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Abstract. This chapter presents Convolutional Neural Networks (CNNs). The 
chapter begins with a review of the convolution equation, and a description of 
the original LeNet series of CNN architectures. It then traces the emergence of 
Convolutional Networks as a key enabling technology for Computer Vision re-
sulting from the publication of AlexNet at the 2012 ImageNet Large Scale Im-
age Recognition Challenge. This is followed by a description of the VGG archi-
tecture and the YOLO Single Shot Detection network for Image Object Detec-
tion.  
Learning Objectives: This chapter presents Convolutional Neural Networks, 
with a summary of the history, fundamental theory, and a review of popular ar-
chitectures that have played a key role in the emergence of Deep Learning as an 
enabling technology for Artificial Intelligence. After reading this chapter, stu-
dents will be able to understand the basic principles of convolutional neural 
networks and how such networks can be used to detect patterns in signals. Stu-
dents will understand the meaning and significance of network hyper-
parameters, and be able to select among the commonly used architectures such 
as VGG and YOLO to solve problems in pattern analysis and signal detection in 
audio, visual and other forms of multidimensional signals. 

Keywords: Convolutional Neural Networks (CNNs), Hyper-parameters, CNN 
Architectures, LeNet, AlexNet, VGG, You Only Look Once (YOLO). 

1. Convolutional Neural Networks.  
During the second wave of popularity of Neural Networks in the 1980s, researchers 
began experimenting with networks for computer vision and speech recognition. Di-
rect application of neural networks in these domains required training networks with 
an excessively large number of parameters, greatly exceeding the memory and com-
puting power of available computers. For example, direct recognition of the 44 Eng-
lish phonemes (speech elements) in a speech signal required a network capable of 
processing an audio signal composed of 1600 samples. A fully connected two layer 
network with 1600 hidden units in the first layer and 44 output units in the second 
layer would have more than 2.5 Million trainable parameters, while typical computer 
memory address spaces in this period were less than 1 Million bytes.  In the case of 
computer vision, the situation was even more extreme. A typical digital image at that 
time was sampled at 512 x 512 rows and columns, represented by 218 (or 256 K) 8-  
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bit grayscale pixels. Training a fully connected 2-layer perceptron to recognize a large 
set of objects in an image was not a serious proposition.  

Inspiration for a solution was provided by neuroscience.  In the early 1960s, David 
Hubel and Torsten Wiesel [1] fixed a cat's head in a rig and probed the visual cortex  
with electrodes while scanning patterns of light on a screen, as shown in figure 
1.They found that individual cells in the visual cortex responded to specific patterns 
of light at specific locations and sized. They referred to these patterns as receptive 
fields. By systematic probing, they found that the visual cortex of the cat is composed 
of layers of retinotopic maps that respond to patterns of spots, bars, and edges at a 
narrow range of positions, sizes and orientations.  Subsequent research showed that 
the receptive fields could be modeled as local filters for spatial frequency patterns at 
different spatial frequency bands and orientation.  As they moved through the visual 
cortex, Hubel and Weisel found that these patterns were combined to form more 
complex patterns, such as corners and crosses. These more complex patterns were 
named "complex" receptive field. 

 
Fig 1.  David Hubel and Torsten Wiesel probed the visual cortex of a cat with elec-
trodes and found layers of cells that responded to local patterns of stimulation. 

(image widely used on the internet - source unknown) 
 

Inspired by these results (and the subsequent Nobel Prize of Hubel and Weisel), 
computer vision researchers explored the use of image descriptions using convolution 
with Finite Impulse Response digital filters based on mathematical models of recep-
tive fields [2], [3] including Gaussian derivatives and Gabor Functions [4]. Research-
ers in Machine learning speculated that it would be better to learn the weights for such 
filters with back-propagation.  This would eventually lead to a new form of neural 
network known as a convolutional neural network. To properly understand such net-
works it can be worthwhile to review some basics from digital signal processing.  

1.1  Convolution 

Convolution describes the response of a linear time-invariant system to an input stim-
ulus or driving function. An example of convolution is provided by shouting into a 
tunnel. The tunnel can be modeled as a shift invariant acoustic function that describe 
the multiple paths that sound waves of the shout may follow through the tunnel, with 
different lengths and different durations. The sound at the far end of the tunnel will be 
composed of multiple superimposed copies of the shout arriving at different times. An 
observer at the far end of the tunnel will hear a sonically blurred version of the shout. 
In addition, some vocal frequencies may resonate in the tunnel and dominant the 
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sound at the far end, while other frequencies may be attenuated by interference.  The 
effect  described mathematically as a convolution as shown in equation 1, where s(t) 
is the waveform of a sound, f(t) is a characteristic impulse response that describes the 
possible paths of the sound through the tunnel, and u is a dummy variable used for 
integration.  

 (s* f )(t) = s(t −u) f (u)du
−∞

∞

∫  (1) 

A copy of the waveform for the sound, s(u), is placed at each time, t,  and then multi-
plied by the characteristic impulse response of the tunnel, f(u). For each time step, the 
resulting products are integrated and the result is placed in the output signal at posi-
tion t.  The result is a distorted version of the sound. 

Computer science students generally find this operation easier to visualize and un-
derstand when expressed using sampled digitized signals. Let s(n) represent a sam-
pled copy of the sound and f(n) represent the linear shift invariant system created by 
the tunnel. In order to compute the convolution it is necessary for at least one of the 
signals to have a finite duration.  Let N represent the duration of the shorter of the two 
signal s(n) and f(n). The discrete convolution equation is written as 

 (s* f )(n) = s(n−m) f (m)
m=0

N−1

∑  (2) 

A copy of the sound s(-), is placed at each time, n,  and then scaled by the value of 
system, f(n). For each value of n, the products are summed and the result is placed in 
the output signal.  This is exactly the equation for convolution with a Finite Impulse 
Response (FIR) digital filter, f(n) composed of N coefficients with a digital signal, 
s(n). Both multiplication and convolution are commutative, and so the order of the 
signals does not matter. In the engineering literature, convolution is commonly writ-
ten as shown in equation 3.  

 f (n)* s(n) = f (m)s(n−m)
m=0

N−1

∑  (3) 

Note that the operator "*" is exclusively reserved to represent convolution. This oper-
ator should never be used for multiplication in a context involving convolution. 

For image processing, the image and filter are generally finite 2D signals with a 
positions defined over a range from 1 to N. For an image P(x,y) with the horizontal 
and vertical axes noted as x and y, the 2D convolution of an NxN filter f(x,y) would be 
written:     

 ( f *P)(x, y) = f (u,v)P(x −u, y− v)
u=1

N

∑
v=1

N

∑  (4) 

This operation can be seen as sliding the 2D filter, f(x,y) over the image and at each 
position, multiplying the weights of the filter f(u,v) by the pixels of the image, sum-
ming the product and placing this at the position (x,y). Any image positions less than 
1 or greater than the size of the image are taken as zero. The use of x–u and y–v rather 
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than y+u and x+v flips the filter around the zero position, resulting in a mirror image 
of the filter. This is a mathematical convenience to assure that convolution is equiva-
lent to multiplication in the Fourier domain, and has no relevance to Convolutional 
Neural Networks. In the machine learning literature, it is not unusual to see authors 
neglect this detail and write y+u and x+v.  

In the 1980s, researchers in machine learning asked if such filters could not be 
learned using back-propagation1. It was observed that learning perceptrons for small 
local windows greatly reduces the number of parameters to learn, while greatly in-
creasing the availability of training data. Training a single perceptron to provide a 
binary classification for 512 x 512 image would require learning 218 parameters and 
each image would provide only one training sample for a binary decision.  Alterna-
tively, training a perceptron for an 8 by 8 receptive field would require learning only 
257 parameters, and each 512 x 512 image could provide up to 218 examples of local 
neighborhoods to use as training samples.   This makes it practical to learn many lay-
ers of local perceptrons with several perceptrons at each level, much like the visual 
cortex of cats or humans. Such a network could be used to recognize many different 
classes of visual patterns.   

The dominant paradigm in computer vision at the time (and until well after 2000) 
was that receptive fields should be designed as digital filters with well-defined math-
ematical properties for bandwidth and invariance to scale or rotation. However, one 
area where image processing with neural networks did show promise was in reading 
handwritten digits for mail sorting and check processing.   

1.2 Early Convolutional Neural Networks: LeNet  

In the early 1990s, the US National Institute of Standards and Technology (NIST) 
published a data set of digitized images of handwritten digits collected during the 
1980 US census and issued a research challenge for recognizing handwritten digits 
using this data set.  Such a technology could potentially be used to build machines for 
labor intensive tasks such as sorting mail and processing checks. A team of research-
ers at AT&T led by Yann Lecun began experimenting with neural networks architec-
tures for this task. The team proposed a family of neural network architectures, re-
ferred to as LeNet, composed of multiple layers of receptive fields using a number of 
insights inspired by techniques used in image processing and computer vision [5].   A 
typical example of a LeNet architecture is shown in figure 2.  

                                                             
1 Private discussion between the author and Geoff Hinton at CMU in 1982 or 1983. 
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Fig 2. An early LeNet architecture for recognizing handwritten digits on checks 

and postal codes.   Image copied from [5]. 
 

The first insight was to process the image as a set of 5x5 overlapping windows. 
Training a perceptron to process a 5x5 window requires learning only 26 parameters. 
Processing every position in the image with the same perceptron greatly increases the 
amount of data available for training, as each position of the image provides a training 
sample. Processing an image in this way is referred to as a "sliding window" detector. 
For a perceptron, the linear part of the perceptron is equivalent to convolving a digital 
filter with the image. This was referred to as a convolutional neural network. 

 

a(i, j) = f w(u,v)p(i−u, j − v)+ b
u,v

N

∑
#

$
%

&

'
(          (4) 

Fig 3. A convolutional network processes a stream of 2-D overlapping windows. In equation 4, 
p(i,j) is a 2D input layer, w(u,v) is an NxN learned receptive field, b is a learned bias,  f(-) is a 

non-linear activation function as discussed in the chapter on training neural networks with 
back-propagation [6], and a(i,j) is the resulting output layer. 

 
A second insight was to use several neural units in parallel to describe each win-

dow, as seen with the retinotopic maps observed in the visual cortex of the cat by 
Hubel and Weisel. This lead to a map of features for each pixel with the number of 
features referred to as the depth of the feature map. Figure 2 show that the first layer 
of LeNet-1 has a depth of 4.  

 

ad (i, j) = f wd (u,v)p(i−u, j − v)+ bd
u,v

N

∑
#
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(        (5) 

Fig 4. A convolutional network processes each window in parallel with D receptive fields, 
resulting in vector of D feature values 

!a(i, j) for each image position (i,j). Equation 5 general-
izes equation 4 by replacing a single learned receptive field, w(i,j), with a vector of D learned 

receptive fields, wd(i,j) generating a vector of d output layers, ad(i,j). 
 
 A third insight was to reduce the resolution of each layer by resampling and then 

processing the resulting resampled feature map with another convolutional network.  
For example the second layer of LeNet-1 was produced by subsampling the feature 
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map of first level using a sample distance of 2, and then processing the result with 
convolution by another set of 4 perceptrons trained with back-propagation. This 
resampling operation was referred to as "pooling" and had the effect of increasing the 
effective size of the receptive field at the second level, in a manner that is similar to 
the image pyramids used for computer vision at the time, and to the layers of larger 
receptive fields found in the deeper in the visual cortex of the cat by Hubel and 
Weisel.  As the number of rows and columns of the feature map is reduced by succes-
sive resampling (or pooling), the number of features (depth) at each layer was in-
creased. For example layers 3 and 4 of LeNet-1 contain features from convolution 
with 12 receptive fields (depth=12), as can be seen in figure 2. Once the image has 
been reduced to a 5x5 map of 16 features, the resulting 400 features are directly 
mapped by a perceptron to one of the 10 possible output class labels.  

 

 
Fig 5. The LeNet-5 architecture presented at the 1997 IEEE CVPR [7]. 

 
The AT&T team experimented with several such architectures. The LeNet-5 archi-

tecture, shown in figure 5, was found to provide the best recognition rates for the 
NIST dataset of hand-written digits and was used to construct a commercially suc-
cessful system for processing checks.    

In order to describe the architectures for convolutional networks such as LeNet, we 
need to define some of the common "hyper-parameters" that are used to define convo-
lutional networks.  

1.3 Convolutional Network Hyper-parameters 

Convolutional networks are commonly specified by a number of hyper-parameters. 
These include the Spatial Extent, Depth, Stride, Padding and Pooling:   

Spatial Extent:  This is the size of the filter. Early networks followed computer vi-
sion theory and used 11x11 or 9x9 filters. Experimentation has shown that 3x3 filters 
can work well with multi-layer networks.  

Depth: This is the number D of receptive fields for each position in the feature map. 
For a color image, the first layer depth at layer 0 would be D=3. If described with 32 
image descriptors, the depth would be D=32 at layer 1.  Some networks will use 
NxNxD receptive fields, including 1x1xD.  
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Stride:  Stride is the step size, S, between window positions.  By default, stride is 
generally set to 1, but for larger windows, it is possible define larger step sizes.  

Zero-Padding: Size of region at the border of the feature map that is filled with zeros 
in order to preserve the image size (typically N).  

Pooling: Pooling is a form of down-sampling that partitions the image into non-
overlapping regions and computes a representative value for each region.  An exam-
ple of 2x2 max pooling is shown in figure 6. The feature map is partitioned into small 
non-overlapping rectangles, typically of size 2x2 or 4x4, and a single value it deter-
mined for each rectangle. The most common pooling operators are average and max. 
Median is also sometimes used.  The earliest architectures used average pooling, 
where the neighborhood is replaced with the average value of the samples, creating a 
form of multi-resolution pyramid.   Max pooling has generally been found to provide 
slightly better performance.   

 

1" 2" 3" 4"

4" 5" 6" 7"

6" 7" 5" 3"

8" 9" 7" 4"

5" 7"

9" 7"

 
Fig 6. Max pooling replaces an NxN window of features with the largest feature value in the 
window. For example the 2x2 red square in the upper left corner is replaced by the largest of 

the 4 values in the square (5).   

1.4 The LeNet-5 Architecture 

LeNet-5 is composed of multiple repetitions of 3 operations: Convolution, Pooling, 
and Non-linearity. The system uses convolution of receptive fields of size 5x5 with a 
stride of 1, no zero padding and a depth of 6.  Six receptive fields are learned for each 
pixel in the first layer. Using 5x5 filters without zero padding reduces the input win-
dow of 32x32 pixels to a layer of composed of 6 sets of 28x28 units.  A sigmoid acti-
vation function was used for the activation function.  Pooling was performed as a 
spatial averaging over 2x2 windows giving a second layer of 6x14x14.  The output 
was then convolved with sixteen 5x5 receptive fields, yielding a layer with 16x10x10 
units. Average pooling over 2x2 windows reduced this to a layer of 16x5x5 units. 
These were then fed to two fully connected layers and then smoothed with a Gaussian 
filter to produce 10 output units, one for each possible digit.  

Despite the experimental and commercial success of LeNet, the approach was 
largely ignored by the computer vision community, which was more concerned at that 
time with multi-camera geometry and Bayesian approaches to recognition.  The situa-
tion began to change in the early 2000's, driven by the availability of GPUs, and plan-
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etary scale data, made possible by the continued exponential growth of the World 
Wide Web, and the emergence of challenge-based research in computer vision. Dur-
ing this period, computer vision and machine learning were increasingly organized 
around open competitions for performance evaluation for well-defined tasks using 
publically available "benchmark" data-sets.  

Many of the insights of LeNet-5 continued to be relevant as more training data, and 
additional computing power enabled larger and deeper networks, as they allowed 
more effective performance for a given amount of training data and parameters. 

2. Classic CNN Architectures 

The emergence of the internet and the world-wide web made it possible to assemble 
large collections of training data with ground truth labels, and to issue global chal-
lenges for computer vision techniques for tasks such as image classification and ob-
ject detection.  Many of the most famous CNN architectures have been designed to 
compete in these large-scale image challenges, and the size of the input image and the 
number of output categories are often determined by the parameters of the challenge 
for which the network was designed.  

Several key data sets that have influenced the evolution of the domain. Perhaps the 
most influential of these has been ImageNet.  

 ImageNet is an image database organized according to the nouns in the WordNet 
hierarchy compiled for research in Linguistics. In 2006, Fei-Fei Li began working on 
the idea for ImageNet based on the idea of providing image examples for each word 
in WordNet, eventually using Amazon Mechanical Turk to help with assigning 
WordNet words to images. The ImageNet data set was first presented as a poster at 
the 2009 Conference on Computer Vision and Pattern Recognition (CVPR) in Florida 
and later published in the Journal of Vision [8].  

In 2010 Li joined with the European PASCAL Visual Object Class (POC) chal-
lenge team to create a joint research challenge on several visual recognition tasks. The 
resulting annual competition is known as the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC). The ILSVRC uses a list of 1000 image categories or clas-
ses, including 90 of the 120 dog breeds classified by the full ImageNet schema. In 
2010 and 2011, a good score for the ILSVRC top-5 classification error rate was 25%.  

Winning teams during the first years used statistical recognition techniques such as 
Support Vector Machines (SVM) combined with image features such as Scale Invari-
ant Feature Transform (SIFT) and Histogram of Oriented Gradients (HoG). However, 
in 2012, Alex Krizhevsky won the competition with a deep convolutional neural net 
inspired by LeNet-5 called AlexNet, as shown in figure 7.  AlexNet achieved an error 
rate of 16% (accuracy of 84%). This dramatic quantitative improvement marked the 
start of the rapid shift to techniques based on Deep Learning using Neural Networks 
by the computer vision community.  By 2014, more than fifty institutions participated 
in the ILSVRC, almost exclusively with different forms of Network Architectures. In 
2017, 29 of 38 competing teams demonstrated error rates less than 5% (better than 
95% accuracy). Many state-of-the-art object detection networks now pre-train on 
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ImageNet and then rely on transfer learning to adapt the learned recognition system to 
a specific domain.  

 

 
Fig 7. Error rates for the top 5 entries in the 2012 ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) [9] 

2.1  AlexNet 

AlexNet [10], is a deeper and larger variation of LeNet5, using two parallel tracks of 
5 convolutional layer followed by 3 fully connected layer. The initial receptive field is 
11x11 with a stride (sample distance) of 4, followed by 48 parallel 5x5 receptive 
fields.  
Innovations in AlexNet include:  
1. The use of ReLU avtivation instead of sigmoid or tanh. ReLU provided a 6 

times speed up with no loss of accuracy, allowing more training for the same cost 
in computation.  

2. DropOut: A technique called “dropout” randomly chose units that are temporari-
ly removed during learning. This was found to prevent over-fitting to training da-
ta.  

3. Overlap pooling: Max pooling was performed with overlapping windows.  
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Fig. 7. The AlexNet architecture [10]. 

Image copied from https://medium.com/coinmonks/paper-review-of-alexnet-
caffenet-winner-in-ilsvrc-2012-image-classification-b93598314160 

 
The AlexNet architecture is composed of 5 convolutional layers followed by 3 ful-

ly connected layers. ReLU activation is used after each convolution and in each fully 
connected layer. The input image size of 224 x 224 is dictated by the number of layers 
in the architecture.    

Source code for AlexNet can be found in PyTorch2.  The network has 62.3 million 
parameters, and needs 1.1 billion computations in a forward pass. The convolution 
layers account for 6% of all the parameters, and consume 95% of the computation. 
The network is commonly trained in 90 epochs, with a learning rate 0.01, momentum 
0.9 and weight decay 0.0005. The learning rate is divided by 10 once the accuracy 
reaches a plateau. 

2.2  VGG-16 - Visual Geometry Group 16 Layer Architecture  

In 2014, Karen Simonyan and Andrew Zisserman of the Visual Geometry Group at 
the Univ of Oxford demonstrated a series of networks referred to as VGG [11], shown 
in figure 8.  An important innovation in VGG was the use of many small (3x3) convo-
lutional receptive fields. VGG also introduced the idea of a 1x1 convolutional filter, 
using a perceptron to reduce the number of features (depth) at each image position.  
For a layer with a depth of D receptive fields, a 1x1 convolution performs a weighted 
sum of the D features, followed by non-linear activation using ReLU activation.    
 

                                                             
2 An open source machine learning framework available at https://pytorch.org/.  
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Fig. 8.The VGG-16 Architecture.  

 
VGG uses a stack of 18 convolutional layers in which decreases in resolution pro-

vided by pooling are accompanied by increases in depth.  The final 7x7x512 convolu-
tional layer is followed by three Fully-Connected layers: the first two have 4096 
channels while the third fully connected layer outputs a probability distribution for 
each of the 1000 classes of the ILSVR Challenge using a soft-max activation func-
tion. All except the last output layer use Relu activation.  

2.3 YOLO: You Only Look Once  

YOLO [12] poses object detection as a single regression problem that estimates 
bounding box coordinates and class probabilities at the same time directly from image 
pixels. This is known as a Single Shot Network (SSD). A single convolutional net-
work simultaneously predicts multiple bounding boxes and class probabilities for 
each box in a single evaluation. The result is a unified architecture for detection and 
classification that is very fast.  



12 

making predictions. Unlike sliding window and region
proposal-based techniques, YOLO sees the entire image
during training and test time so it implicitly encodes contex-
tual information about classes as well as their appearance.
Fast R-CNN, a top detection method [14], mistakes back-
ground patches in an image for objects because it can’t see
the larger context. YOLO makes less than half the number
of background errors compared to Fast R-CNN.

Third, YOLO learns generalizable representations of ob-
jects. When trained on natural images and tested on art-
work, YOLO outperforms top detection methods like DPM
and R-CNN by a wide margin. Since YOLO is highly gen-
eralizable it is less likely to break down when applied to
new domains or unexpected inputs.

YOLO still lags behind state-of-the-art detection systems
in accuracy. While it can quickly identify objects in im-
ages it struggles to precisely localize some objects, espe-
cially small ones. We examine these tradeoffs further in our
experiments.

All of our training and testing code is open source. A
variety of pretrained models are also available to download.

2. Unified Detection

We unify the separate components of object detection
into a single neural network. Our network uses features
from the entire image to predict each bounding box. It also
predicts all bounding boxes across all classes for an im-
age simultaneously. This means our network reasons glob-
ally about the full image and all the objects in the image.
The YOLO design enables end-to-end training and real-
time speeds while maintaining high average precision.

Our system divides the input image into an S ⇥ S grid.
If the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object.

Each grid cell predicts B bounding boxes and confidence
scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and
also how accurate it thinks the box is that it predicts. For-
mally we define confidence as Pr(Object) ⇤ IOUtruth

pred . If no
object exists in that cell, the confidence scores should be
zero. Otherwise we want the confidence score to equal the
intersection over union (IOU) between the predicted box
and the ground truth.

Each bounding box consists of 5 predictions: x, y, w, h,
and confidence. The (x, y) coordinates represent the center
of the box relative to the bounds of the grid cell. The width
and height are predicted relative to the whole image. Finally
the confidence prediction represents the IOU between the
predicted box and any ground truth box.

Each grid cell also predicts C conditional class proba-
bilities, Pr(Class

i

|Object). These probabilities are condi-
tioned on the grid cell containing an object. We only predict

one set of class probabilities per grid cell, regardless of the
number of boxes B.

At test time we multiply the conditional class probabili-
ties and the individual box confidence predictions,

Pr(Classi|Object) ⇤ Pr(Object) ⇤ IOUtruth
pred = Pr(Classi) ⇤ IOUtruth

pred (1)

which gives us class-specific confidence scores for each
box. These scores encode both the probability of that class
appearing in the box and how well the predicted box fits the
object.

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S⇥S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S ⇥ S ⇥ (B ⇤ 5 + C) tensor.

For evaluating YOLO on PASCAL VOC, we use S = 7,
B = 2. PASCAL VOC has 20 labelled classes so C = 20.
Our final prediction is a 7⇥ 7⇥ 30 tensor.

2.1. Network Design

We implement this model as a convolutional neural net-
work and evaluate it on the PASCAL VOC detection dataset
[9]. The initial convolutional layers of the network extract
features from the image while the fully connected layers
predict the output probabilities and coordinates.

Our network architecture is inspired by the GoogLeNet
model for image classification [34]. Our network has 24
convolutional layers followed by 2 fully connected layers.
Instead of the inception modules used by GoogLeNet, we
simply use 1⇥ 1 reduction layers followed by 3⇥ 3 convo-
lutional layers, similar to Lin et al [22]. The full network is
shown in Figure 3.

We also train a fast version of YOLO designed to push
the boundaries of fast object detection. Fast YOLO uses a
neural network with fewer convolutional layers (9 instead
of 24) and fewer filters in those layers. Other than the size
of the network, all training and testing parameters are the
same between YOLO and Fast YOLO.

 
Fig 9. You Only Look Once (YOLO).  The Yolo network simultaneously estimate  bounding 

box coordinates and class probabilities for objects. Image copied from [12]. 
 

The input image is divided into an S x S grid of cells.  Each grid cell predicts B 
bounding boxes as well as C class probabilities. The bounding box prediction has 5 
components: (x, y, w, h, confidence). The (x, y) coordinates represent the center of 
the predicted bounding box, relative to the grid cell location.  Width and height (w, h) 
are predicted relative to the entire image.   Both the (x, y) coordinates and the window 
size (w, h) are normalized to a range of [0,1].  Predictions for bounding boxes cen-
tered outside the range [0,1] are ignored. If the predicted object center (x, y) coordi-
nates are not within the grid cell, then object is ignored by that cell.   

 

 
Fig. 10. Yolo uses a CNN architecture followed by a fully connected layer to simultaneously 

bounding boxes and classes for objects. Image copied from [13]. 
 
   Each grid cell predicts C class conditional probabilities P(Classi | Object).   These 
are conditioned on the grid cell containing an object. Only one set of class probabili-
ties are predicted per grid cell, regardless of the number of boxes.  The scores encode 
the probability of a member of class i appearing in a box, and how well the box fits 
the object.  If no object exists in a cell, the confidence score should be zero. Other-
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wise the confidence score should equal the intersection over union (IOU) between the 
predicted box and the ground truth. 

These predictions are encoded as an S x S x (5B+C) tensor.  Where SxS is the 
number of grid cells, B is the number of Bounding Boxes predicted and C is the num-
ber of image classes.  For the Pascal visual Object Classification challenge,  S = 7, B 
= 2 and C=20 yielding a 7x7x30 tensor.   

The detection network has 24 convolutional layers followed by 2 fully connected 
layers as shown in figure 11.  The convolutional layers were pretrained on the 
ImageNet data-set at half the resolution  (224 by 224 input image). Image resolution 
was then doubled to (448 x 448) for detection. 

 
Fig 11. YOLO is composed of 24 convolutional layers followed by 2 fully connected layers.  

(from: http://datahacker.rs/how-to-peform-yolo-object-detection-using-keras/) 

2.4 YOLO-9000 (YOLOv2) 
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Abstract
We introduce YOLO9000, a state-of-the-art, real-time

object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOv2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
faster. Finally we propose a method to jointly train on ob-
ject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don’t have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

1. Introduction
General purpose object detection should be fast, accu-

rate, and able to recognize a wide variety of objects. Since
the introduction of neural networks, detection frameworks
have become increasingly fast and accurate. However, most
detection methods are still constrained to a small set of ob-
jects.

Current object detection datasets are limited compared
to datasets for other tasks like classification and tagging.
The most common detection datasets contain thousands to
hundreds of thousands of images with dozens to hundreds
of tags [3] [10] [2]. Classification datasets have millions
of images with tens or hundreds of thousands of categories
[20] [2].

We would like detection to scale to level of object clas-
sification. However, labelling images for detection is far
more expensive than labelling for classification or tagging
(tags are often user-supplied for free). Thus we are unlikely

Figure 1: YOLO9000. YOLO9000 can detect a wide variety of
object classes in real-time.
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Fig 12. Typical output from YOLO-9000 [14]. 

 
In 2017, the YOLO team published performance evaluation results and source code 
for a new version of YOLO referred to as Yolo9000. Yolo9000 employed a number 
of innovations, including ideas that had emerged in the machine learning literature the 
previous year.  At low resolutions YOLO9000 operates as a cheap, fairly accurate 
detector. At 288x288 it runs at more than 90 FPS. This makes it ideal for smaller 
GPUs, high frame rate video, or multiple video streams. At high resolution the net-
work is competitive with the state of the art giving 78.6 mAP on VOC 2007 while still 
operating above real-time speeds 



14 

3. Conclusions 

Convolutional neural networks are now a well established technology for analysis of 
multidimensional signals with applications in computer vision, recommender systems, 
image classification, image segmentation, medical image analysis, natural language 
processing, brain–computer interfaces, financial time series and many other areas. 
New architectures for deep convolutional networks appear regularly addressing appli-
cations in an every expanding repertoire of domains.  

Much of the progress of recent years has been obtained by training networks at ev-
er-increasing depths, leveraging the growing availability of computing power provid-
ed by application specific integrated circuits and related technologies, and made pos-
sible by the availability of very large data set of annotated data.  However, much of 
this work relied on supervised learning, and the need for annotated data has hindered 
development in some application domains.  

Recently transformers, based on stacked layers of encoders and decoders with pro-
cessing driven by self-attention, have begun to supplant convolutional neural net-
works in many areas, by improving performance while decreasing computational 
requirements. In addition, transformers can be trained by self-supervised learning, 
using data as its own ground truth, and eliminating the need for annotated training 
data as described in the chapter on Natural Language Processing with Transformers 
and Attention [15]. None-the-less, Convolutional networks remain an established tool 
with many practical applications.  
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