 + b3
(1) )   

 a1
(2) = f (w11

(2)a1
(1) +w21

(2)a2
(1) +w31

(2)a3
(1) + b1

(2) )  (16) 

This can be generalized to multiple layers.  For example, figure 9 shows a 3-layer 
network, with an output vector !a (3)  at layer 3 composed of 2 units. 
 

 

 
Fig. 9. A three layer network with an output vector of size N(3)=2 at level 3. 

  
 In general, unit j at layer l is computed as shown in equation 17, illustrated by fig-

ure 10. 

 

€ 

aj
(l ) = f wij

(l)ai
(l−1) +bj

(l)

i=1

N ( l−1)

∑
$ 

% 
& & 

' 

( 
) )  (17) 
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€ 

a1
(l−1)

 … 

€ 

aN ( l−1)
(l−1)

 

+1 

€ 

f z j
(l )( ) 

€ 

zj
(l )  

€ 

aj
(l )

 
€ 

wij
(l )  

€ 

wN ( l−1) j
(l )

 

€ 

bj
(l )

 

… 
€ 

w1 j
(l )  

€ 

ai
(l−1)

 

€ 

wjk
(l+1)  

 
Fig. 10. The jth unit at layer l.  

3.3 Activation Functions 

Neural units are composed of a weighted sum of inputs followed by a non-linear acti-
vation function. The activation function must have a first derivative, so that the net-
work can be trained using gradient descent.  

For binary problems, the hard decision surface of the original perceptron is easily 
replaced with is the hyperbolic tangent: 

€ 

f (z) = tanh(z) =
ez − e−z

ez + e−z
 

 
Fig 11. The hyperbolic Tangent activation function 

The derivative for the hyperbolic tangent is:  

  ∂ tanh(z)
∂z

=
1

cosh2(z)
= sech2(z)  (18) 

A popular choice for activation function is the logistic sigmoid function. The lo-
gistic function is also known as the S-shaped curve or sigmoid curve and is widely 
used to model saturation phenomena in fields such as biology, chemistry, and eco-
nomics.  

f (z) = σ(z) = 1
1+ e− z

 

 
Fig. 12. The sigmoid function, σ(z). 
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The sigmoid has a simple derivative function 

  ∂σ(z)
∂z

= σ(z)(1−σ(z))  (19) 

Because the output of the sigmoid varies from 0 to 1, the sigmoid is easily generalized 
for multi-class problems, using the Softmax activation function.  

 

€ 

f (zk ) =
ezk

ezk
k=1

K
∑

 (20) 

The softmax function takes as input a vector !z  of K real numbers, and normalizes it 
into a distribution consisting of vector of K values that sum to 1. The result of a soft-
max sums to 1, and can be interpreted as a probability distribution indicating the like-
lihood of each component.  Softmax is widely used as the output activation function 
for network with multiclass outputs. 

The rectified linear function is popular for intermediate levels in deep networks be-
cause of its trivial derivative:  

ReLu(z) =max(0, z)  

! 
Fig. 13. The rectified linear (ReLu) activation function . 

 For z ≤ 0, the derivative is 0.  For  z > 0 the derivative is 1.  Many other activations 
have been proposed, for a variety of uses.  

3.4 Backpropagation as Distributed Gradient Descent 

As stated above, the weights and biases for a multi-layer network can be computed 
using the back-propagation algorithm.  Back-propagation is a distributed algorithm 
for computing gradient descent and can thus be scaled to extremely large networks 
composed of billions of parameters, provided sufficient computing and training data 
are available. The back propagation can be directly derived from the gradient using 
the chain rule. Back-propagation propagates error terms back through the layers, us-
ing the weights and activations of units to determine the component of the gradient 
for each parameter.  

As a form of gradient descent, back-propagation determines the correction factors 
to adjust the network the weights 

€ 

wij
(l )  and biases 

€ 

bj
(l )  so as to minimize an error 

function between the network output !am
L  and the target value !ym  for the M training 

samples {
!
Xm} , {!ym} . Each input sample is input to the network to compute an out-
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put activation, !am
L .  This can be referred to as forward propagation.  An error term is 

then computed from the difference of !am
L  with the target vector, !ym . This error is 

propagated back through the network to determine the correction vector for each pa-
rameter.   

 To keep things simple, let us consider the case of a two class network with a single 
unit, so that δm

out , am , and

€ 

ym  are scalars. The results are easily generalized to vectors 
for multi-class networks with multiple layers.   For a single neuron, at the output lay-
er, the “error” for each training sample is the error resulting from using am as a value 
for ym.  

 δm
out = am − ym( )  (21) 

The error term δm
out is the total error for the whole network for sample m. This error is 

used to compute an error term for the weights that activate the neuron: δm .  As shown 
in figure 14. 

 
Fig. 14. The error term is propagated back through each unit to adjust the weights and biases. 

The error term for the input activations is given equation 22:  

 δm =
∂f (z)
∂z

δm
out  (22) 

This correction is then used to determine a correction term for the weights:  

  Δwd,m = xdδm    (23) 

 Δbm =  δm  (24) 

Back propagation can be easily generalized for multiple neurons at multiple layers 
(l=1 to L) with multiple outputs (k=1 to K).    In this case, both the network output 
activation and the indicator variable would be vectors with k components, with one 
component for each class, giving an error vector, 

!
δm
out as shown in equation 22.   

 
!
δm
out =

!am
(out ) −

!ym( )  with k components:  δk,m
out = ak,m

(out ) − yk,m( )  (22) 
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The error term for unit k at layer L is:  

 δk,m
(L ) =

∂ f (zk
(L ) )

∂z
δm
out  (23) 

For the hidden units in layers l < L the error δ j
(l )  is based on a weighted average of 

the error terms for δk
(l+1) .   

 δ j,m
(l ) =

∂ f (z j
(l ) )

∂z j
(l ) wjk

(l+1)δk,m
(l+1)

k=1

Nl+1

∑  (24) 

An error term, δ j
(l ) is computed for each unit j in layer l and projected back to layer   

l–1 using the sum of errors times the corresponding weights times the derivative of 
the activation function.  This error term tells how much the activation of unit j was 
responsible for differences between the output activation vector of the network !am

(L)  
and the target vector   

€ 

! y m .  This error term can then used to correct the weights and 
bias terms leading from layer j to layer i.  

  Δwij,m
(l ) = ai

(l−1)δ j,m
(l )    (25) 

 Δbj,m
(l ) =  δ j,m

(l )  (26) 

Note that the corrections Δwij,m
(l )  and Δbj,m

(l )  are NOT applied until after the error has 

propagated all the way back to layer l=1, and that when l=1, 

€ 

ai
(0) = xi .  

For “batch learning”, the corrections terms, 

€ 

Δwji,m
(l)  and 

€ 

Δbj ,m
(l) are averaged over M 

samples of the training data and then only an average correction is applied to the 
weights.   

 Δwij
(l ) =

1
M

Δwij,m
(l )

m=1

M

∑  

 Δbj
(l ) =

1
M

Δbj,m
(l )

m=1

M

∑  (27) 

then  

 wij
(l )← wij

(l ) −η ⋅ Δwij
(l )  

 bj
(l )← bj

(l ) −η ⋅ Δbj
(l )  (28) 

where η  is the learning rate.  
Back-propagation is a parallel algorithm to compute a correction term for each 

network parameter from the gradient of the loss function.  A common problem with 
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gradient descent is that the loss function can have local minimum. This problem can 
be minimized by regularization.  A popular regularization technique for back propa-
gation is to use “momentum”  
 wij

(l ) ← wij
(l ) −η ⋅ Δwij

(l ) +  µ ⋅wij
(l )  

 bj
(l )← bj

(l ) −η ⋅ Δbj
(l ) +µ ⋅bj

(l )  (29) 

where the terms µ ⋅wj
(l )  and µ ⋅bj

(l )  serves to stabilize the estimation.   
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