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Glossary of Symbols 
 
xd    A feature.  An observed or measured value.  
  

€ 

! 
X     A vector of D  features.   
D    The number of dimensions for the vector    

€ 

! 
X  

K    Number of classes 

€ 

Ck     The kth class  
  

€ 

! 
X ∈ Ck      Statement that an observation  

€ 

! 
X is a member of class Ck 

€ 

ˆ C k     The estimated class  
D(
!
X)    A Recognition (discriminant) function  

Ĉk = D(
!
X)    A recognition function that predicts

€ 

ˆ C k  from   

€ 

! 
X   

     For a detection function (K=2), 

€ 

Ck ∈ P,N{ } 

€ 

y     The true class for an observation   

€ 

! 
X    

  

€ 

{
! 
X m}  

€ 

{ym}   Training samples of  

€ 

! 
X  for learning, along with ground truth   

€ 

! y  
ym     An indicator variable (or ground truth) for sample m 
M    The number of  training samples.  
  

€ 

! y     A dependent variable to be estimated.  
!y = f ( !wT

!
X + b)   A  function (model) that predicts    

€ 

! y  from 
!
X .   

!w,b     The parameters of the model.  
Cm =

1
2
(am − ym )

2   The Loss (or cost) for the function for estimating ym  as am  
!
∇Cm =

∂Cm

∂
!w

  The gradient (vector derivative) of the Loss (or cost).  

€ 

aj
(l )      The activation output of the jth neuron of the lth layer.  

€ 

wij
(l )     The weight from unit i of layer l–1 to the unit j of layer l. 

€ 

bj
l       The bias for  unit j of layer l. 

€ 

η     A learning rate. Typically very small (0.01). Can be variable. 
L    The number of layers in the network.  

€ 

δm
out = am

(L ) − ym( )    The Output Error of the network for the mth training sample 

€ 

δ j,m
(l )     Error for the jth neuron of layer l, for the mth training sample.  
Δwij,m

(l ) = ai
(l−1)δ j,m

(l )   Update for weight from unit i of layer l–1 to the unit j of layer l.  
Δbj,m

(l ) =  δ j,m
(l )   Update for bias for unit j of layer l.  

€ 

ρ     The sparsity parameter  

( f * s)(n) = f (m)s(n−m)
m=1

N

∑
  

The convolution equation.  * is the convolution operator 

f *P(i, j) = f (u,v)P(i −u, j − v)
u=1

N

∑
v=1

N

∑   2D convolution of a 2D filter f(i,j) with an image P(i,j) 
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!
h (t )    The hidden recurrent activation vector of the network.   
   Note that in previous lectures we used 

!a (t ) for activation.  
f (−)    A process equation that computers 

!
h (t+1) from 

!
h (t )  

!
X (t )    A sequence of τ input vectors.  Equivalent to {

!
X1,...,

!
Xτ } in earlier  

   lectures.  
!
o (t )    The network output vector.   
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Machine Learning 
 
Machine learning explores the study and construction of algorithms that can learn 
from and make predictions about data.   Many of the foundational techniques for 
machine learning were originally developed for problems of detecting signals and 
recognizing patterns. However, as the scientific study of machine learning has 
matured, and as computing and data become increasingly available, it has become 
increasingly clear that machines can learn any computable function from data or 
experience with phenomena.   
 
The term machine learning was coined in 1959 by Arthur Samuel, a pioneer in the 
field of computer gaming and inventor of the first computer program capable of 
learning to play checkers.  An early landmark was a textbook by Nilsson in 1960 
entitled Learning Machines, dealing mostly with machine learning for pattern 
classification using statistical techniques grounded in signal detection work from the 
early 20th century.  A key landmark was the 1973 text-book by Duda and Hart named 
"Pattern Recognition and Scene Analysis", and the field was dominated by the 
scientific field of "Pattern Recognition" through the 1960's and 1970's.  
 
We now understand that machine learning can be used to learn any computable 
function from data or experience, and can be used to learn techniques for pattern 
generation, for control of machines, for natural language interaction with humans, 
and for any form of intelligent behavior. Machine Learning is now seen as a core 
enabling technology for artificial intelligence. A modern definition would be:  
 
Machine learning involves computers discovering how they can perform tasks 
without being explicitly programmed to do so.  
 
Many of the techniques, including neural networks, have originally been developed 
for pattern recognition. Thus we will begin with techniques for the problems of 
recognizing patterns, and then show how these can be generalized to other forms of 
learning. 
 
For pattern recognition, the classic approach is to use a set of “training data” training 
data {

!
Xm}  to estimate the discriminant function   

€ 

! g 
! 
X ( ) .  This can be done with a 

variety of techniques. A decision function d !g
!
X( )( ) is then used to select a pattern 

label from a set of possible target labels.  
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Supervised Learning 
Most classical methods for machine learning, learn to estimate a function a set of 
labeled training data, composed of M independent examples,   

€ 

{
! 
X m}  for which we 

know a target value {ym} .  The set   

€ 

{
! 
X m}  is called the training data. The set {ym} are 

the indicator variables or target variables. Having target values 

€ 

{ym} makes it much 

easier to estimate the function ŷ = f (
!
X ) .  

 
Semi-Supervised Learning.  
A number of hybrid algorithms exist that initiate learning from a labeled training set 
and then extend the learning with unlabeled data, using the initial algorithm to 
generate synthetic labels for new data.  
 
Unsupervised Learning 
Unsupervised Learning techniques learn the function without a labeled training set.  
Most unsupervised learning algorithms are based on clustering techniques that 
associate data based on statistical properties. Examples include K-nearest neighbors, 
and Expectation Maximisation. 
 
Self-Supervised Learning 
Self-supervised learning learns to reconstruct data missing data and to guess 
associated data from examples. Two classic self-supervised techniques are masked-
token completion and next sentence prediction. With Self-supervised learning,  the 
data set is its own ground truth.   
 
Reinforcement Learning 
Reinforcement learning refers to techniques were a system learns through interaction 
with an environment. While originally developed for training robots to interact with 
the world, reinforcement learning combined with deep learning has recently produced 
systems that outperform humans at games such as Go or Chess. Deep reinforcement 
learning uses training with realistic simulators adapted through additional training 
with a target domain by transfer learning.  
 
Transfer Learning 
With transfer learning a system is first trained with a very large general-purpose data 
set or simulator, and then refined through additional training in a target domain. 
Transfer learning has provided a very useful method for overcoming the need for 
very large training data sets for most modern machine learning techniques based on 
Neural networks.  
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Perceptrons 
 

History 
The Perceptron is an incremental learning algorithm for linear classifiers invented by 
Frank Rosenblatt in 1956. The approach was first proposed by Warren McCullough 
and Walter Pitts in 1943 as a possible universal computational model. During the 
1950’s, Frank Rosenblatt developed the idea to provide a trainable machine for 
pattern recognition.  The first Perceptron was a room-sized analog computer that 
implemented Rosenblatz’s learning function for recognition. However, it was soon 
recognized that both the learning algorithm and the resulting recognition algorithm 
are easily implemented as computer programs.  
 

The Perceptron Classifier 
The perceptron is an on-line learning algorithm that learns a linear decision 
boundary (hyper-plane) for separable training data.  As an "on-line" learning 
algorithm, new training samples can be used at any time to update the recognition 
algorithm.  However, if the training data is non-separable, the method will not 
converge, and must be stopped after a certain number of iterations.  
 
The Perceptron algorithm uses errors in classifying the training data to iteratively 
update the hyper-plane decision boundary. Updates may be repeated until no errors 
exist.  
 
Assume a training set of M observations  

€ 

{
! 
X m}  of D features, with indicators variables, 

€ 

{ym} where 
 

 

  

€ 

! 
X m =

x1m

x2m

"
xDm

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 and  ym  = {–1, +1} 

 
The indicator variable, 

€ 

{ym},  tells the class label for each sample.  
For binary pattern detection,  
 ym =  +1 for examples of the target class (class 1) 
 ym =  –1 for all others (class 2) 
 
The Perceptron will learn the coefficients, 

!w,b ,  for a linear boundary  
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€ 

! w =

w1

w2

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  and b 

 

Such that for all training data, ,  
 
    

€ 

! w T
" 
X m + b  ≥ 0 for Class 1 and !wT "Xm +b  < 0 for Class 2.  

 
Note that   

€ 

! w T
" 
X m + b ≥ 0  is the same as    

€ 

! w T
" 
X m ≥   −b .  

Thus b can be considered as a threshold on the product:   

€ 

! w T
" 
X m  

 

The decision function is the sgn() function:  

€ 

sgn(z) =
1 if z ≥ 0
−1 if z < 0
$ 
% 
& 

  

Where z =
!wT "Xm + b  

 
A training sample is correctly classified if:  
 
    

€ 

ym ⋅
! w T
" 
X m + b( ) ≥ 0    

 
The algorithm requires a learning rate,  η.  Typically set to a very small number such 
as η = 10-3
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The Perceptron Learning Algorithm  
 
The algorithm will continue to loop through the training data until it makes an entire 
pass without a single misclassified training sample. If the training data are not 
separable then it will continue to loop forever.  
 
Algorithm:  
   

€ 

! w (0) ← 0; 

€ 

b (i )← 0,  i← 0 ; set η (for example η = 10-3) 
WHILE update DO 

  update ← FALSE; 
  FOR m = 1 TO  M  DO  
   IF  

  

€ 

ym ⋅
! w (i)T
" 
X m + b(i)( ) < 0  THEN  

    update ← TRUE 
    !w(i+1) ← !w(i ) −η⋅ ym ⋅

!
Xm  

    b(i+1) ← b(i ) −η⋅ ym  
    i ← i + 1  
   END IF 
  END FOR 
 END WHILE.  
 
Notice that the weights are a linear combination of training data that were incorrectly 
classified.  
 
The final classifier is:     if    

€ 

! w (i)T
" 
X m + b(i) ≥ 0  then P else N.   

 
If the data is not separable, then the Perceptron will not converge, and will continue 
an infinite loop. Thus it is necessary to have a limit the number of iterations.  
 
In 1969, Marvin Minsky and Seymour Papert of MIT published a book entitled 
“Perceptrons”, that claimed to document the fundamental limitations of the 
perceptron approach.  Notably, they claimed that a linear classifier could not be 
constructed to perform an “exclusive OR”. While this is true for a one-layer 
perceptron, it is not true for multi-layer perceptrons.  
 
The fact that the algorithm requires separable training data WAS a major weakness. 
This limitation was later overcome by reformulating the algorithm using a soft 
decision surface and Gradient descent. The result was promoted as a form of 
"Artificial Neural Network".  
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Artificial Neural Networks 
 
In the 1970s, frustrations with the limits of Artificial Intelligence research based on 
Symbolic Logic led a small community of researchers to explore a perceptron based 
approach. In 1973, Steven Grossberg, showed that a two layered perceptron could 
overcome the problems raised by Minsky and Papert, and solve many problems that 
plagued symbolic AI.  In 1975, Paul Werbos developed an algorithm referred to as 
“Back-Propagation” that uses gradient descent to learn the parameters for perceptrons 
from classification errors with training data. Back-propagation is a parallel form of 
Gradient descent easily implemented on a SIMD parallel computer.  
 
Artificial Neural Networks are computational structures composed a weighted sums 
of “neural” units.  Each neural unit is composed of a weighted sum of input units, 
followed by a non-linear decision function.   

x1 

… 

xD 

+1 
Layer 1 

Layer 2 

Layer 0 

+1 

a1
(1) 

a2
(1) 

a3
(1) 

w11 
(1) 

w11 
(2) 

b1 
(1) b1 

(2) 

a1
(2) a 

 
 
Note that the term “neural” is misleading. The computational mechanism of a neural 
network is only loosely inspired from neural biology. Neural networks do NOT 
implement the same learning and recognition algorithms as biological systems.  
 
During the 1980’s, Neural Networks went through a period of popularity with 
researchers showing that Networks could be trained to provide simple solutions to 
problems such as recognizing handwritten characters, recognizing spoken words, and 
steering a car on a highway. However, the resulting systems were fragile and difficult 
to duplicate. The popularity of Artificial Neural Networks was overtaken by more 
mathematically sound approaches for statistical pattern recognition based on 
Bayesian learning.  These were, later, overtaken by techniques such support vector 
machines and kernel methods.   
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The Artificial Neuron 
 
The simplest possible neural network is composed of a single neuron.  

 
A “neuron” is a computational unit that integrates information from a vector of  
features,   

€ 

! 
X ,  to compute the likelihood of an activation, a.  

 
 

€ 

a = f (z) 
 
The neuron is composed of a weighted sum of input values   
 
 

€ 

z = w1x1 +w2x2 + ...+wDxD +b  
 
 followed by a non-linear “activation” function,   

€ 

f (z)   
 
 a = f (z) = f ( !wT

!
X + b)  

A popular choice for activation function is the sigmoid:  

€ 

σ (z) =
1

1+ e−z
 

 
 

The sigmoid is useful because the derivative is:   

€ 

dσ (z)
dz

=σ (z)(1−σ (z)) 

 
For the sigmoid, the target function is ym ∈ 0,1{ } , enabling easy generalization to 
multi-class decisions.   This can give a decision function:   
 
  if f ( !wT "X + b) ≥ 0.5  the P else N 
 
We will use Gradient descent to learn the best weights and bias for a training set of M 
samples 

!
Xm{ }  with indicator variables ym{ } .   
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Gradient Descent 
Gradient descent is a first-order iterative optimization algorithm for finding the local 
minimum of a differentiable function. Gradient descent is a popular algorithm for 
estimating parameters for a large variety of models.    
 
The gradient of a scalar-valued differentiable function of several variables, f (

!
X)  is 

vector derivatives:  
 

!
∇f (
"
X) = ∂ f (

"
X)

∂
"
X

=

∂ f (
"
X)

∂x1
∂ f (
"
X)

∂x2
#

∂ f (
"
X)

∂xD

"

#

$
$
$
$
$
$
$
$
$$

%

&

'
'
'
'
'
'
'
'
''

 

 
The gradient of a function f (

!
X)at a point 

!
X is the direction and rate of change for the 

greatest slope of a surface. The direction of the gradient is the direction of greatest 
slope, the magnitude is the gradient is the rate of change in that direction.  
 
To find a local minimum of a function using gradient descent, we iteratively update 
the function by subtracting corrections proportional to the gradient of the function at 
the current point.  To use this to determine the parameters for a perceptron (or neural 
unit), we must introduce the notion of a Loss or cost for an error.  
 

Loss (Cost) Function 
The Loss (or cost) function is the cost of an error for classifying a data sample 

!
Xm  

with ground truth ym using with network parameters !w .  Assume M samples of 
training data 

!
Xm  with indicator variables  ym. The vector,

!
Xm , has D dimensions. The 

indicator ym, gives the expected result for the vector.  Suppose that the neural unit 
uses a vector of weights, 

!w  and a bias, b, to estimate ym from 
!
Xm . 

 
am = f (zm ) = f (

!wT
!
Xm +b)  

 
The cost (or Loss)  for using the weights and biases   

€ 

! w  to discriminate
!
Xm  is Cm  

 
 Cm =

1
2
am − ym( )2

	  
Where we have multiplied by "1/2" to simplify the algebra. 
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The gradient of the cost with respect to each of the parameters tells us how much 
each parameter contributed to the error.  We will use these to define a vector of 
correction factors for each parameter. 
 

 
!
∇Cm =

∂Cm

∂
!w
=

∂Cm

∂w1
!

∂Cm

∂wD

∂Cm

∂b

"

#

$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'

=

∆ w1
!

∆ wD

∆ b

"

#

$
$
$
$$

%

&

'
'
'
''

 

 
In order to evaluate these derivatives, we use the chain rule. Each gradient term can 
provides a correction term for the function parameters.  For a single neural unit:  
 
 ∆ w1 =

∂Cm

∂w1
=
∂Cm

∂am
⋅
∂am
∂zm

⋅
∂zm
∂w1  

 
To correct the network, we will subtract a fraction of this change from each of the 
network parameters.  Because the training data typically contains many unmodelled 
phenomena (noise), the correction is weighted by a (very small) learning rate “η” to 
stabilize learning 
 
   

€ 

! w (i) =
! w (i−1) −ηΔ ! w m  

 
The fraction, η, is referred to as the Learning rate.  Typical values for η are from 
η=0.01 to  η=0.001.  

 
(Drawing recovered from the internet - Source unknown) 

 
The "optimum" coefficients are the coefficients that provide the smallest loss. To 
determine the optimum coefficients, we iteratively refine the model to reduce the 
errors, by subtracting a part of the derivative from the model parameters. 
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Ideally, at the optimum parameters, both the loss and the gradient are zero.   For all 
other parameters, the loss increases. With real data, this will rarely be obtained 
because of noise in the training data.   
    
Noise (un-modeled phenomena) in the training data will drive individual updates in 
random directions. A small learning rate is used to limit noise from driving the 
parameters too far from the optimum.  
 
Warning:  If you evaluate gradient descent by hand with real data, do not expect to 
easily see a path to convergence.  Typically, arriving at the optimum requires a LOT 
of training data and MANY passes through the training data.  Each pass through the 
training data is referred to as an “epoch”. Gradient descent may require many epochs 
to reach an optimal (minimum loss) model.  
 

Feature Scaling 
For a training set   

€ 

{
! 
X m}  of M training samples with D values, if the individual features 

do not have a similar range of values, than large values will dominate the gradient.  
Small errors in this dimension are magnified.  
 
One way to assure sure that features have similar ranges is to normalize the training 
data.   A simple technique is to normalize the range of sample values.  
 

For example,   ∀m=1
M : xdm :=

xdm −min(xd )
max(xd )−min(xd )

 

 
 

  

 

 
 
After estimating the model, use max(xd )  and min(xd )  to project the data back to the 
original space.  
 
Note that the 2D surface shown here would correspond to two parameters, for 
example w, b for a single neural unit with a scalar input x. The actual surface is 
hyper-dimensional and not easy to visualize.  
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Local Minima 
Gradient descent assumes that the loss function is convex.  However, the loss 
function depends on real data   

€ 

! 
X m   with unmodeled phenomena (noise).  

 
 Cm =

1
2
f (
!
Xm )− ym( )

2

	  
 
Noise in the training samples {  

€ 

! 
X m }  can create a non-convex loss with  local minima.  

 

 
(Drawing recovered from the internet - Source unknown) 

 
In fact the gradient has MANY parameters, and the Loss function is evaluated in a 
very high dimensional space. It is helpful to see the data as a hyper-dimensional 
cloud descending (flowing over) a complex hyper-dimensional surface.  
 

 
(Drawing recovered from the internet - Source unknown) 
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Batch mode 
 
Individual training samples will send the model in arbitrary directions.  While, 
updating with each sample will eventually converge, this tends to be costly. A more 
efficient approach is to correct the model with the average of a large set of training 
samples. The training data is typically divided into “folds” and the model is updated 
with the average of each fold.    
 
This is called  “batch mode”.  
 

 Δ
!w = 1

M
Δ
!wm

m=1

M

∑ =
1
M

!
∇Cm

m=1

M

∑  

 
The model is then updated with the average error.      
 
   

€ 

! w (i) =
! w (i−1) −ηΔ ! w  

 

Stochastic Gradient Descent 
 
Batch gradient descent often efficiently converges to a local minimum and becomes 
stuck.  This can be avoided with stochastic gradient descent.  With Stochastic 
gradient descent, a single training sample is randomly selected and used to update the 
model. This will send the model in random directions, that eventually flow to the 
global minima. While much less efficient than batch mode, this is less likely to 
become stuck in local minima.  
 



Machine Learning with Neural Networks ACAI 2021 Tutorial 
 

17 

Artificial Neural Networks  
Artificial Neural Networks, also referred to as “Multi-layer Perceptrons”, are 
computational structures composed a weighted sums of “neural” units.  Each neural 
unit is composed of a weighted sum of input units, followed by a non-linear decision 
function.   
 
The simplest possible neural network is composed of a single neuron.  

 
A “neuron” is a computational unit that integrates information from a vector of  
features,   

€ 

! 
X ,  to compute the likelihood of an activation, a. The neuron is composed of 

a weighted sum of input values   

€ 

z = w1x1 +w2x2 + ...+wDxD +b   followed by a non-
linear “activation” function,   

€ 

f (z)   
 
   

€ 

a = f ( ! w T
" 
X + b) 

 
Many different activation functions may be used.  Historically, the classic activation 
function is the sigmoid (or Logistic) activation function:  

σ(z) = 1
1+ e− z

=
ez

ez +1  

 
The sigmoid has long been used in biology and in economics to model processes that 
grow exponentially to a point of saturation.  For example, the population of bacteria 
during fermentation, or the growth in performance of a new technology.  
 
The sigmoid is useful because the derivative is:   

€ 

dσ (z)
dz

=σ (z)(1−σ (z)) 

 
Another classic decision functions is the hyperbolic tangent: 

€ 

f (z) = tanh(z) =
ez − e−z

ez + e−z
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For multiple classes, we can use the Softmax activation function.  
 

 

€ 

f (zk ) =
ezk

ezk
k=1

K
∑

 

 
The softmax function takes as input a vector 

!z  of K real numbers, and normalizes it 
into a probability distribution consisting of K probabilities.  
 
The softmax function is used to select the maximum from a vector of activations for 
K classes.  Before applying softmax, the vector components of 

!z  will generally not 
sum to 1, and some of the components may be negative, or greater than one.  After 
applying softmax, each component will be in the interval [0, 1]  and the components 
will sum to 1. Thus the output can be interpreted as a probability distribution 
indicating the likelihood of each component.  
 
Softmax is used as the last activation function of a neural network to normalize the 
output of a network to a probability distribution over predicted output classes. 
 
The rectified linear function is popular for deep learning because of a trivial 
derivative:  

relu(z) =max(0, z)  

 
 

For  z≤ 0  d(relu(z))dz
= 0    for  z > 0 :  

€ 

d(relu(z))
dz

=1   

 
Recently, a variation of RELU called GELU (Gaussian Error Linear Unit) has gained 
popularity.  

gelu(z) = 0.5z 1+ 2
π

e−x
2

0

z

2

∫ dx

$

%

&
&
&

'

(

)
)
)  

 
From Wikipedia:  By Ringdongdang -
https://commons.wikimedia.org/w/index.php?curid=95947821 
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The Multilayer Neural Network model 
 
A neural network is a multi-layer assembly of neurons.  For example, this is a 2-layer 
network:  
 

 

 
The circles labeled +1 are the bias terms.  
The circles on the left are the input terms.  Some authors, notably in the Stanford 
tutorials, refer to this as Level 1.  
 
We will NOT refer to this as a level (or, if necessary, level L=0).  
The rightmost circle is the output layer, also called L.  
The circles in the middle are referred to as a “hidden layer”.  In this example there is 
a single hidden layer and the total number of layers is L=2.  
 
The parameters carry a superscript, referring to their layer.   
We will use the following notation:  
L    The number of layers (Layers of non-linear activations).  
l     The layer index.  l ranges from 0 (input layer) to L (output layer) 
N(l)  The number of  units in layer l.  N(0)=D 

€ 

aj
(l )    The activation output of the jth neuron of the lth layer.  

€ 

wij
(l )    The  weight  from the unit i of layer l-1 for the unit j of layer l.  

€ 

bj
(l )     The bias term for jth unit of the lth layer 

f(z)  A non-linear activation function, such as a sigmoid, relu or tanh. 
 
For example:   

€ 

a1
(2) is the activation output of the first neuron of the second layer.  

€ 

W13
(2) is the weight for neuron 1 from the first level to neuron 3 in the second level.  

 
The above network would be described by:  
 

€ 

a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 +b1
(1) )  

 

€ 

a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 +b2
(1) )  

 

€ 

a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 +b3
(1) )  

 

€ 

a1
(2) = f (w11

(2)a1
(1) +w21

(2)a2
(1) +w31

(2)a3
(1) +b1

(2) ) 
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This can be generalized to multiple layers.  For example:  
 

 

 
 !am

(3)   is the vector of network outputs (one for each class) at the third layer.  
 
Each unit is defined as follows:  

 

€ 

a1
(l−1)

 … 

€ 

aN ( l−1)
(l−1)

 

+1 

€ 

f z j
(l )( ) 

€ 

zj
(l )  

€ 

aj
(l )

 
€ 

wij
(l )  

€ 

wN ( l−1) j
(l )

 

€ 

bj
(l )

 

… 
€ 

w1 j
(l )  

€ 

ai
(l−1)

 

€ 

wjk
(l+1)  

 
The notation for a multi-layer network is  
   

€ 

! a (0) =
! 
X  is the input layer. 

€ 

ai
(0) = Xd     

 l is the current layer under discussion.  
 N(l)  is the number of activation units in layer l. N(0)  = D 
 i,j,k Unit indices for layers l-1, l and l+1:   i→j→k 
 

€ 

wij
(l )  is the  weight for the unit i of layer l-1 feeding to unit j of layer l.  

 

€ 

aj
(l )   is the activation output of the jth unit of the layer  l 

 

€ 

bj
(l )   the bias term feeding to unit j of layer l. 

 

€ 

zj
(l ) = wij

(l)ai
(l−1) +bj

(l)

i=1

N ( l−1)

∑   is the weighted input to jth unit of layer l 

 f(z) is a non-linear decision function, such as a sigmoid, tanh(), or soft-max 
 

€ 

aj
(l ) = f (zj

(l ) ) is the activation output for the jth
 unit of layer l 

 
For layer l this gives:  

 

€ 

zj
(l ) = wij

(l)ai
(l−1)

i=1

N ( l−1)

∑ +bj
(l)    

€ 

aj
(l ) = f wij

(l)ai
(l−1) +bj

(l)

i=1

N ( l−1)

∑
$ 

% 
& & 

' 

( 
) )   

 
and then for l+1 :  

 

€ 

zk
(l+1) = wjk

(l+1)aj
(l)

j=1

N ( l )

∑ +bk
(l+1)  

€ 

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N ( l )

∑
# 

$ 
% % 

& 

' 
( (  
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So how to do we learn the weights W and biases B?   
 
We could train a 2-class detector from a labeled training set   

€ 

{
! 
X m} ,

€ 

{ym} using gradient 
descent.  For more than two layers, we will need to use the more general “back-
propagation” algorithm.  
 
Back-propagation adjusts the network the weights 

€ 

wij
(l ) and biases 

€ 

bj
(l )  so as to 

minimize an error function between the network output   

€ 

! a m
L  and the target value  

€ 

! y m  for 
the M training samples   

€ 

{
! 
X m} ,   

€ 

{! y m}.  
 
This is an iterative algorithm that propagates an error term back through the hidden 
layers and computes a correction for the weights at each layer so as to minimize the 
error term.  
 
This raises two questions:  
1) How do we initialize the weights? 
2) How do we compute the error term for hidden layers? 
 

Initializing the weights 
How do we initialize the weights? 
The obvious answer is to initialize all  the weights to 0.  
However, this causes problems.  
 
If the parameters all start with identical values, then the algorithm will end up 
learning the same value for all parameters. To avoid this, the parameters should be 
initialized with small random variables that are near 0, for example computed with a 
normal density with variance ε (typically 0.01).  
 
 

  

€ 

∀
i, j ,l
wji
(l ) = N (X;0,ε) and  

  

€ 

∀
j,l
bj
(l ) = N (X;0,ε) where   

€ 

N  is a sample from a normal 

density.  
 
An even better solution is provided by Xavier GLOROT’s technique.  
 
Glorot, X. and Bengio, Y., 2010, March. Understanding the difficulty of training deep feedforward 
neural networks. In Proceedings of the thirteenth international conference on artificial intelligence 
and statistics (pp. 249-256). JMLR Workshop and Conference Proceedings. 
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Backpropagation 
 
Back propagation is a distributed parallel algorithm for computing gradient descent. 
Back-propagation propagates the error term back through the layers, using the 
weights.   We will present this for individual training samples. The algorithm can 
easily be generalized to learning from sets of training samples (Batch mode).  
 
Given a training sample,   

€ 

! 
X m , we first propagate the   

€ 

! 
X m  through the L layers of the 

network (Forward propagation) to obtain an output activation   

€ 

! a (L ) .  
 
We then compute an error term.  In the case, of a multi-class network, this is a vector, 
with k components, one output for each hypothesis. In this case the indicator vector 
would be a vector, with one component for each possible class:  
 
 

!
δm
(out ) =

!am
(L ) −
!ym( )      or for each class k:   δk,m(out ) = ak,m

(L ) − yk,m( )  
 
To keep things simple, let us consider the case of a two class network, so that 

€ 

δm
out , 

  

€ 

h(
! 
X m ), 

€ 

am
(L ) , and 

€ 

ym  are scalars. The results are easily generalized to vectors for multi-
class networks.   
 
 For a single neuron, at the output layer, the “error” for each training sample is: 
 
 δm

out = am
(L ) − ym( )  

 
The error term   

€ 

! 
δ m
out is the total error for the whole network for sample m. This error is 

used to compute an error for the weights that activate the neuron:  

 
 

€ 

δm =
∂f (z)
∂z

δm
out  

This correction is then used to determine a correction term for the weights:  
 
  Δwd,m = xdδm    
 Δbm =  δm  
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Backpropagation can be generalized for multiple neurons at multiple layers (l=1 to 
L).     The error term for unit k at layer L is:  
 
 δk ,m

(L) =
∂f (zk

(L) )
∂zk

(L)
δm
out  

 
For the hidden units in layers l < L the error 

€ 

δ j
(l )  is based on a weighted average of the 

error terms for 

€ 

δk
(l+1) .   

 

 

€ 

δ j,m
(l ) =

∂f (z j
(l) )

∂zj
(l ) wjk

(l+1)δk,m
(l+1)

k=1

N l+1

∑  

 
We compute error terms, 

€ 

δ j
(l )  for each unit j in layer l back to  layer l–1 using the sum 

of errors times the corresponding weights times the derivative of the activation 
function.  This error term tells how much the unit j was responsible for differences 
between the activation of the network   

€ 

! 
h (! x m;wjk

(l) ,bk
(l ) )  and the target value   

€ 

! y m .   
 
For the sigmoid activation function, 

€ 

σ (z) =
1

1+ e−z
 the derivative is:  

 

€ 

dσ (z)
dz

=σ (z)(1−σ (z)) 

 

For 

€ 

aj
(l ) = f (zj

(l ) ) this gives:  

€ 

δ j,m
(l ) = aj ,m

(l) (1− aj ,m
(l ) ) ⋅ wjk

(l+1)δk,m
(l+1)

k=1

N ( l+1)

∑  

 
This error term can then used to correct the weights and bias terms leading from layer 
j to layer i.  
 
  Δwij,m

(l ) = ai
(l−1)δ j,m

(l )    
 Δbj,m

(l ) =  δ j,m
(l )  

 
Note that the corrections 

€ 

Δwij,m
(l)  and 

€ 

Δbj ,m
(l)  are NOT applied until after the error has 

propagated all the way back to layer l=1, and that when l=1, 

€ 

ai
(0) = xi .  

 
For “batch learning”, the corrections terms, 

€ 

Δwji,m
(l)  and 

€ 

Δbj ,m
(l) are averaged over M 

samples of the training data and then only an average correction is applied to the 
weights.  
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€ 

Δwij
(l) =

1
M

Δwij,m
(l )

m=1

M

∑   

€ 

Δbj
(l) =

1
M

Δbj,m
(l )

m=1

M

∑  

 
then  
 
 wij

(l )← wij
(l ) −η ⋅ Δwij

(l )  bj
(l )← bj

(l ) −η ⋅ Δbj
(l )  

 
where 

€ 

η is the learning rate.  
 
Back-propagation is equivalent to computing the gradient of the loss function for 
each layer of the network.  A common problem with gradient descent is that the loss 
function can have local minimum.  This problem can be minimized by regularization.  
A popular regularization technique for back propagation is to use “momentum”  
 
 wij

(l ) ← wij
(l ) −η ⋅ Δwij

(l ) +  µ ⋅wij
(l )  

 bj
(l )← bj

(l ) −η ⋅ Δbj
(l ) +µ ⋅bj

(l )  
 
where the terms 

€ 

µ ⋅wj
(l )  and 

€ 

µ ⋅bj
(l ) serves to stabilize the estimation.   

The back-propagation algorithm may be continued until all training data has been 
used. For batch training, the algorithm may be repeated until all error terms, 

€ 

δ j,m
(l ) , are 

a less than a threshold.  
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Derivation of Backpropagation as gradient Descent.  
 
To derive the backpropagation equations, consider a simple 2 layer network with 1 
neuron at each level that maps a scalar feature, x, to a activation a(2).  
 

a(1)z(1)w(1)

f (z(1) )

+1 

b(2)b(1)

a(2)z(2)x

f (z(2) )

w(2)

+1  
 

The network equations are 
 
 z(1) = w(1)x + b(1)  
 a(1) = f (z(1) ) = f (w(1)x + b(1) )  
 z(2) = w(2)a(1)+ b(2)  
 a(2) = f (z(2) ) = f (w(2)a(1) + b(2) )  
 
The network has 4 parameters 
 

 !w =

w(1)

b(1)

w(2)

b(2)

!

"

#
#
#
##

$

%

&
&
&
&&

 

 
The “cost”, C, of the error of the network for using the parameters    
to discriminate the input, Xm,  with ground truth, ym, is:  
 
 Cm =

1
2
am
(2) − ym( )

2 	  

 
Where we have multiplied by "1/2" to simplify the algebra. 
 
The gradient of the cost with respect to each of the parameters in !w  
tells us how much each parameter contributed to the error.  
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€ 

am
(1)

€ 

zm
(1)

€ 

f (zm
(1))

€ 

∇Cm

€ 

Δb(1)

€ 

am
(2)

€ 

zm
(2)

€ 

f (zm
(2))

€ 

Δw2)

€ 

Δw(1)

€ 

Δb(2)

 
For our 2 layer network.  
 

 
∇C = ∂C

∂
!w
=

∂C
∂w(1)

∂C
∂b(1)

∂C
∂w(2)

∂C
∂b(2)

"

#

$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'

=

∆ w(1)

∆ b(1)

∆ w(2)

∆ b(2)

"

#

$
$
$
$$

%

&

'
'
'
''

 

 
To evaluate these derivatives we use the chain rule.  For example the derivative with 
of the cost with respect to the weight of the second neuron, w(2)  is 
 
 ∂C

∂w(2) =
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
⋅
∂z(2)

∂w(2) =∆ w
(2)  

This can be seen graphically as:  

     

∂C
∂a(2)

a(2)z(2)

f (z(2) )

∂a(2)

∂z(2)

∂z(2)

∂w(2)
∆ w(2)

 
The derivative with respect to b(2)   is:   
  
 ∂C

∂b(2)
=
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
⋅
∂z(2)

∂b(2)
=∆ b(2)  

This can be seen graphically as:  

     ∆ b(2)

∂z(2)

∂b(2)

∂C
∂a(2)

a(2)z(2)

f (z(2) )

∂a(2)

∂z(2)

 
 
We can simplify the notation by defining an error term for each neuron.  
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Let δm(out ) = am(2) − ym( ) = ∂Cm
∂am

(2)
   be the error for the error for the network for training sample 

Xm with ground truth indicator ym.  
 
The error term for 2nd neural unit is δm

(2) =
∂am

(2)

∂zm
(2)
⋅ δm
(out )

$

%
&&

'

(
))=

∂f (zm
(2) )

∂zm
(2)

⋅ δm
(out )

$

%
&&

'

(
))  

 
with this notation Δwm

(2) =
∂Cm
∂am

(2)
⋅
∂am

(2)

∂zm
(2)

$

%
&&

'

(
))⋅
∂zm

(2)

∂w(2)
=
∂zm

(2)

∂w(2)
⋅ δm
(2)  

 
Reordering the terms and noting that ∂zm

(2)

∂w(2)
=
∂(w(2)am

(1) +b(2) )
∂w(2)

= am
(1)  

 
gives: Δwm(2) = am(1) ⋅ δm(2)  δ (out )

a(2)z(2)

f (z(2) )

δ (2)

∂f (z(2) )
∂z(2)

Δw(2) = δ (2) ⋅a(1)

      
 
Similarly for the bias term for the 2nd neural unit: Δbm(2) =

∂Cm
∂am

(2)
⋅
∂am

(2)

∂zm
(2)

$

%
&&

'

(
))⋅
∂zm

(2)

∂b(2)
= δm

(2) ⋅
∂zm

(2)

∂b(2)
 

 
Noting that ∂z

(2)

∂b(2)
=
∂(w(2)a(1) + b(2) )

∂b(2)
=1  

 

We obtain:  Δbm
(2) = δm

(2)  
δ (2)

∆ b(2)

a(2)z(2)

f (z(2) )

∂f (z(2) )
∂z(2)

δ (out )

      
 
For the next layer we continue the same process recursively 
 
The derivative of the cost with respect to w(1)  is:  
 
 Δwm

(1) =
∂Cm
∂w(1)

=
∂C
∂am

(2)
⋅
∂am

(2)

∂zm
(2)

$

%
&&

'

(
))⋅

∂zm
(2)

∂am
(1)

$

%
&&

'

(
))⋅

∂am
(1)

∂zm
(1)

$

%
&&

'

(
))⋅
∂zm

(1)

∂w(1)
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Substituting   δm
(2) =

∂C
∂am

(2)
⋅
∂am

(2)

∂zm
(2)

$

%
&&

'

(
))  gives Δwm(1) = δm(2) ⋅

∂zm
(2)

∂am
(1)

%

&
''

(

)
**⋅

∂am
(1)

∂zm
(1)

%

&
''

(

)
**⋅
∂zm

(1)

∂w(1)
 

 
Substituting   wm

(1) =
∂(w(2)am

(1) +b(2) )
∂am

(1)
=
∂zm

(2)

∂am
(1)

"

#
$$

%

&
''  gives Δwm

(1) = δm
(2) ⋅w(2) ⋅

∂am
(1)

∂zm
(1)

%

&
''

(

)
**⋅
∂zm

(1)

∂w(1)
 

 

Substituting   ∂ f (z(1) )
∂z(1)

=
∂a(1)

∂z(1)
!

"
#

$

%
&    gives Δw(1) = δ (2) ⋅w(2) ⋅

∂ f (z(1) )
∂z(1)

#

$
%

&

'
(⋅

∂z(1)

∂w(1)

#

$
%

&

'
(  

 
Substituting   xm =

∂(w(1)xm +b
(1) )

∂w(1)
=

∂zm
(1)

∂w(1)
"

#
$$

%

&
''  gives  Δwm(1) = δm

(2) ⋅w(2) ⋅
∂f (zm

(1) )
∂zm

(1)

%

&
''

(

)
**⋅ xm  

 
We define the error term for level 1 as δm

(1) = δm
(2) ⋅w(2) ⋅

∂f (zm
(1) )

∂zm
(1)

$

%
&&

'

(
))   

 
Rearranging the terms gives:  Δwm(1) = xm ⋅ δm(1)  
 

∂C
∂a(2)

∂f (z(2) )
∂z(2)

w2x
∆ w(1) a(1)z(1) a(2)z(2)

f (z(2) )f (z(1) )

∂f (z(1) )
∂z(1)

δ (2) δ (out )δ (1)

 
 
Similarly for the correction factor of b(1)  

 

Δbm
(1) =

∂Cm
∂b(1)

=
∂Cm
∂am

(2)
⋅
∂am

(2)

∂zm
(2)

$

%
&&

'

(
))⋅

∂zm
(2)

∂am
(1)

$

%
&&

'

(
))⋅

∂am
(1)

∂zm
(1)

$

%
&&

'

(
))⋅
∂zm

(1)

∂b(1)
 

∂C
∂a(2)

∂f (z(2) )
∂z(2)

w2a(1)z(1) a(2)z(2)

f (z(2) )f (z(1) )

∂f (z(1) )
∂z(1)

δ (2) δ (out )δ (1)

1

∆ b(1)  
 
Substituting   δm

(2) =
∂Cm
∂am

(2)
⋅
∂am

(2)

∂zm
(2)

$

%
&&

'

(
))  gives Δbm(1) = δm(2) ⋅

∂zm
(2)

∂am
(1)

%

&
''

(

)
**⋅

∂am
(1)

∂zm
(1)

%

&
''

(

)
**⋅
∂zm

(1)

∂b(1)
 

 
Substituting   wm

(2) =
∂(w(2)am

(1) +b(2) )
∂am

(1)
=
∂zm

(2)

∂am
(1)

"

#
$$

%

&
''  gives Δbm

(1) = δm
(2) ⋅w(2) ⋅

∂am
(1)

∂zm
(1)

%

&
''

(

)
**⋅
∂zm

(1)

∂b(1)
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Substituting   ∂a(1)

∂z(1)
!

"
#

$

%
&=

∂ f (z(1) )
∂z(1)

   gives Δbm
(1) = δm

(2) ⋅w(2) ⋅
∂f (zm

(1) )
∂zm

(1)

%

&
''

(

)
**⋅

∂zm
(1)

∂b(1)
%

&
''

(

)
**  

 
noting   ∂zm

(1)

∂bm
(1)

"

#
$$

%

&
''=

∂(w(1)xm +b
(1) )

∂wm
(1)

=1  and substituting  δm(1) = δm
(2) ⋅w(2) ⋅

∂f (zm
(1) )

∂zm
(1)

$

%
&&

'

(
))  

 
Gives:  Δbm

(1) = δm
(1)  

 

General formula for the error term 
 
In general, the chain rule ∂C

∂w(l ) =
∂C
∂a(L )

⋅
∂a(L )

∂z(L )
⋅
∂z(L )

∂a(L−1)
⋅!⋅

∂z(l+1)

∂a(l )
⋅
∂a(l )

∂w(l )  

 
Provides a recursive formula for each neural unit:  
 

 δ (l ) =
∂ f (z(l ) )
∂z(l )

⋅w(l+1) ⋅
∂ f (z(l+1) )
∂z(l+1)

⋅w(l+2) ⋅ !⋅
∂ f (z(L ) )
∂z(L )

⋅δ (out )
"

#
$

%

&
'

"

#
$$

%

&
''

"

#
$$

%

&
''

"

#
$
$

%

&
'
'  

 
Giving a simple formula for adjusting the values of weights and biases  
	
 
Δw(l ) = a(l−1)δ (l )   and Δb(l ) = δ (l )  
 

Formula for multiple activations 
In the case where there are N neural units at level l+1,  
the error at level l is the weighted sum of the errors at level l+1.   

δ (l ) =
∂ f (z(l ) )
∂z(l )

⋅ wk
l+1 ⋅δk

(l+1)

k=1

N

∑
#

$
%

&

'
(  

+1 

a(l )z(l )w(l )

b(l )

δ (l )

f (z(l ) )

w1
(l+1)

wk
(l+1)

wN
(l+1)

a(l−1)
δk
(l+1)

δ1
(l+1)

δN
(l+1)

∂ f (z(l ) )
∂z(l )
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Summary of Backpropagation 
 
The Back-propagation algorithm can be summarized as:  
 
1) Initialize the network and a set of correction vectors:  
 
 

  

€ 

∀
i, j ,l
wji
(l ) = N (X;0,ε)  

    

€ 

∀
i,l
bj
(l ) = N (X;0,ε)  

 

€ 

∀
i, j ,l
Δwji

(l) = 0 
 

€ 

∀
i,l
Δbj

(l) = 0  
 
where   

€ 

N  is a sample from a normal density, and 

€ 

ε  is a small value.  
 
2) For each training sample,   

€ 

! x m, propagate   

€ 

! x m  through the network (forward 
propagation) to obtain a network activation 

€ 

am
(L ) .  Compute the error and propagate 

this back through the network:  
 
 a) Compute the network error term:   δmout = am

(L ) − ym( )  
 

 b) Compute the error term at Layer L: 

€ 

δm
(L ) =

∂f (zj
(l ) )

∂zj
(l) δm

out  

 

 c) Propagate the error back from  l=L-1  to l=1:   

€ 

δ j,m
(l ) =

∂f (z j
(l) )

∂zj
(l ) wjk

(l+1)δk ,m
(l+1)

k=1

N ( l+1)

∑   

 
 d) Use the error at each layer to set a vector of correction weights.  
 
   Δwij,m

(l ) = ai
(l−1)δ j,m

(l )    Δbj,m
(l ) =  δ j,m

(l )  
 
3) For all layers, l=1 to L, update the weights and bias using a learning rate,  

€ 

η 
 
  wij

(l ) ← wij
(l ) −η ⋅ Δwij,m

(l ) +  µ ⋅wij
(l )  

  bj
(l )← bj

(l ) −η ⋅ Δbj,m
(l ) +µ ⋅bj

(l )  
 
Note that this last step can be done with an average correction matrix obtained from 
many training samples (Batch mode), providing a more efficient algorithm.   
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Generative Networks 
 
Deep learning was originally invented for recognition.  The same technology can be 
used for generation.   Up to now we have looked at what are called “discriminative” 
techniques.  These are techniques that attempt to discriminate a class label, y from a 
feature vector,   

€ 

! 
X . 

 

€ 

ˆ y 
 

  

€ 

D(
! 
X )   

€ 

! 
X  

 
 
The same process can be used to learn a network that generates   

€ 

! 
X  given a code y.  

This is called a “generative” process.  
 

 

€ 

y
 

€ 

G(y)   

€ 

! 
X  

 
 
Given an observable random variable   

€ 

! 
X , and a target variable, gradient descent 

allows us to learn a joint probability distribution,   

€ 

P(
! 
X ,
! 
Y ), where   

€ 

! 
X , is generally 

composed of continuous variables, and   

€ 

! 
Y  is generally a discrete set of classes 

represented by a binary vector.  
 
A discriminative model gives a conditional probability distribution   

€ 

P(
! 
Y |
! 
X ). 

A generative model gives a conditional probability   

€ 

P(
! 
X |
! 
Y ) 

 
We can combine a discriminative process for one data set with a generative process 
from another and use these to make synthetic outputs.  
 

 

€ 

ˆ y 
 

  

€ 

D(
! 
X )   

€ 

! 
X  

 

 

€ 

y
 

€ 

G(y)   

€ 

! 
X  

 
 
A classic example is an autoencoder.  However, to learn the Autoencoder we need to 
change use a new form of loss function based on entropy.  
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Entropy 
 
The entropy of a random variable is the average level of "information", "surprise", or 
"uncertainty" inherent in the variable's possible outcomes. Consider a set of M 
random scalars {Xm} with  N possible values, [1,N].  
 
Formally:  

€ 

∀m = 1,M :   h(Xm )← h(Xm )+1 
 
From this training set we can compute a probability distribution P(Xm = x)  more 
commonly written as P(x)  
 

€ 

P(Xm = x) =
1
M
h(x)  

 
The information in any one observation is  
 
 I (Xm = x) = −log2 P(x)( )  
 
Using a log of base 2 gives us information measured in binary digits (bits). The 
negative sign assures that the number is always positive or zero, because the log of a 
number less than 1 is negative.  
 
Information expresses the number of bits needed to encode and transmit the value for 
an event.  
 
Low probability events are surprising and convey more information.  
High probability events are unsurprising and convey less information.  
 
For example, consider x to have N=2 values, say 1, or 2.  Then the P(X=x)=0.5 and 
the information is I(X) is 1 bit.   If X had 8 possible values then, all equally likely, 
then P(X=x) = 1/8 =1/(23) and the information is –3  bits.  
 

Computing Entropy  
 
For a set of M observations, the entropy is the expected value from the information 
from the observations.  The entropy of the distribution measures the surprise (or 
information) obtained from an observation of a sample in the distribution. . 
   
For a distribution P(x) of feature values X with N possible values,  the entropy is 
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 H (X) = − P(x)log2 P(x)( )
x=1

N

∑  

 
For example, for tossing a coin, there are two possible outcomes (N=2).  
The probability of each outcome is P(X=x)=1/2.   
This is the situation of maximum entropy 
 

 H (X) = − P(x)log2(P(x))
x=1

2

∑ = −
1
2x=1

2

∑ log2
1
2
#

$
%
&

'
(= −

1
2x=1

2

∑ −1( ) =1  

 
This is the most uncertain case.  Similarly, in the case where there are N possible 
values for X, and all values are equally likely, then P(Xm = x) = 1N  and 

 

 H (X ) = − 1
N
log2

1
N

"

#
$

%

&
'

x=1

N

∑ = −
N
N

"

#
$

%

&
'log2

1
N

"

#
$

%

&
'= −log2

1
N

"

#
$

%

&
'  

 
For example, for 4 values, the entropy is 2 bits. It would require 2 bits to 
communicate an observation. On the other hand, consider when the distribution is a 
Dirac function, where Xm is always the same value of xo,  
 

 P(x) = δ(x − xo ) =
1 if x = xo
0 otherwise

#
$
%

&%
 

 
In this case, the value of Xm will always be xo. Thus there is no information in an 
observation and the entropy will be zero.  There is no surprise in an observation.  
 
For any other distribution, Entropy measures the non-uniformity of the distribution.  
 

 
Copied from https://en.wikipedia.org/wiki/Entropy_(information_theory) 
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Cross entropy 
 
Cross-entropy is a measure of the difference between two probability distributions for 
a given set of events. Cross-entropy can be thought of as  the total entropy between 
the distributions. 

 
Copied from (https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html) 

 
Cross-entropy loss can be used to measure the performance of a classification model 
whose output is a probability value between 0 and 1, as with the sigmoid or soft-max.  
Cross-entropy loss increases as the predicted probability diverges from the actual 
label. So predicting a probability of .012 when the actual observation label is 1 would 
be bad and result in a high loss value. A perfect model would have a log-loss of 0. 
 
Binary Cross-entropy loss is useful for training binary classifiers with the sigmoid 
activation function. Categorical Cross-Entropy is used to train a a multi-class network 
where softmax activation is used to output a probability distribution, !a(out ) , over the K 
classes .  
 

Binary cross entropy 
 
For a network with a single activation output, a(out )  
 

 a(out ) = f (z(L ) ) = 1
1+ e−z

(L ) =
ez

(L )

ez
(L )

+1
 

 
The Binary cross entropy is  
 
 C(am , ym ) = yk log(am )+ (1− ym )log(1− am )  
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Categorical Cross Entropy Loss 
 
For a network with a vector of K activation outputs, 

!
a (out )  with indicator vector 

!y    
we calculate a separate loss for each target class. 
 
The output activation is the softmax is 

 ak = f (zk ) =
ezk

ezk
k=1

K
∑

 

and the Categorical cross entropy is 
 

 C(
!
a (out ) ,

!
y) = − yk

k=1

K

∑ log(ak
(out ) )  

 
When the indicators variables are encoded with one-hot encoding (Binary encoding 
with one variable for each output class), only the positive class where yk =1  is 
included in the loss.  All other K-1 activations are multiplied by 0. In this case . 
 

 C( !a (out ) , !y) = ezk

ezk
k=1

K
∑

 

 
Where zk is the linear input for the positive case.  The derivative for the positive 
activations is  
 

 ∂ak
∂zk

=
∂f (zk )
∂zk

=
∂
∂zk

− log ezk

ezk
k=1

K
∑

$

%

&
&

'

(

)
)

$

%

&
&&

'

(

)
))
=

ezk

ezk
k=1

K
∑

−1
$

%

&
&

'

(

)
)  

 
The derivative for the negative class activations.  
 

 ∂ak
∂zk

=
∂f (zk )
∂zk

=
∂
∂zk

− log ezk

ezk
k=1

K
∑

$

%

&
&

'

(

)
)

$

%

&
&&

'

(

)
))
=

ezk

ezk
k=1

K
∑

$

%

&
&

'

(

)
)  
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The Kullback-Leibler Divergence 
 
The Kullback-Leibler divergence, DKL (P ||Q) also known as the relative entropy of Q 
with respect to P measures the divergence between two distributions, P(X) and Q(X).  
 
This can be used to define cross entropy as  
 H (P,Q) = H (P)+DKL (P ||Q)  
 
We can use the Kullback-Leibler divergence to measure the divergence between a 
constant target activation, a, and an average  observed activation for each unit, aj.  
The KL divergence between the desired and average activation is:  
 

 KL(a ||
j=1

N (1)

∑  a j ) = a log a
a j
+ (1− a)log 1− a

1− a j

#

$
%
%

&

'
(
(

j=1

N (1)

∑  
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AutoEncoders 
 

  
 
An auto-encoder is an unsupervised learning algorithm that uses back-propagation to 
learning a sparse set of features for describing the training data.  Rather than try to 
learn a target variable, ym, the auto-encoder tries to learn to reconstruct the input X 
using a minimum set of features (latent variables).  
 
The autoencoder was initially invented as means to use back-propagation to perform 
Principal Components Analysis (PCA). For PCA, the loss (or cost) is the 
reconstruction error for a signal.   
 
Let X̂ = f (

!
X)be the reconstructed version of a pattern 

!
X . For PCA, cost (or loss 

function) of using X̂ = f (
!
X) to reconstruct 

!
X is the means square error of the 

reconstruction.  
 C(

!
X, f (

!
X)) = 1

2
(X̂ −

!
X)2  

An Autocoder learns to reconstruct (generate) clean copies of data without noise.  
The Key concepts are:  
1) The training data is the target. The error is the difference between input and output 
2) Training is with standard back-propagation (or gradient descent).  
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Using the notation from our 2 layer network, given an input feature vector   

€ 

! 
X m  the 

auto-encoder learns 

€ 

{wij
(1) ,bj

(1)}  and 

€ 

{wjk
(2) ,bk

(2)}  such that for each training sample,  

  

€ 

! a m
(2) = ˆ X m ≈

! 
X m  using as few hidden units as possible.  

 
Note that N(2) =D  and that N(1) << N(2) 
 
When the number of hidden units N(2)  is less than the number of input units, D, 
   

€ 

! a m
(2) = ˆ X m ≈

! 
X m  is necessarily an approximation.  The hidden units provide a 

“lossy” encoding for   

€ 

! 
X m .  This encoding can be used to suppress noise! 

 
The error for back-propagation for each unit is a vector    

€ 

! 
δ m
(2) =
" a m
(2) –
" 
X m  with a  

component  δi,m  for component xi,m of the  training sample   

€ 

! 
X m  

 
The hidden code is composed of independent “features” that capture some 
component of the input vector. Each cell of the code vector is driven by a receptive 
field whose sum of products with the receptive fields of other code cells is almost 
zero.   
 
With PCA, the code vectors are required to be orthogonal.  For pattern recognition, it 
is sufficient that that the code vectors use a minimum number of independent hidden 
units (Code vectors).  This is done with an information theoretic term referred to as 
"sparsity".  Sparsity forces learning to generate the smallest set of code vectors that 
can reconstruct the training data without noise. The code vectors may have some 
slight overlap.   
 
The average degree of independence is captured by a “sparsity parameter”, 

€ 

ˆ ρ . 
 
The Sparsity Parameter 
The sparsity 

€ 

ˆ ρ j  is the average activation for each of the hidden units j=1 to N(1).  
The auto-encoder will learn weights subject to a sparseness constraints specified by a 
target sparsity parameter 

€ 

ρ , typically set close to zero.     
 
The simple, 2-layer auto-encoder is described by:  
 

Level 0:   

  

€ 

! 
X m =

x1,m
"

xD,m

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
  an input vector 
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level 1:  
!
Ym = aj,m

(1) = f ( wij
(1)xi,m + bj

(1)

i=1

D

∑ )  the code vector 

 

level 2:  X̂m = ak,m
(2) = f ( wjk

(2)aj,m
(1) + bk

(2)

j=1

N (1)

∑ )  the reconstruction of the input.  

 
The  output  should approximate the input.  
 

  

  

€ 

! a m
(2) =

a1
(2)

"
aD

(2)

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

= ˆ X m ≈
! 
X m ,   with error   

€ 

! 
δ m
(2) =
" a m
(2) –
" 
X m  

 
The sparsity 

€ 

ˆ ρ j  for each hidden unit (code component) is computed as the average 
activation for the M training samples:  
 

 

€ 

ˆ ρ j =
1
M

aj,m
(1)

m=1

M

∑  

 
The auto-encoder is trained to minimize the average sparsity.  This is accomplished 
using  back propagation, with a simple tweak to the cost function.  
 
Standard back propagation tries to minimize a loss based on the sum of squared 
errors. The loss for each sample is.  
 

 Cm(
!
Xm , ym ) =

1
2
( !am

(L) − ym )
2  

 
For an auto-encoder, the target output is the input vector, and the loss is squared 
difference from the input vector:  
 

 Cm(
!
Xm , ym ) =

1
2
( !am

(L) −
!
Xm )

2  

 
To impose “sparsity” we add an additional term to the loss.  
 

 Cm(
!
Xm , ym ) = 1

2
( !am

(L) −
!
Xm )2 +β KL(ρ ||

j=1

N (1)

∑  ρ̂ j )  

where 

€ 

KL(ρ ||
j=1

N (1)

∑  ˆ ρ j ) is the Kullback-Leibler Divergence of the vector of hidden unit 

activations  and 

€ 

β  controls the importance of the sparsity parameter.  
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The average activation 

€ 

ˆ ρ j  is used to compute the correction. Thus you need to 
compute a forward pass on a batch of training data, before computing the back-
propagation. Thus learning is necessarily batch mode.   
 
The auto-encoder forces the hidden units to become approximately orthogonal, 
allowing a small correlation determined by the target sparsity, 

€ 

ρ .  Thus the hidden 
units act as a form of basis space for the input vectors.  The values of the hidden code 
layer are referred to as latent variables. The latent variables provide a compressed 
representation that reduces dimensionality and eliminates random noise.  
 
To incorporate the KL divergence into back propagation, we replace 
 

 

€ 

δ j
(1) =

∂f (zj
(1) )

∂zj
(1) wjk

(2)δk
(2)

k=1

N (2)

∑  

with  
 

 δ j
(1) =

∂f (z j
(1) )

∂z j
(1)

wjk
(2)δk

(2)

k=1

N ( 2 )

∑ +β −
a
a j
+
1− a
1− a j

&

'
(
(

)

*
+
+

&

'
(
(

)

*
+
+  

 
where  N(2) = D, the size of the size of the input and output vectors.   (The network 
output has the same number of components as the input).  
 
AutoEncoders project the data onto a non-linear manifold that (should) provide a 
better representation of the latent space.   

The Manifold Learning Hypothesis 
•  Examples%concentrate%near%a%lower%dimensional%

“manifold”%(region%of%high%density%where%small%changes%are%only%
allowed%in%certain%direcGons)%

83%  
Affine Transformations of a Bitmap Image 

(Illustration from the NAACL 2013 lecture from R. Socher and C. Manning) 
 
Positions on this manifold are expressed as vectors of latent variables.  Noise is not 
encoded in the latent variables.  Thus the latent variable can be used to reconstruct 
any signal on the manifold, without the presence of any signal (noise) that was not 
part of the manifold.  
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Variational Autoencoders 
 
The output of an auto-encoder can be used to drive a decoder to produce a filtered 
version of the encoded data or of another training set.    However, the output from an 
auto-encoder is discrete.  
 
We can adapt an auto-encoder to generate a *nearly* continuous output by replacing 
the code with a probabilistic code represented by a mean and variance.  
 

  
 
This is called a Variational Autoencoder (VAE).  VAEs combine a discriminative 
network with a generative network.  VAEs can be used to generate "deep fake" 
videos sequences.  
 
For a fully connected network, decoding is fairly obvious.  The network input is a 
binary vector   

€ 

! 
Y  with k binary values 

€ 

yk , with one for each target class.  This is a 
code.  The output for a training sample   

€ 

! 
Y m  is an approximation of a feature vector 

belonging to the code class,   

€ 

! ˆ X m   
 
   

€ 

! a m
(2) = ˆ X m ≈

! 
X m  

 
and the error is the difference between a output and the actual members of the class.  
 
   

€ 

! 
δ m
(2) =
" a m
(2) –
" 
X m  

 
The average error for at training set   

€ 

! 
Y m{ },   

€ 

! 
X m{ }  can be used to drive back-

propagation.  
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Generative Adversarial Networks  
It is possible to put a discriminative network together with a generative network and 
have them train each other.  This is called a Generative Adversarial Network (GAN).  
 
A Generative Adversarial Network places a generative network in competition with a 
Discriminative network.  

 
 
The two networks compete in a zero-sum game, where each network attempts to fool 
the other network. The generative network generates examples of an image and the 
discriminative network attempts to recognize whether the generated image is realistic 
or not.  Each network provides feedback to the other, and together they train each 
other.  The result is a technique for unsupervised learning that can learn to create 
realistic patterns. Applications include synthesis of images, video, speech or 
coordinated actions for robots.  
 
Generally, the discriminator is first trained on real data. The discriminator is then 
frozen and used to train the generator.  The generator is trained by using random 
inputs to generate fake outputs. Feedback from the discriminator drives gradient 
ascent by back propagation. When the generator is sufficiently trained, the two 
networks are put in competition.  
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Convolutional Neural Networks.  
 
Fully-Connected Networks 
Towards the end of the first wave of popularity of Neural Networks in the late 80s, 
several researchers began experimenting with networks composed of more than 3 
layers.  Most experiments explored fully connected networks, where each unit at 
layer l+1 receives activations from all units at layer l.   The result is a very rapid 
growth in the number of parameters to learn, even for simple problems.  
 
If there are N(l) units at layer l and N(l+1) units are layer l+1 then a fully connected 
network requires learning N(l)·N(l+1) parameters for layer l. Reliable learning requires  
that the number of data samples exceed the number of parameters. While this may be 
tractable for small examples, it quickly becomes excessive for practical problems, as 
found in computer vision or speech recognition.  
 
For example, a typical image may have 1024 x 2048 = 221 pixels.   If we assume, say 
a 512 x 512 =218  hidden units we have 239 parameters to learn for a single class of 
image pattern, requiring more than  239  training images. Clearly this is not practical 
(and, in any case not necessary).  
 

Early Convolutional Neural Networks: LeNet5 
From 1988, Yann LeCunn began experimenting with a series of multi-layer 
architectures, referred to as LeNet, for the task of recognizing handwritten characters.   
 
LeCunn's first insight was to limit each neural unit to a connection to small window 
of units in the previous level, and to learn the same weights for all units. This leads to 
a technique where all possible, overlapping, image windows of size NxN  provide 
training data to train a small number of parameters for a receptive fields network.   
The network then uses the same learned weights with every hidden cell.  Recall that, 
generally, the amount of training required for a network depends on the number of 
parameters to be trained.  Thus any technique that gives equivalent performance with 
fewer parameters will scale to larger networks.  
 
The resulting operation is equivalent to a “convolution” of the learned weights with 
the input signal and the learned weights are referred to as “receptive fields” in the 
neural network literature.  
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A second insight was to use several convolutional units in parallel to describe each 
window.  This lead to a map of features for each pixel with the number of units 
referred to as "depth".    
 
A third insight was to reduce the resolution of the image by resampling while 
increasing the number of parallel receptive fields (depth) at each level. This can be 
illustrated with the LeNet5 architecture shown here:  
 

 
The LeNet5 architecture (1994) 

 
In 1994 Yann LeCunn showed that LeNet5 provided the best performance for written 
character recognition.  Because processing power, memory and training data were  
very limited at that time, many of the innovations in LeNet5 concerned methods to 
reduce parameters and computing without degrading performance.   
 
LeNet5 is composed of multiple repetitions of 3 operations: Convolution, Pooling, 
Non-linearity. Convolution windows were of size 5x5 with a stride of 1, no zero 
padding and a depth of 6.  That is 6 receptive fields are learned for each pixel in the 
first layer. Using 5x5 filters without zero padding  reduced the input window of 32 x 
32 pixels to a layer of composed of 6 sets of 28 x 28 units.  A Sigmoid was used for 
the activation function.  Pooling was performed as a spatial averaging over 2x2 
windows giving a second layer of 6 x 14 x 14.  The output was then convolved with 
16 5x5 receptive fields, yielding a layer with 16 x 10x10 units. Average pooling over 
2x2 windows reduced this to a layer of 16x5x5 units. These were then fed to two 
fully connected layers and then smoothed with a Gaussian filter to produce 10 output 
units, one for each possible digit.  
 
Despite the experimental success, LeCun found it very difficult to publish his results 
in the computer vision and machine learning literatures, which were more concerned 
with multi-camera geometry and Bayesian approaches to recognition.  The situation 
began to change around 2010, driven by the availability of GPUs, and planetary scale 
data (continued exponential growth of the World Wide Web) and the emergence of 
challenged based research in computer vision. During this period, computer vision 
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and machine learning were increasingly organized around open competitions for 
Performance Evaluation on benchmark data sets.  
 
Many of the insights of LeNet5 continued to be relevant as more training data, and 
additional computing power enabled larger and deeper networks, because they 
allowed more effective performance for a given amount of training data and 
parameters.  
 
The Convolution Equation 
For a digital signal, s(n), the equation for convolution of a Finite Impulse Response 
(FIR) digital filter, w(n) composed of N coefficients is:  
 

 (w* s)(n) = w(m)s(n−m)
m=1

N

∑  

 
For image processing, the signal and filter are generally 2D: To avoid overloading the 
symbols x and y, we will refer to the image columns and rows as i and j. Thus the 
image is P(i, j).   The formula for 2D convolution of an NxN filter w(i,j) with an 
image is:  
 
 w*P(i, j) = w(u,v)P(i −u, j − v)

u=1

N

∑
v=1

N

∑  

 
The value at each position i, j is the sum of the product of a filter (kernel, or receptive 
field) w(u,v) with a neighborhood of the image placed at i,j. Note that a 2D 
convolution can easily be re-expressed as a 1D convolution by mapping successive 
rows of the NxN filter w(u,v) into 1 long column with N2 coefficients, f(n), using: 
n = (v−1) ⋅N +u  
 
The use of i–u and j–v is rather than i+u and j+v is purely to assure equivalence with 
the classical signal processing operation of convolution. In convolution, the filter is 
“flipped” around the center pixel. In reality, many implementations simply use i+u 
and j+v. Technically, in signal processing, this would be called a “cross-correlation”.   
 

 

a(i, j) = f (z(i, j)) = f w(u,v)P(i−u, j − v)+ bk
u,v

N

∑
#

$
%%

&

'
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Multiple Receptive Fields at each Layer 
A second innovation was to learn multiple NxN receptive fields at each layer, as was 
observed by David Hubel and Torsten Wiesel and used in Computer Vision.  The 
number of receptive fields is called the “depth” at that layer. We will use the symbol 
d from 1 to D as an index for the depth (number of receptive fields) at each level.  

 

ad (i, j) = f (zd (i, j)) = f Wd (u,v)P(i−u, j − v)+ bd
u,v
∑
#

$
%%

&

'
((  

For each NxN window, the CNN will compute the product with a vector of K 
receptive fields, Wk(u,v) with a bias bk. 
 

 zd = Wd (u,v)Xi, j (u,v)
u,v
∑ + bd = Wd (u,v)P(i−u, j − v)+ bd

u,v
∑  

 
The weighted sum is then processed with a non-linear activation function, f(), 
typically a relu or sigmoid of the sum of the product.  
 

 

€ 

ak = f (zk ) = f Wk (u,v)Xi, j (u,v)+bk
u,v
∑
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 is computed for each image position, this 

should properly be written as   ad (i, j) = f (zd ) = f Wd (u,v)Xi, j (u,v)+ bd
u,v
∑
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The result is a “feature map” of d features at each position ad(i,j), with d values at 
each image position (i,j).  
 
The receptive fields, 

€ 

Wk (u,v)  can be learned using back-propagation, from a training 
set where each window is labeled with a target class, using an “indicator” image 
y(i,j).  For multiple target classes, the indicator image can be represented as a vector 
image,   

€ 

! y (i, j).  More classically, y(i, j) is a binary image with 1 at each location that 
contains the target class and 0 elsewhere.  
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CNN Hyper-parameters 
 
CNNs are typically configured with a number of “hyper-parameters”:  
 
Spatial Extent:  This is the size of the filter, NxN. Early networks followed computer 
vision theory and used 11x11 or 9x9 filters. Experimentation has shown that 3x3  
filters can work well with multi-layer networks.  
 
Depth: This is the number D of receptive fields for each position in the feature map. 
For a color image, the first layer depth at layer 0 would be D=3. If described with 32 
image descriptors, the depth would be D=32 at layer 1.  Some networks will use 
NxNxD receptive fields, including 1x1xD.  
 
Stride:  Stride is the step size, S, between window positions.  By default it generally 
1, but for larger windows, it is possible define larger step sizes.  
 
Zero-Padding: Size of region at the border of the feature map that is filled with zeros 
in order to preserve the image size (typically N).  
 
Pooling 

 
Pooling is a form of down-sampling that partitions the image into non-overlapping 
regions and computes a representative value for each region.   The feature map is 
partitioned into small non-overlapping rectangles, typically of size 2x2 or 4x4,  and a 
single value it determined for each rectangle. The most common pooling operators 
are average and max. Median is also sometimes used.  The earliest architectures used 
average, creating a form of multi-resolution pyramid. Max pooling was soon shown 
to work better.   
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Classic CNN Architectures 
 
The emergence of the internet and the world-wide web made it possible to assemble 
massively large data sets of training data, and to issue global challenges for computer 
vision techniques to compete on these challenges. Many of the most famous CNN 
architectures have been established by winning large scale image classification 
challenges. The parameters of the challenge often explain the choice of parameters 
for the network, such as the size of the input image and the number of output 
categories.  

 
Several key data sets that have influenced the evolution of the domain.   Many of the 
popular architectures were designed specifically to address research challenges based 
on these data sets. Most state-of-the-art object detection networks pre-train on 
ImageNet and then rely on transfer learning to adapt the learned recognition system 
to a specific domain.  
 
ImageNet 
ImageNet is an image database organized according to the nouns in the WordNet 
hierarchy. Each node of the WordNet hierarchy is depicted by hundreds of images in 
ImageNet.  In 2006, Fei-Fei Li began working on the idea for ImageNet based on the 
word-database of WordNet, eventually using Amazon Mechanical Turk to help with 
the classification of images. The database was first presented as a poster at the 2009 
Conference on Computer Vision and Pattern Recognition (CVPR) in Florida.  
 
In 2010 Fei-Fei Li joined with the PASCAL VOC team to create a joint research 
challenge where research teams compete to achieve higher accuracy on several visual 
recognition tasks. The resulting annual competition is known as the ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC). The ILSVRC uses a "trimmed" list 
of only 1000 image categories or "classes", including 90 of the 120 dog breeds 
classified by the full ImageNet schema. In 2010 and 2011, a good score for the 
ILSVRC top-5 classification error rate was 25%.  
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Initial champions were statistical recognition techniques using techniques such as 
SIFT and HoG. However, in 2012, Alex Krizhevsky won the competition with a deep 
convolutional neural net based on LeNet5 called AlexNet.  AlexNet achieved and 
error rate of 16% (accuracy of 84%). This dramatic quantitative improvement marked 
the start of the rapid shift to techniques based on Deep Learning using Neural 
Networks.  By 2014, more than fifty institutions participated in the ILSVRC, almost 
exclusively with different forms of Network Architectures. In 2017, 29 of 38 
competing teams demonstrated error rates less  than 5% ( better than 95% accuracy).  
 

AlexNet 
AlexNet, is a deeper and larger variation of LeNet5.  
 

 
AlexNet Architecture (2010) 

 
Innovations in AlexNet include:  
 
1. The use of relu instead of sigmoid or tanh. Relus provided a 6 times speed up with 

the same accuracy, allowing more training.  
2. A technique called “dropout” in which randomly chosen units are temporarily 

removed during learning. This regularizes the network preventing over-fitting to 
training data.  

3. Overlap pooling, in which pooling is performed on overlapping windows.  
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The architecture is composed of 5 convolutional layers followed by 3 fully connected 
layers. Relu is used after each convolution and in each fully connected layer. The 
input image size  of 224 x 224 is dictated by the number of layers in the architecture.  
Larger images are generally texture mapped to this size.  
 
A good implementation can be found in PyTorch.  The network has 62.3 million 
parameters, and needs 1.1 billion computations in a forward pass. The convolution 
layers account for 6% of all the parameters, and consume 95% of the computation. 
The network is commonly trained in 90 epochs, with a learning rate 0.01, momentum 
0.9 and weight decay 0.0005. The learning rate is divided by 10 once the accuracy 
reaches a plateau. 
 
 

VGG - Visual Geometry Group   

 
The VGG Architecture (2014) 

 
In 2014, Karen Simonyan and Andrew Zisserman of the Visual Geometry Group at 
the Univ of Oxford demonstrated a series of networks referred to as VGG.  An 
important innovation was the use of very many small (3x3) convolutional receptive 
fields.  The also introduced the idea of a 1x1 convolutional filter.  
 
For a layer with a depth of D receptive fields, a 1x1 convolution performs a weighted 
sum of the D features, followed by non-linear activation. The weights can be learned 
with back-propagation.  
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A stack of convolutional layers is followed by three Fully-Connected layers: the first 
two have 4096 channels each, the third performs classification and thus contains one 
channel for each class (1000 channels for ILSVRC).  The final layer is the soft-max 
layer. The configuration of the fully connected layers is the same in all networks. All 
layers use Relu activation.   
 

YOLO: You Only Look Once  
 
YOLO poses object detection as a single regression problem that estimates bounding 
box coordinates and class probabilities at the same time directly from image pixels. A 
single convolutional network simultaneously predicts multiple bounding boxes and 
class probabilities for each box in a single evaluation. The result is a unified 
architecture for detection and classification that is very fast.  
 

making predictions. Unlike sliding window and region
proposal-based techniques, YOLO sees the entire image
during training and test time so it implicitly encodes contex-
tual information about classes as well as their appearance.
Fast R-CNN, a top detection method [14], mistakes back-
ground patches in an image for objects because it can’t see
the larger context. YOLO makes less than half the number
of background errors compared to Fast R-CNN.

Third, YOLO learns generalizable representations of ob-
jects. When trained on natural images and tested on art-
work, YOLO outperforms top detection methods like DPM
and R-CNN by a wide margin. Since YOLO is highly gen-
eralizable it is less likely to break down when applied to
new domains or unexpected inputs.

YOLO still lags behind state-of-the-art detection systems
in accuracy. While it can quickly identify objects in im-
ages it struggles to precisely localize some objects, espe-
cially small ones. We examine these tradeoffs further in our
experiments.

All of our training and testing code is open source. A
variety of pretrained models are also available to download.

2. Unified Detection

We unify the separate components of object detection
into a single neural network. Our network uses features
from the entire image to predict each bounding box. It also
predicts all bounding boxes across all classes for an im-
age simultaneously. This means our network reasons glob-
ally about the full image and all the objects in the image.
The YOLO design enables end-to-end training and real-
time speeds while maintaining high average precision.

Our system divides the input image into an S ⇥ S grid.
If the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object.

Each grid cell predicts B bounding boxes and confidence
scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and
also how accurate it thinks the box is that it predicts. For-
mally we define confidence as Pr(Object) ⇤ IOUtruth

pred . If no
object exists in that cell, the confidence scores should be
zero. Otherwise we want the confidence score to equal the
intersection over union (IOU) between the predicted box
and the ground truth.

Each bounding box consists of 5 predictions: x, y, w, h,
and confidence. The (x, y) coordinates represent the center
of the box relative to the bounds of the grid cell. The width
and height are predicted relative to the whole image. Finally
the confidence prediction represents the IOU between the
predicted box and any ground truth box.

Each grid cell also predicts C conditional class proba-
bilities, Pr(Class

i

|Object). These probabilities are condi-
tioned on the grid cell containing an object. We only predict

one set of class probabilities per grid cell, regardless of the
number of boxes B.

At test time we multiply the conditional class probabili-
ties and the individual box confidence predictions,

Pr(Classi|Object) ⇤ Pr(Object) ⇤ IOUtruth
pred = Pr(Classi) ⇤ IOUtruth

pred (1)

which gives us class-specific confidence scores for each
box. These scores encode both the probability of that class
appearing in the box and how well the predicted box fits the
object.

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S⇥S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S ⇥ S ⇥ (B ⇤ 5 + C) tensor.

For evaluating YOLO on PASCAL VOC, we use S = 7,
B = 2. PASCAL VOC has 20 labelled classes so C = 20.
Our final prediction is a 7⇥ 7⇥ 30 tensor.

2.1. Network Design

We implement this model as a convolutional neural net-
work and evaluate it on the PASCAL VOC detection dataset
[9]. The initial convolutional layers of the network extract
features from the image while the fully connected layers
predict the output probabilities and coordinates.

Our network architecture is inspired by the GoogLeNet
model for image classification [34]. Our network has 24
convolutional layers followed by 2 fully connected layers.
Instead of the inception modules used by GoogLeNet, we
simply use 1⇥ 1 reduction layers followed by 3⇥ 3 convo-
lutional layers, similar to Lin et al [22]. The full network is
shown in Figure 3.

We also train a fast version of YOLO designed to push
the boundaries of fast object detection. Fast YOLO uses a
neural network with fewer convolutional layers (9 instead
of 24) and fewer filters in those layers. Other than the size
of the network, all training and testing parameters are the
same between YOLO and Fast YOLO.

 
 
The input image is divided into an S x S grid of cells.  Each grid cell predicts B 
bounding boxes as well as C class probabilities. The bounding box prediction has 5 
components: (x, y, w, h, confidence).  
 

 
(From Kim, J. and Cho, J. Exploring a Multimodal Mixture-Of-YOLOs Framework for Advanced 
Real-Time Object Detection. Applied Sciences, 2020, vol. 10, no 2, p. 612.) 
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The (x, y) coordinates represent the center of the predicted bounding box, relative to 
the grid cell location.  Width and height (w, h) are predicted relative to the entire 
image.    
 
Both the (x, y) coordinates and the window size (w, h) are normalized to a range of 
[0,1].  Predictions for bounding boxes centered outside the range [0,1] are ignored. If 
the predicted object center (x, y) coordinates are not within the grid cell, then object 
is ignored by that cell.   Each grid cell also predicts C class conditional probabilities 
P(Classi |Object)  
 
These are conditioned on the grid cell containing an object. Only one set of class 
probabilities are predicted per grid cell, regardless of the number of boxes.  
These predictions are encoded as an S x S x (5B+C) tensor.  Where SxS is the 
number of grid cells, B is the number of Bounding Boxes predicted and C is the 
number of image classes.  For the Pascal visual Object Classification challenge,  S = 
7, B = 2 and C=20 yielding a 7x7x30 tensor.   
 
These scores encode the probability of a member of class i appearing in a box, and 
how well the box fits the object.  If no object exists in a cell, the confidence score 
should be zero. Otherwise the confidence score should equal the intersection over 
union (IOU) between the predicted box and the ground truth. 

 
Yolo-1 was inspired by GoogleLeNet. The detection network has 24 convolutional 
layers followed by 2 fully connected layers. Alternating 1 by 1 convolutional layers 
reduce the features space from preceding layers. 

 
(from: http://datahacker.rs/how-to-peform-yolo-object-detection-using-keras/) 
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 The convolutional layers were pretrained on the ImageNet data-set at half the 
resolution  (224 by 224 input image). Image resolution was then doubled to (448 x 
448) for detection. 
 

Layer	  Name	   Filters	   Stride	   Output	  Dimension	  

Conv	  1	   7	  x	  7	  x	  64	   2	   224	  x	  224	  x	  64	  

Max	  Pool	  1	   2	  x	  2	   2	   112	  x	  112	  x	  64	  

Conv	  2	   3	  x	  3	  x	  192	   1	   112	  x	  112	  x	  192	  

Max	  Pool	  2	   2	  x	  2	   2	   56	  x	  56	  x	  192	  

Conv	  3	   1	  x	  1	  x	  128	   1	   56	  x	  56	  x	  128	  

Conv	  4	   3	  x	  3	  x	  256	   1	   56	  x	  56	  x	  256	  

Conv	  5	   1	  x	  1	  x	  256	   1	   56	  x	  56	  x	  256	  

Conv	  6	   1	  x	  1	  x	  512	   1	   56	  x	  56	  x	  512	  

Max	  Pool	  3	   2	  x	  2	   2	   28	  x	  28	  x	  512	  

Conv	  7	   1	  x	  1	  x	  256	   1	   28	  x	  28	  x	  256	  

Conv	  8	   3	  x	  3	  x	  512	   1	   28	  x	  28	  x	  512	  

Conv	  9	   1	  x	  1	  x	  256	   1	   28	  x	  28	  x	  256	  

Conv	  10	   3	  x	  3	  x	  512	   1	   28	  x	  28	  x	  512	  

Conv	  11	   1	  x	  1	  x	  256	   1	   28	  x	  28	  x	  256	  

Conv	  12	   3	  x	  3	  x	  512	   1	   28	  x	  28	  x	  512	  

Conv	  13	   1	  x	  1	  x	  256	   1	   28	  x	  28	  x	  256	  

Conv	  14	   3	  x	  3	  x	  512	   1	   28	  x	  28	  x	  512	  

Conv	  15	   1	  x	  1	  x	  512	   1	   28	  x	  28	  x	  512	  

Conv	  16	   3	  x	  3	  x	  1024	   1	   28	  x	  28	  x	  1024	  

Max	  Pool	  4	   2	  x	  2	   2	   14	  x	  14	  x	  1024	  

Conv	  17	   1	  x	  1	  x	  512	   1	   14	  x	  14	  x	  512	  

Conv	  18	   3	  x	  3	  x	  1024	   1	   14	  x	  14	  x	  1024	  

Conv	  19	   1	  x	  1	  x	  512	   1	   14	  x	  14	  x	  512	  

Conv	  20	   3	  x	  3	  x	  1024	   1	   14	  x	  14	  x	  1024	  

Conv	  21	   3	  x	  3	  x	  1024	   1	   14	  x	  14	  x	  1024	  

Conv	  22	   3	  x	  3	  x	  1024	   2	   7	  x	  7	  x	  1024	  

Conv	  23	   3	  x	  3	  x	  1024	   1	   7	  x	  7	  x	  1024	  

Conv	  24	   3	  x	  3	  x	  1024	   1	   7	  x	  7	  x	  1024	  

Fully-‐Connected	  1	   -‐	   -‐	   4096	  

Fully-‐Connected	  2	   -‐	   -‐	   7	  x	  7	  x	  30	  (1470)	  
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YOLO-9000 (YOLOv2) 
 

YOLO9000:
Better, Faster, Stronger

Joseph Redmon⇤†, Ali Farhadi⇤†
University of Washington⇤, Allen Institute for AI†

http://pjreddie.com/yolo9000/

Abstract
We introduce YOLO9000, a state-of-the-art, real-time

object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOv2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
faster. Finally we propose a method to jointly train on ob-
ject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don’t have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

1. Introduction
General purpose object detection should be fast, accu-

rate, and able to recognize a wide variety of objects. Since
the introduction of neural networks, detection frameworks
have become increasingly fast and accurate. However, most
detection methods are still constrained to a small set of ob-
jects.

Current object detection datasets are limited compared
to datasets for other tasks like classification and tagging.
The most common detection datasets contain thousands to
hundreds of thousands of images with dozens to hundreds
of tags [3] [10] [2]. Classification datasets have millions
of images with tens or hundreds of thousands of categories
[20] [2].

We would like detection to scale to level of object clas-
sification. However, labelling images for detection is far
more expensive than labelling for classification or tagging
(tags are often user-supplied for free). Thus we are unlikely

Figure 1: YOLO9000. YOLO9000 can detect a wide variety of
object classes in real-time.
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YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOv2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
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YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don’t have labelled detection data. We validate our
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19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
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In 2016, the YOLO team published performance evaluation results and source code 
for a new version of YOLO referred to as Yolo-9000. Yolo-9000 employed a number 
of innovations, including ideas that had emerged in the machine learning literature 
the previous year.  These included:  

• Batch Normalization 
• Higher Resolution Classifie 
• Convolutional With Anchor Boxes.  
• Dimension Clusters.  
• Bounding boxes with dimension priors and location prediction.  
• Fine-Grained Features 
• Multi-Scale Training 

 
At low resolutions YOLOv2 operates as a cheap, fairly accurate detector. At 288x288 
it runs at more than 90 FPS. This makes it ideal for smaller GPUs, high framerate 
video, or multiple video streams. At high resolution the network is competitive with 
the state of the art giving 78.6 mAP on VOC 2007 while still operating above real-
time speeds 
 
Code and pre-trained models for Yolo-9000  are available on-line at 
http://pjreddie.com/yolo9000/. Additional incremental improvements have been 
provided for YOLOv3 and YOLOv4.  
 



Machine Learning with Neural Networks ACAI 2021 Tutorial 
 

55 

Generative Convolutional Networks 
Generating images with deconvolution.  
 
Just as it is possible to generate signals from codes using fully connected generative 
networks, it is possible to construct Generative Convolutional Networks for CNNs  
using an operation known as deconvolution.   
 
Deconvolution is often used with convolutional networks to determine the location of 
a detected pattern in an image.   Deconvolution  provides a coarse pixel-wise label 
map that segments the image into regions corresponding to recognized classes and 
can be used for semantic segmentation. 
 
De-convolution treats the learned receptive fields as basis functions, and uses the 
activation at level l to create a weighted sum of bases at level l+1. The learned 
receptive fields are multiplied by the map of activation at level l to generate 
overlapping projections of receptive fields. These are then summed to create an 
image at level l+1.  In some cases, the boundary is cropped to obtain an image at the 
target window size.  
 

   
 
A stride greater than 1 can be used to create a larger image.  The stride acts as the 
opposite of pooling.  For 2x2 average pooling, de-convolution simply projects 4 
displaced copies of the receptive field onto a 2 x 2 grid of overlapping receptive 
fields.  These are then summed to give an image.  An example of such a network is 
DCGAN architecture.  
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DCGAN 
 
A DCGAN (deep convolutional generative adversarial network) takes 100 random 
numbers as an input (or code) and outputs an color image of size 64x64x3 

 
 
The first fully connected layer is a 4 x 4 array of 1024 cells (Depth = 1024). Total 
number of cells is 16 K.  This layer has 160 K weights and 16 K biases to train.  This 
first layer is deconvolved into an 8 x 8 by 512 second layer, where deconvolution 
projects each of the cells in the 4x4 layer onto an overlapping set of 5x5 receptive 
field with a stride of 2.   The process is repeated to create a 3rd layer that is 
16x16x256 and then a 4th layer that is 32 x 32 by 128. The final output is a 5th layer 
with 64 x64 pixels of 3 colors. 
 
The following are some examples of images generated using DCGAN: 
 

Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10

 
Example smiling man images generated from smiling woman images. 

From:  
Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep 
convolutional generative adversarial networks, ICLR 2016.  
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Deconvolution with VGG16 
  

 
 
VGG16 is a convolutional neural network architecture proposed by K. Simonyan and 
A. Zisserman from the University of Oxford in the paper “Very Deep Convolutional 
Networks for Large-Scale Image Recognition”. VGG16 scored 92.7% top-5 test 
accuracy in ImageNet, which is a dataset of over 14 million images belonging to 
1000 classes.  
 
VGG16 improves on AlexNet by replacing large kernel-sized filters (11 x 11 and 5 x 
5) with a cascade of 3×3 kernel-sized filter. VGG16 was trained for weeks and using 
NVIDIA Titan Black GPU’s. 
 
VGG accepts a 224 x 224 RGB image as input. The first 17 layers use 3x3 
convolutions, relu and 2x2 max pooling with a stride of 2 after layers 2, 4, 7, 10 and 
13.  The depths are D=64 (layers 1, 2), D=128 (layers 3, 4), D=256 (layers 5, 6, 7). 
D=512 (layers 8 to 13). Layers 14 and 15 are a 1 x 1 convolution with depth 4096.  
Layer 16 is 1 x 1 x 1000 likelihood score for 1000 pretrained classes using softmax 
activation.  
 
Three Fully-Connected (FC) layers follow a stack of 1x1 convolutional layers. The 
first two full-connected layers have 4096 channels each. The third layer has 1000 
channels corresponding to the 1000 image classes corresponding to the 1000 image-
net classes used in the ILSVRC (Image-net Large Scale Visual Recognition 
Classification) challenge for which it was designed.  The final layer uses soft-max 
activation to determine the most likely classes in the 224 x 224 input image.  
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Normally VGG16 is used by scaling (texture mapping) the input image into a 224 by 
224 window, without regard for the scale of the input, and produces only a 
probability for 1000 trained classes in the image.  However, VGG16 can be adapted 
as a multiple object detector using deconvolution.  The deconvolution network is a 
mirror image, replacing pooling with "un-pooling" and convolution with 
"deconvolution".  This is often referred to as a U-net encoder-decoder.  
 

 
 
VGG uses max pooling.  With Max pooling, unpooling requires remembering which 
unit was selected for each pooling operation. This is done with a "switch Variable" 
that records the selected unit. The output is a larger sparse layer in which 3/4 of the 
activations are zero. 
 

  
 
The following shows an example with deconvolution of the VGG net of a bicycle. (a) 
is the original image. The other images show the results of max-pooling for the 
14x14, 28x28, 56x56, 112x112, and 224x224 layers 
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The output pixels can be used to provide scores for semantic segmentation for each 
pixel.  Alternatively bounding boxes can be estimated by computing the 1st and 2nd 
moments (center of gravity and covariance), with a likelihood provided by the zeroth 
moment (sum of pixel class likelihoods) for each class.  
 
For example, the following are multi-class object detection and semantic 
segmentation images obtained from deconvolution with VGG taken from Nachwa 
Aboubakr's thesis on observation of cooking activities. Her experiments use the 50 
Salads data set.  
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Recurrent Neural Networks  
Recurrent Neural Networks (RNNs) are used to discriminate and generate data that 
have an intrinsic order relation (sequences).   Examples of sequences that may be 
discriminated and generated with RNNs include Speech, Music, Text, and Time 
Series data.    RNNs can be combined with convolutional networks to recognize and 
generate video sequences of actions.  RNNs have been traditionally used for natural 
language processing including for understanding written text and machine translation, 
although they are rapidly being replaced with Transformer using Self-Attention.    
 
Recurrent Networks are Turing Universal, which means that any function that can be 
computed by a Turing machine can be computed by a recurrent network.  
 

     
Copied from Andrej Karpathy, "The Unreasonable Effectiveness of Recurrent Neural Networks",  

http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 
 
History 
In the early days of neural networks (1980's), a frequent criticism was that networks 
have no memory, other than the parameter learning.  It was said that because 
networks did not maintain temporal state, they could not be suitable for tasks 
involving temporal or spatial sequences.  
 
In the late 1980s, Rumelhart addressed this question by building on a class of 
completely connected networks proposed by Hopfield, leading to the idea of 
"unfolding" the network over time. Such networks are now called recurrent neural 
networks.  
 
A recurrent neural network (RNN) is a neural network where connections between 
nodes form a directed graph along a temporal sequence. This enables the network to 
exhibit temporal dynamic behavior. RNNs can use internal state (memory) to process 
variable length sequences of inputs. This makes them applicable to tasks such as 
handwriting recognition or speech recognition. 
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Finite vs Infinite impulse networks 
The term “recurrent neural network” refers to two broad classes of networks finite 
impulse and infinite impulse. Both classes exhibit temporal dynamic behavior. 
 
Finite Impulse: A finite impulse recurrent network is a directed acyclic graph that 
can be unrolled and replaced with a strictly feed-forward neural network.  The 
temporal dynamics are similar to a Finite Impulse Response (FIR) digital filter. In 
digital signal processing, FIR filters are known to be easy to design, stable, but 
limited in the duration of their response. With convolutional networks these are 
called 3D, and are a natural extension of convolutional networks. However, 
extending the temporal scale by more than a few frames makes learning impossible 
because Gradients become too small. This is called the Vanishing Gradient Problem. 
 
Infinite impulse: An infinite impulse recurrent network is a directed cyclic graph 
that cannot be unrolled because of internal feedback. These have similar temporal 
dynamics to Infinite Impulse Response (IIR) digital filters.  In digital signal 
processing, IIR filters are known to be difficult to design, unstable, but very powerful 
and efficient.  The classic Infinite Impulse Recurrent network is the LSTM (Long-
Short-Term Memory) architecture.  
 
Both finite impulse and infinite impulse recurrent networks can have additional 
states, and storage can be under direct control of the network. The storage can also be 
replaced by another network or graph. Such controlled states are referred to as gated 
states or gated memory, and are a key part of gated recurrent units including long 
short-term memory (LSTMs) networks.  
 

Recurrent Networks 
The classic model for a dynamic process is a function, f (−) , that predicts the state, 
s(t)  of a system at time t, from the state s(t-1) at time t-1, using parameters !w .  Such 
as process is known as a "markov" process.   
 

S(t+3) S(t) S(t-2) S(t-1) fW(-) fW(-) fW(-) fW(-) fW(-) 

 
s(t ) = f !w (s

(t−1) )  
In the case of a recurrent network, the "state" is the activation (or vector of 
activations) of one or more "hidden" units. In previous lectures we represented the 
activation state of a cell with the symbol a. In the recurrent network literature, 
activation is generally represented with a state variable  h(t) 
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h(t+2) h(t) h(t-1) h(t-1) fW(-) fW(-) fW(-) fW(-) fW(-) 

 
h(t ) = f !w (h

(t−1) )  
 

The time variable is traditionally represented with a superscript, to keep it apart from 
the unit indices at each level.  
 
We can model the effects of an external input by adding an additional term, x(t), to the 
temporal transition function.     
 

h(t+2) h(t) h(t-1) h(t-1) fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t) x(t+1) x(t+2) x(t-1) 

 
h(t ) = f !w (h

(t−1), x(t ) )  
 
The temporal duration of the network is typically represented the variable τ, so that 
the network is said to operate on a temporal sequence x(t) from t=1 to τ.   
 
Normally, the network generates an output represented by an output variable, o(t).  
 

h(t+2) h(t) h(t-1) h(t-1) fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t) x(t+1) x(t+2) x(t-1) 

o(t) o(t+1) o(t+2) o(t-1) 

 
 
For example, in a many-to-one network, the network would produce a single output 
after τ time steps.  For example, the following network assembles the words  "This", 
"is", "a", and "phrase", into a single output "This is a phrase".  In this case, t is the 
number of words in the phrase, 4.  

h(t+τ) h(t+1) h(t) fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t+1) x(t+τ) x(t) 

o(τ) 

… 

… This a phrase 

This is a phrase 

… 

 



Machine Learning with Neural Networks ACAI 2021 Tutorial 
 

63 

 
A one-to-many network would produce a sequence of τ outputs from a single input.  
For example, a single symbol for "This is a phrase" can be expanded into a sequence 
of outputs, where τ = 4. 

h(t+τ) h(t+1) fW(-) fW(-) fW(-) fW(-) fW(-) 

o(t+1) o(t+τ) O(t) 

h(t) 

x(t) 

… 

… 
… This is phrase 

This is a phrase  
Folding and Unfolding 
 
Recurrent networks are classically "folded" into a recurrent structure:  

h(t+2) h(t) h(t-1) h(t-1) 
fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t) x(t+1) x(t+2) x(t-1) 

o(t) o(t+1) o(t+2) o(t-1) 

!
!
!
⇔ !
!

!

h(t) 

x(t) 

o(t) 

  
 
Where the black square represents a time delay of 1 time unit.  The recurrent 
structure can be unfolded to see the network as a 2-D structure.  

h(t) 

x(t) 

o(t) 

 

!
!
!
⇔ !
!

!  

h(t+2) h(t) h(t-1) h(t-1) 
fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t) x(t+1) x(t+2) x(t-1) 

o(t) o(t+1) o(t+2) o(t-1) 
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Long Short-Term Memory (LSTM) 
In theory, RNNs can keep track of arbitrary long-term dependencies in an input 
sequences. However, this generally proves impractical because of a problem known 
as the "vanishing gradient" problem. When training a normal RNN using back-
propagation, the gradients which are back-propagated can tend to zero (vanish) or 
diverge to infinity (explode), because of the accumulation of errors resulting from 
computation with finite-precision numbers. Long short-term memory (LSTM) 
provide a solution to this problem.  
 
A long short-term memory (LSTM) is a form of RNN with a recursive memory 
structure. LSTM are appropriate for long temporal sequences of such as speech or 
video, and have been used to build systems for unsegmented, connected handwriting 
recognition, speech recognition and anomaly detection in network traffic. 
 
 LSTMs use feedback connections to enable design of a compact, powerful structure 
that can represent an arbitrarily long   temporal duration, but can easily result in 
instability. A common LSTM unit is composed of a cell, an input gate, an output gate 
and a forget gate. The cell remembers values over arbitrary time intervals and the 
three gates regulate the flow of information into and out of the cell. 
 
LSTMs were developed to deal with the vanishing gradient problem that can be 
encountered when training traditional RNNs. LSTM partially solve the vanishing 
gradient problem, because LSTM units allow gradients to also flow unchanged. 
However, LSTM networks can still suffer from the exploding gradient problem. 

 

 
LSTM with a forget gate Copied from: Understanding LSTM Networks - Christopher Olah 

(https://colah.github.io/posts/2015-08-Understanding-LSTMs/) 
In the above diagram, each line carries an entire vector, from the output of one node 
to the inputs of others. The pink circles represent point-wise operations, like vector 
addition, while the yellow boxes are learned neural network layers. Merging lines 
denote concatenation, while a forking line denotes copies of the vector going to 
different locations. 
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Attention is All You Need: Transformers 
 
Attention is a form of filter that suppresses unnecessary tokens allowing the system 
to associate relevant tokens.  Attention has long been studied in Computer vision as 
mechanism to focus processing on the relevant parts of scene.  Human vision system 
is known to make extensive use of top-down attention processes to suppress 
irrelevant part of the visual environment and limit recognition to the most salient or 
the most relevant phenomena. Over the years, many researchers have proposed ideas 
for using Salience and a-priori knowledge to highlight important phenomena. 
 
In 2010, Hinton proposed that attention could be used to a mechanism to explain the 
processing of deep networks.  The idea was to reconstruct the parts of the input signal 
that contribute to the output of a recognition network. We saw an example of this 
with generative convolutional networks using VGG.  
 
This idea was rapidly adopted in Natural Language processing in order to associate 
relevant words in a sentence through word highlighting.  
 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Example of attention visualization for an aspect-based sentiment analysis task, from [1, Fig. 6]. Words are highlighted according to attention scores.
Phrases in bold are the words considered relevant for the task or human rationales.

TABLE I

NONEXHAUSTIVE LIST OF WORKS THAT EXPLOIT ATTENTION, GROUPED
BY THE TASK(S) ADDRESSED

recommendation [22], [23], time-series analysis [24], [25],
games [26], and mathematical problems [27], [28].

In NLP, after an initial exploration by a number of seminal
papers [2], [59], a fast-paced development of new attention
models and attentive architectures ensued, resulting in a highly
diversified architectural landscape. Because of, and adding to,

the overall complexity, it is not unheard of different authors
who have been independently following similar intuitions lead-
ing to the development of almost identical attention models.
For instance, the concepts of inner attention [68] and word
attention [41] are arguably one and the same. Unsurprisingly,
the same terms have been introduced by different authors to
define different concepts, thus further adding to the ambiguity
in the literature. For example, the term context vector is used
with different meanings by Bahdanau et al. [2], Yang et al.
[52], and Wang et al. [129].

In this article, we offer a systematic overview of attention
models developed for NLP. To this end, we provide a general
model of attention for NLP tasks and use it to chart the
major research activities in this area. We also introduce a
taxonomy that describes the existing approaches along four
dimensions: input representation, compatibility function, dis-
tribution function, and input/output multiplicity. To the best
of our knowledge, this is the first taxonomy of attention
models. Accordingly, we provide a succinct description of each
attention model, compare the models with one another, and
offer insights on their use. Moreover, we present the examples
regarding the use of prior information in unison with attention,
debate about the possible future uses of attention, and describe
some interesting open challenges.

We restrict our analysis to attentive architectures designed
to work with vector representation of data, as it typically is
the case in NLP. Readers interested in attention models for
tasks where data have a graphical representation may refer to
Lee et al. [130].

What this survey does not offer is a comprehensive account
of all the neural architectures for NLP (for an excellent
overview, see [131]) or of all the neural architectures for NLP
that uses an attention mechanism. This would be impossible
and would rapidly become obsolete because of the sheer
volume of new articles featuring architectures that increasingly
rely on such a mechanism. Moreover, our purpose is to
produce a synthesis and a critical outlook rather than a flat
listing of research activities. For the same reason, we do not
offer a quantitative evaluation of different types of attention
mechanisms since such mechanisms are generally embedded
in larger neural network architectures devised to address

 
 

Taken from from Galassi, A., Lippi, M., and Torroni, P.  Attention in natural language processing. IEEE Transactions 
on Neural Networks and Learning Systems., 2020. 

 
In 2017, a revolutionary paper by Vaswani et al from Google showed that the deep 
convolutional and recurrent networks using layers of could be completely replaced 
with attention.  
 
Attention allows a network to individually focus on specific elements of a complex 
input. The goal is to break down complicated tasks into smaller areas of attention that 
are processed sequentially.    Attention enhances the important parts of the input data 
and fades out the rest, allowing the network to devote more power on a small but 
important part of the data. Which part of the data is more important depends on the 
context and is learned through training data by gradient descent.  
 
Attention is typically implemented as a function that maps a query and a set of key 
value pairs to an output.  The attention function compares a query to a set of keys for 
possible targets.  The keys provide a form of address (hash code) for targets. When a 
query matches a key, a value is generated to indicate the relevance of each target to 
the query.  
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The Query, Q,  is encoded as a form of code, similar to a hash code.  Each target 
record is identified with a key, K, in the same code.  A dot product of Q and K 
indicates the degree that the record corresponds to the Query.  This product is fed to a 
Softmax, to obtain a probability distribution for the set of keys.  
 

Vn = softmax(Q
TKn ) =

eQ
TK

eQ
TKn

n=1

N
∑  

 
The resulting attention score is a form of filter that suppresses unnecessary tokens 
allowing the system to associate relevant tokens for subsequent encoding.   
 
Attention can be implemented by adding an attention index indicating the relevance 
of each word token to a query (additive attention), or by multiply the amplitude of a 
each component (dot-product or multiplicative attention) according to relevance to a 
query.  
 

Additive Attention 
Additive attention computes the compatibility function using a feed-forward network 
with a single hidden layer. Here is an example taken where the relevance of the 
components of from an input are modified by addition of an attention score and the 
sum is normalized to a probability distribution by soft-max.  
 

! 
Image from Jay Alammar, The Illustrated Transformer  

(http://jalammar.github.io/illustrated-transformer/) 
 

Dot Product Attention 
Dot product attention is used to determine the components of a vector, V, that are 
most relevant to a query vector, Q using a key vector, K, for each element of the 
value.  Queries and keys of dimension dk, and values of dimension dv. A  key vector 
is computed for each token of the input vector.   The product is then normalized and 
used to modulate a value vector to emphasize relevant components. The weight 
assigned to each value expressed by a compatibility function of the query with the 
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corresponding key value. The result is used to select the most relevant parts of an 
input for recognition.   

 
From: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L and Polosukhin, I.  

(2017). Attention is all you need. 

hi = attention(Qi,K j,Vj ) = aijVj
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Note that the product of Q and K are scaled by the square root of dk.    Dividing the 
produce of Q and K by the square root of dk compensates for the extremely small 
gradients that can arise from large vector lengths for Q and K.  
 
While the two are similar in theoretical complexity, dot-product attention is much 
faster and more space-efficient in practice, since it can be implemented using highly 
optimized matrix multiplication code.   
 

Transformers 
A Transformer is a transduction model relying entirely on self-attention to compute 
representations of its input and output without using sequence-aligned RNNs or 
convolution.  Most modern sequence transduction models have an encoder-decoder 
structure, in which the encoder maps an input sequence of symbol representations to 
a sequence of continuous representations.  The Transformer follows a similar 
approach, using stacked self-attention and point-wise, fully connected layers for both 
the encoder and decoder to replace recurrent and convolutional layers used in early 
architectures.  
 
Self-attention is an attention mechanism relating different positions of a single 
sequence to other positions in order to compute a representation of the same 
sequence. Self-attention model is an auto-regressive model, consuming the 
previously generated symbols as additional input when generating the next.  Self-
attention allows each word in a sentence or paragraph to look at other words to better 
know which word contributes to the current word. Words have different meaning. 
Self-attention captures the meaning by encoding context words that establish the 
meaning.  
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! 
Image from Jay Alammar, The Illustrated Transformer 

(http://jalammar.github.io/illustrated-transformer/) 
 
Transformers consist of multiple layers where each layer contains multiple attention 
heads.  

! 
Image from Jay Alammar, The Illustrated Transformer  

(http://jalammar.github.io/illustrated-transformer/) 
 
Each encoder is composed of a parallel set of attention heads for self-attention, 
followed by a linear transformation that maps the selected tokens to a set of latent 
variables.  
 
The Encoder 
The encoder is composed of a stack of N = 6 identical layers. Each layer has two sub-
layers. The first is a multi-head self-attention mechanism, and the second is a simple, 
position- wise fully connected feed-forward network.  

! 
Image from Jay Alammar, The Illustrated Transformer  

(http://jalammar.github.io/illustrated-transformer/) 
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The Decoder 

! 
Image from Jay Alammar, The Illustrated Transformer  

(http://jalammar.github.io/illustrated-transformer/) 
 
In addition to the two sub-layers in each encoder layer, the decoder inserts a third 
sub-layer, which performs multi-head attention over the output of the encoder stack. 
Similar to the encoder, residual connections are made around each of the sub-layers 
followed by layer normalization.  
 

BERT - Bidirectional Transformers 
Bidirectional Encoder Representations from Transformers (BERT) is a Transformer-
based machine learning technique for natural language processing (NLP) pre-training 
developed by Google. BERT was created and published in 2018 by Jacob Devlin and 
his colleagues from Google. BERT was trained by self-supervised learning using 
unlabeled data extracted from English Wikipedia with 2,500M words the 
BooksCorpus with 800M words. The source code for a trained version of BERT may 
be found at https://github.com/google-research/bert 
 
BERT is pre-trained on 3.3 billion tokens of English text to perform two tasks: Mask 
Language Model (MLM) and Next Sentence Prediction (NSP). In the MLM task, the 
model predicts the identities of words that have been masked-out of the input text. In 
the NSP task, the model predicts whether the second half of the input follows the first 
half of the input in the corpus, or is a random paragraph. Further training the model 
on supervised data results in impressive performance across a variety of tasks ranging 
from sentiment analysis to question answering.  
 
The BERT architecture is easily extended to multimodal perception and interaction 
by simple concatenation of encodings of different modalities.   Each layer uses 
multiple Self-Attention Heads to associate multiple mutually relevant entities to be 
interpreted at that next level.  Thus BERT can be trained to complete missing data 
with multiple modalities, or to predict an appropriate reaction in all modalities for a 
stimulus in one or more modalities.    
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Programming Environments For Machine Learning  
 
Research in Machine Learning is essentially Empirical.  Most research in Machine 
Learning is performed in the interactive Python environment in response to public 
research challenges  using publically available data sets published along with the 
research challenge. Researchers are expected to publish their code so that others can 
compare results. This style of research has enabled extremely rapid progress at the 
expense of ever-growing requirements for computing power and data.  Currently, the 
computing power required for state of the art research is doubling every 3 to 4 
months (5 times faster than Moore's law!). 
 

Python 
Python is an interpreted, high-level programming language that is widely used in 
machine learning research. Python was created in the late 1980s by Guido van 
Rossum at the CWI research center in the Netherlands as a language that emphasizes 
code readability. Its language constructs and object-oriented approach are intended to 
help programmers write clear, logical code for small and large-scale projects. Python 
is ideal for rapid protyping of software. Python 3.0 was released in 2008 and was a 
major revision of the language that is not completely backward-compatible with 
Python 2.  
 
Python uses whitespace indentation, rather than curly brackets or keywords, to 
delimit blocks. An increase in indentation comes after certain statements; a decrease 
in indentation signifies the end of the current block.  Thus, the program's visual 
structure accurately represents the program's semantic structure.  This feature is 
sometimes termed the off-side rule, which some other languages share, but in most 
languages indentation does not have semantic meaning.   You can find many on-line 
tutorials and MOOCs on the web.  
For example, https://www.python.org/about/gettingstarted/ 
 

Conda Python 
Conda is an open source environment    and package management system that runs 
on Windows, Apple macOS and Linux. Conda quickly installs, runs and updates 
packages and their dependencies. Conda can easily be used to create, save, load and 
switch between environments on your a computer. It was created for Python 
programs, but can package and distribute software for any language including C and 
HTML. 
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As a package manager, conda makes it easy to find and install packages. If you need 
a package that requires a different version of Python, you do not need to switch to a 
different environment manager, because conda is also an environment manager. With 
just a few commands, you can set up a totally separate environment to run a different 
version of Python, while continuing to run your usual version of Python in your 
normal environment. 
 
In its default configuration, conda can install and manage the thousands of packages 
available at repo.anaconda.com that are built, reviewed and maintained by Anaconda.  
 Anaconda install packages are available for Linux, Apple MacOS, or MS Windows.  
Installer packages for full anaconda can be found at 
https://www.anaconda.com/download/ 
We recommend a simple minimal version referred to as miniconda.   The installer 
packages for miniconda are at (https://conda.io/miniconda.html) 
 

Jupyter Notebooks.  
Jupyter notebooks  (http://jupyter.org/) are widely used for collaborative machine 
learning.  A Jupyter Notebook is an open-source web application that allows creation 
and sharing of documents that contain live code, equations, visualizations, HTML 
markups and narrative text. Jupyter notebooks provide a browser-based tool for 
interactive authoring of documents that may combine explanatory text, mathematics, 
computations and their rich media output.  
 
Jupyter notebooks provide:  
• In-browser editing for code, with automatic syntax highlighting, indentation, and 

tab completion/introspection. 
• The ability to execute code from the browser, with the results of computations 

attached to the code which generated them. 
• Displaying the result of computation using rich media representations, such as 

HTML, LaTeX, PNG, SVG, etc.   
• In-browser editing for rich text using the Markdown markup language, which can 

provide commentary for the code, is not limited to plain text. 
• The ability to easily include mathematical notation within markdown cells using 

LaTeX, and rendered natively by MathJax. 
 
To install Jupyter Notebooks with miniconda, type:  
 
$ conda install jupyter notebook 
 
 



Machine Learning with Neural Networks ACAI 2021 Tutorial 
 

72 

 
 

Keras Example of a network to recognize handwritten digits 
The MNIST (Modified National Institute of Standards and Technology)  database is a 
large collection of handwritten digits. The MNIST database contains 60,000 training 
images and 10,000 testing images.  The database was created by "re-mixing" samples 
of digits from NIST's original datasets taken from American Census Bureau 
employees and American high school students.  The black and white images from 
NIST were normalized to fit into a 28x28 pixel bounding box and anti-aliased, which 
introduced gray-scale levels. 
 
The following is an example of a 2-layer fully connected neural network to classify 
MNIST digits written using Keras and Pytorch. The first layer has 784 units using 
RELU activation and the second layer is composed of 10 units using Softmax 
activation.  We train this network using the MNIST training data with Categorical 
Cross Entropy and an Adam Optimizer. We then print the accuracy and loss for the 
resulting network using the MINST test data.  
 
# An example of a 2 layer network for MNIST digits 
from keras.datasets import mnist 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.utils import to_categorical 
 
# Define a 3 layer fully connected model with 2 layers of 784 units using relu 
# and a final layer of 10 units using softmax 
 
model = Sequential([ 
    Dense(28*28, input_shape=(28*28,), activation='relu'), 
    Dense(10, activation='softmax') 
]) 
 
# Compile the model with categorical_crossentropy, adam optimizer using accuracy   
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 
 
# load MNIST Training and Test sets 
(trainingSet, trainingLabel), (testSet, testLabel) = mnist.load_data() 
 
# Keras digits are 28 by 28 pixels with 8 bits per pixel 
# Flatten the training and test data arrays to 1-D 
# and normalize grayscale pixels to values of 0 to 1.  
 
trainingSet = trainingSet.reshape((60000, 28 * 28)) 
trainingSet = trainingSet.astype('float32') / 255 
testSet = testSet.reshape((10000, 28 * 28)) 
testSet = testSet.astype('float32') / 255 
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# map the training and test labels from integers to one-hot coding 
trainingLabel = to_categorical(trainingLabel) 
testLabel = to_categorical(testLabel) 
 
# Train for 5 epochs using a batch size of 128 
model.fit(trainingSet, trainingLabel, epochs=5, batch_size=128) 
 
#evaluate the model with the test data and print the results 
test_loss, test_acc = model.evaluate(testSet, testLabel) 
print('test_loss', "%.4f" % test_loss, ' - test_accuracy:', "%.4f" % test_acc) 
 
Epoch 1/5 
60000/60000 [===================] - 6s 97us/step - loss: 0.2475 - accuracy: 0.9305 
Epoch 2/5 
60000/60000 [===================] - 6s 95us/step - loss: 0.0973 - accuracy: 0.9709 
Epoch 3/5 
60000/60000 [===================] - 6s 101us/step - loss: 0.0621 - accuracy: 0.9811 
Epoch 4/5 
60000/60000 [===================] - 6s 103us/step - loss: 0.0438 - accuracy: 0.9868 
Epoch 5/5 
60000/60000 [===================] - 6s 104us/step - loss: 0.0313 - accuracy: 0.9908 
10000/10000 [===================] - 1s 83us/step 
test_loss 0.0602 -  test_accuracy: 0.9803 
 

A Keras example of a simple CNN 
The following is a simple Keras example of to detect MNIST digits provided by 
Frank Cholet of Google. This example processes 28x28 pixel imagettes with a 
convolutional layer of 32 3x3 filters using relu, followed by 2x2 max pooling, a 
convolutional layer of 64 3x3 filters, using relu, followed by 2x2 max pooling, a 
flatten layer, dropout of 0.5 and a fully connected layer.  
 
model = keras.Sequential( 
    [ 
        keras.Input(shape=input_shape), 
        layers.Conv2D(32, kernel_size=(3, 3), activation="relu"), 
        layers.MaxPooling2D(pool_size=(2, 2)), 
        layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), 
        layers.MaxPooling2D(pool_size=(2, 2)), 
        layers.Flatten(), 
        layers.Dropout(0.5), 
        layers.Dense(num_classes, activation="softmax"), 
    ] 
) 
conv2d (Conv2D)              (None, 26, 26, 32)        320      
_________________________________________________________________ 
max_pooling2d (MaxPooling2D) (None, 13, 13, 32)        0          
_________________________________________________________________ 
conv2d_1 (Conv2D)            (None, 11, 11, 64)        18496      
_________________________________________________________________ 
max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64)          0          
_________________________________________________________________ 
flatten (Flatten)            (None, 1600)              0          
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_________________________________________________________________ 
dropout (Dropout)            (None, 1600)              0          
_________________________________________________________________ 
dense (Dense)                (None, 10)                16010      
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Performance Evaluation for Pattern Classification 
 
Pattern Recognition is the process of assigning observations to categories.  
An observation is sometimes called an "entity" or "data" depending on the context 
and domain.  
 
Our problem is to build a function, called a recognizer or classifier,   
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D(
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X ), that maps 

the observation,   

€ 

! 
X  into a statement that the observation belongs to a class 
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ˆ C k  from a 
set of K possible classes.   
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In most classic techniques, the class 

€ 

ˆ C k  is from a set of K known classes 

€ 

Ck{ }.  
For a 2-class detection function, there are K=2 classes : k=1 is a positive detection P, 
k=2 is a negative detection, N.   Thus 

€ 

Ck ∈ P,N{ } 
 
Almost all current classification techniques require the number of classes, K, to be 
fixed. (

€ 

Ck{ } is a closed set).  An interesting research problem is how to design 
classification algorithms that allow

€ 

Ck{ } to be an open set that grows with experience.  
 
In most learning algorithms, we partition  the training data in distinct sets in order to 
estimate the recognizer and to evaluate the results.  
A FUNDAMENTAL RULE in machine learning:  
 
 NEVER LEARN AND TEST WITH THE SAME DATA ! 
 
A typical approach is to use cross validation (also known as rotation estimation) in 
learning.  Cross validation partitions the training data into N folds (or complementary 
subsets).  A subset of the folds are used to train the classifier, and the result is tested 
on the other folds.  A taxonomy of common techniques include:  
 
• Exhaustive cross-validation 

o Leave p-out cross-validation 
o Leave one-out cross-validation 

• Non-exhaustive cross-validation 
o k-fold cross-validation 
o 2-fold cross-validation 
o Repeated sub-sampling validation 
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When training neural networks, we will generally divide the data into three sets:  
 
Training Set  - used to train the discriminant functions 
Evaluation Set -  Used to monitor learning and avoid overfitting to the training set 
Test Set - used to evaluate the final result and compare different techniques and 
architectures.  
 

Two-Class Pattern Detectors 
 
A pattern detector is a classifier or recognizer with  K=2.  
 Class k=1:  The target pattern, also known as P or positive 
 Class k=2:  Everything else, also known as N or negative.  
 
Pattern detectors are used in computer vision, for example to detect faces, road signs, 
publicity logos, or other patterns of interest. They are also used in signal 
communications, data mining and many other domains.  
 
The pattern detector is learned as a discriminant function   

€ 

g
! 
X ( ) followed by a decision 

rule, d().  For K=2 this can be reduced to a single function, as 
 
   

€ 

g1

! 
X ( ) ≥  g2

! 
X ( )   is equivalent to   

€ 

g
! 
X ( ) = g1

! 
X ( ) – g2

! 
X ( ) ≥ 0  

 
A “threshold” value, B,  can be used to bias the detector.  
 
The detection function is learned from a set of training data composed of M sample 
observations   

€ 

{
! 
X m}  where each sample observation is labeled with an indicator 

variable 

€ 

{ym}  
 ym =  P  or Positive for examples of the target pattern (class k=1) 
 ym =  N or Negative  for all other examples (class k=2) 
 
Observations for which   

€ 

g(
! 
X )+ B ≥  0  are estimated to be members of the target 

class. This will be called  POSITIVE or P.  
 
Observations for which   

€ 

g(
! 
X )+ B <  0  are estimated to be members of the 

background.  This will be called  NEGATIVE or N.  
 
We can encode this as a decision function to define our detection function   
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For training we need ground truth (annotation).  For each training sample the 
annotation or ground truth tells us the real class 
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The Classification can be TRUE or FALSE.  
 
  if   
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This gives 
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To better understand the detector we need a tool to explore the trade-off between 
making false detections (false positives) and missed detections (false negatives).  The 
Receiver Operating Characteristic (ROC) provides such a tool 
 

Performance Metrics for 2 Class Detectors 
 
A number of performance metrics are commonly used to compare 2-class classifiers.  
These can be extended to multi-class detectors by using “one vs many”.   
That is, the detector for each class, Ck,  is evaluated individually by labeling Ck as the 
target or Positive (P)  class and all other classes as the non-target or Negative (N) 
class.  
 

ROC Curves 
Two-class classifiers have long been used for signal detection problems in 
communications and have been used to demonstrate optimality for signal detection 
methods. The quality metric that is used is the Receiver Operating Characteristic 
(ROC) curve. This curve can be used to describe or compare any method for signal or 
pattern detection.  
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The ROC curve is generated by adding a variable Bias term to a discriminant 
function.  
 
   

€ 

D(
! 
X ) = d(g(

! 
X )+ B) 

 
and plotting the rate of true positive detection vs false positive detection.  
 
As the bias term, B,  is swept through a range of values, it changes the ratio of true 
positive detection to false positives.  
 
When B << 0 all detections will be Negative.   
When  B >>0  all detections will be Positive. 
For some range of values of B,   

€ 

D(
! 
X ) will give a mix of TP, TN, FP and FN.  

 
The bias term, B, can act as an adjustable gain that sets the sensitivity of the detector. 
The bias term allows us to trade False Positives for False Negatives.  
 
The resulting curve is called a Receiver Operating Characteristics (ROC) curve.  
The ROC plots True Positive Rate (TPR) against False Positive Rate (FPR) as a 
function of B for the training data   
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{
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X m} , 
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{ym}. 
 

True Positives and False Positives 
For each training sample, the detection as either Positive (P) or Negative (N) 
 
 IF  

€ 

g(
! 
X m )+B ≥ 0  THEN P else N 

 
The detection can be TRUE (T) or FALSE (F) depending on the indicator variable  ym 
 
 IF   

€ 

ym = D(
! 
X m ) THEN T else F 

 
Combining these two values, any detection can be a True Positive (TP), False 
Positive (FP), True Negative (TN) or False Negative (FN).  
 
For the M samples of the training data   

€ 

{
! 
X m} , 

€ 

{ym}  we can define:  
 #P as the number of Positives in the training data. 
 #N as the number of Negatives in the training data. 
 #T as the number of training samples correctly labeled by the detector.  
 #F as the number of  training samples incorrectly labeled by the detector.  
From this we can define:  
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 #TP as the number of training samples correctly labeled as Positive  
 #FP as the number of training samples incorrectly labeled as Positive  
 #TN as the number of training samples correctly labeled as Negative  
 #FN as the number of  training samples incorrectly labeled as Negative 
 
Note that #P = #TP + #FN  (positives in the training data) 
And #N = #FP+ #TN  (negatives in the training data) 
 
The True Positive Rate (TPR) is 

€ 

TPR =
#TP
#P

=
#TP

#TP+#FN
 

 
The False Positive Rate (FPR) is 

€ 

FPR =
#FP
#N

=
#FP

#FP+#TN
 

 
The ROC plots the TPR against the FPR as a bias B is swept through a range of 
values.   

Performance Evaluation  
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When B is at its minimum, all the samples are detected as N, and both the TPR and 
FPR are 0. As B increases both the TPR and FPR increase. Normally TPR should rise 
monotonically with FPR.  If TPR and FPR are equal, then the detector is no better 
than chance.  
 
The closer the curve approaches the upper left corner,  the better the detector.  
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Precision and Recall 
 
Precision, also called Positive Predictive Value (PPV), is the fraction of retrieved 
instances that are relevant to the problem.  
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A perfect precision score (PPV = 1.0) means that every result retrieved by a search 
was relevant, but says nothing about whether all relevant documents were retrieved.  
 
Recall, also known as sensitivity (S), hit rate, and True Positive Rate (TPR) is the 
fraction of relevant instances that are retrieved. 
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A perfect recall score (TPR=1.0) means that all relevant documents were retrieved by 
the search, but says nothing about how many irrelevant documents were also 
retrieved.    
 

Performance Evaluation  
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When B is at its minimum, all the samples are detected as N, and both the TPR and 
FPR are 0. As B increases both the TPR and FPR increase. Normally TPR should rise 
monotonically with FPR.  If TPR and FPR are equal, then the detector is no better 
than chance.  
 
The closer the curve approaches the upper left corner,  the better the detector.  
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Precision and Recall 
 
Precision, also called Positive Predictive Value (PPV), is the fraction of retrieved 
instances that are relevant to the problem.  
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A perfect precision score (PPV = 1.0) means that every result retrieved by a search 
was relevant, but says nothing about whether all relevant documents were retrieved.  
 
Recall, also known as sensitivity (S), hit rate, and True Positive Rate (TPR) is the 
fraction of relevant instances that are retrieved. 
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A perfect recall score (TPR=1.0) means that all relevant documents were retrieved by 
the search, but says nothing about how many irrelevant documents were also 
retrieved.    
 

 
When B is at its minimum, all the samples are detected as N, and both the TPR and 
FPR are 0. As B increases both the TPR and FPR increase. Normally TPR should rise 
monotonically with FPR.  If TPR and FPR are equal, then the detector is no better 
than chance.  
 
The closer the curve approaches the upper left corner,  the better the detector.  
 

 ym = D(
!
Xm )   ym ≠ D(

!
Xm )  

  

€ 

d(g(
! 
X m )+B ≥ 0)  True Positive (TP) False Positive (FP) 

  

€ 

d(g(
! 
X m )+B <  0)  True Negative (TN) False Negative (FN) 

 

Precision and Recall 
 
Precision, also called Positive Predictive Value (PPV), is the fraction of retrieved 
instances that are relevant to the problem.  
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PP = TP

TP +FP
 

 
A perfect precision score (PPV=1.0) means that every result retrieved by a search 
was relevant, but says nothing about whether all relevant documents were retrieved.  
 
Recall, also known as sensitivity (S), hit rate, and True Positive Rate (TPR) is the 
fraction of relevant instances that are retrieved. 
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=
TP
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A perfect recall score (TPR=1.0) means that all relevant documents were retrieved by 
the search, but says nothing about how many irrelevant documents were also 
retrieved.    
 
Both precision and recall are therefore based on an understanding and measure of 
relevance. In our case, “relevance” corresponds to “True”.  
Precision answers the question “How many of the Positive Elements are True ?” 
Recall answers the question “How many of the True elements are Positive”?  
 
In many domains, there is an inverse relationship between precision and recall. It is 
possible to increase one at the cost of reducing the other. 
 

F-Measure 
The F-measures combine precision and recall into a single value. The F measures 
measure the effectiveness of retrieval. The best value is 1 when Precision and Recall 
are perfect. The worst value is at Zero. 
 
The F1 score weights recall higher than precision.  
 
F1 Score:  
 

 
F1 =

2
1

Recall
+

1
Precision

= 2 Precision ⋅Recall
Precision +Recall

 

 
The F1 score is the harmonic mean of precision and recall.  
 

Accuracy  
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Accuracy is the fraction of test cases that are correctly classified (T).  
 

 

€ 

ACC =
T
M

=
TP+TN
M

 

 
where M is the quantity of test data.  
 
Note that the terms Accuracy and Precision have a very different meaning in 
Measurement theory. In measurement theory, accuracy is the average distance from a 
true value, while precision is a measure of the reproducibility for the measurement.  
 

Benchmark Data Sets Visual Task Challenges 
 
As we saw in lesson 11, many of the popular architectures were designed specifically 
to address research challenges based on image data sets. Classically, these data sets 
were for challenges related to object detection.  More recently the challenges 
increasingly address other visual tasks.  
 
The ImageNet Challenge for Object Detection 
ImageNet was originally concerned with Image Classification: Does an image (or 
imagette) contain an instance of a class? Most state-of-the-art object detection 
networks pre-train on ImageNet and then rely on transfer learning to adapt the 
learned recognition system to a specific domain.  The ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) uses a "trimmed" list of only 1000 image 
categories or "classes", including 90 of the 120 dog breeds classified by the full 
ImageNet schema.  
 
ImageNet crowdsources its annotation process. In 2018 there were more than 14 
million  images have been hand-annotated by the project to indicate what objects are 
pictured and in at least one million of the images, bounding boxes are also provided. 
Image-layer annotations indicate the presence or absence of an object class in an 
image. Object-layer annotations provide a bounding box around the (visible part of 
the) indicated object.  
 
In 2014, more than fifty institutions participated in the ILSVRC, almost exclusively 
with different forms of Network Architectures. In 2017, 29 of 38 competing teams in 
the ILSVRC demonstrated error rates less  than 5% ( better than 95% accuracy).  
 
However, the ILVSRC task is to identify images as belonging to one of a thousand 
categories; humans can recognize a larger number of categories, and also (unlike the 
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programs) can judge the context of an image. More importantly, humans are capable 
of MANY other visual tasks involving Spatio-temporal interaction with 3D. In 
cognitive psychology, these are referred to as visual competences.  
 
COCO - Common Objects in Context  
Microsoft COCO is a large-scale object detection, segmentation, and captioning 
dataset created in 2015.  Images in the COCO  data set display  are everyday objects 
captured from everyday scenes. This adds some “context” to the objects captured in 
the scenes 
 
COCO contains more than 2.5M instances in 91 object categories, with 5 captions per 
image 330K images (200K+ annotated) with 250,000 people with key points. 
 

Data sets for other visual tasks 
An extensive (very large) list of publically available benchmark data sets and 
research challenges for visual tasks may be found at.  
https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research 
This list continues to grow rapidly.  
 
There is a growing interest in developing techniques for recognizing actions and 
activities from video sequences and multimodal data. The recent emergence of 
generative techniques, combined with rapid advances in Robotics and Autonomous 
Systems appear likely greatly expand this set of tasks. In particular the recent 
progress in Transformers and Attention-based techniques in Natural Language 
processing appear likely to enable many new competences for computer vision.  
 
The following are some techniques for multiple object detection and semantic 
detection.  
 
 
 


