
Machine Learning with Neural Networks

Professor James L. Crowley
Grenoble Institut Polytechnique

Univ. Grenoble Alpes

Outline
Glossary of Symbols ... 3	
Machine Learning ... 5	
Perceptrons .. 7	

History .. 7	
The Perceptron Classifier ... 7	
The Perceptron Learning Algorithm .. 9	

Artificial Neural Networks .. 10	
The Artificial Neuron ... 11	

Gradient Descent ... 12	
Loss (Cost) Function .. 12	
Feature Scaling ... 14	
Local Minima ... 15	
Batch mode ... 16	
Stochastic Gradient Descent ... 16	

Artificial Neural Networks .. 17	
The Multilayer Neural Network model .. 19	
Initializing the weights ... 21	

Backpropagation ... 22	
Derivation of Backpropagation as gradient Descent. ... 25	
General formula for the error term ... 29	
Formula for multiple activations .. 29	
Summary of Backpropagation .. 30	

Generative Networks ... 31	
Entropy ... 32	
Computing Entropy .. 32	
Cross entropy .. 34	
Binary cross entropy ... 34	
Categorical Cross Entropy Loss ... 35	
The Kullback-Leibler Divergence .. 36	

AutoEncoders .. 37	
The Sparsity Parameter ... 38	
Variational Autoencoders ... 41	
Generative Adversarial Networks .. 42	

Convolutional Neural Networks. .. 43	
Fully-Connected Networks ... 43	
Early Convolutional Neural Networks: LeNet5 ... 43	
Multiple Receptive Fields at each Layer .. 46	
CNN Hyper-parameters .. 47	
Pooling .. 47	

Machine Learning with Neural Networks ACAI 2021 Tutorial

2

Classic CNN Architectures ... 48	
AlexNet ... 49	
VGG - Visual Geometry Group ... 50	
YOLO: You Only Look Once .. 51	
YOLO-9000 (YOLOv2) ... 54	

Generative Convolutional Networks ... 55	
Generating images with deconvolution. ... 55	
DCGAN .. 56	
Deconvolution with VGG16 ... 57	

Recurrent Neural Networks ... 60	
Finite vs Infinite impulse networks .. 61	
Recurrent Networks .. 61	
Folding and Unfolding ... 63	
Long Short-Term Memory (LSTM) ... 64	

Attention is All You Need: Transformers ... 65	
Additive Attention .. 66	
Dot Product Attention ... 66	
Transformers ... 67	
BERT - Bidirectional Transformers ... 69	

Programming Environments For Machine Learning 70	
Python ... 70	
Conda Python ... 70	
Jupyter Notebooks. ... 71	
Keras Example of a network to recognize handwritten digits 72	
A Keras example of a simple CNN .. 73	

Performance Evaluation for Pattern Classification 75	
Two-Class Pattern Detectors .. 76	
Performance Metrics for 2 Class Detectors .. 77	
ROC Curves .. 77	
True Positives and False Positives ... 78	
Precision and Recall ... 79	
F-Measure ... 80	
Accuracy ... 80	
Benchmark Data Sets Visual Task Challenges .. 81	
Data sets for other visual tasks ... 82	

http://crowley-coutaz.fr/jlc/Courses/ACAI2021/MachineLearningWithNeuralNetworks.pdf

© This file and its contents may be copied or communicated for non-commercial use on the condition that they include
the citation: James L. Crowley, Machine Learning with Neural Networks, Grenoble Institut Polytechnique, Univ.
Grenoble Alpes, October 2021.

Machine Learning with Neural Networks ACAI 2021 Tutorial

3

Glossary of Symbols

xd A feature. An observed or measured value.

€

!
X A vector of D features.
D The number of dimensions for the vector

€

!
X

K Number of classes

€

Ck The kth class

€

!
X ∈ Ck Statement that an observation

€

!
X is a member of class Ck

€

ˆ C k The estimated class
D(
!
X) A Recognition (discriminant) function

Ĉk = D(
!
X) A recognition function that predicts

€

ˆ C k from

€

!
X

 For a detection function (K=2),

€

Ck ∈ P,N{ }

€

y The true class for an observation

€

!
X

€

{
!
X m}

€

{ym} Training samples of

€

!
X for learning, along with ground truth

€

! y
ym An indicator variable (or ground truth) for sample m
M The number of training samples.

€

! y A dependent variable to be estimated.
!y = f (!wT

!
X + b) A function (model) that predicts

€

! y from
!
X .

!w,b The parameters of the model.
Cm =

1
2
(am − ym)

2 The Loss (or cost) for the function for estimating ym as am
!
∇Cm =

∂Cm

∂
!w

 The gradient (vector derivative) of the Loss (or cost).

€

aj
(l) The activation output of the jth neuron of the lth layer.

€

wij
(l) The weight from unit i of layer l–1 to the unit j of layer l.

€

bj
l The bias for unit j of layer l.

€

η A learning rate. Typically very small (0.01). Can be variable.
L The number of layers in the network.

€

δm
out = am

(L) − ym() The Output Error of the network for the mth training sample

€

δ j,m
(l) Error for the jth neuron of layer l, for the mth training sample.
Δwij,m

(l) = ai
(l−1)δ j,m

(l) Update for weight from unit i of layer l–1 to the unit j of layer l.
Δbj,m

(l) = δ j,m
(l) Update for bias for unit j of layer l.

€

ρ The sparsity parameter

(f * s)(n) = f (m)s(n−m)
m=1

N

∑

The convolution equation. * is the convolution operator

f *P(i, j) = f (u,v)P(i −u, j − v)
u=1

N

∑
v=1

N

∑ 2D convolution of a 2D filter f(i,j) with an image P(i,j)

Machine Learning with Neural Networks ACAI 2021 Tutorial

4

!
h (t) The hidden recurrent activation vector of the network.
 Note that in previous lectures we used

!a (t) for activation.
f (−) A process equation that computers

!
h (t+1) from

!
h (t)

!
X (t) A sequence of τ input vectors. Equivalent to {

!
X1,...,

!
Xτ } in earlier

 lectures.
!
o (t) The network output vector.

Machine Learning with Neural Networks ACAI 2021 Tutorial

5

Machine Learning

Machine learning explores the study and construction of algorithms that can learn
from and make predictions about data. Many of the foundational techniques for
machine learning were originally developed for problems of detecting signals and
recognizing patterns. However, as the scientific study of machine learning has
matured, and as computing and data become increasingly available, it has become
increasingly clear that machines can learn any computable function from data or
experience with phenomena.

The term machine learning was coined in 1959 by Arthur Samuel, a pioneer in the
field of computer gaming and inventor of the first computer program capable of
learning to play checkers. An early landmark was a textbook by Nilsson in 1960
entitled Learning Machines, dealing mostly with machine learning for pattern
classification using statistical techniques grounded in signal detection work from the
early 20th century. A key landmark was the 1973 text-book by Duda and Hart named
"Pattern Recognition and Scene Analysis", and the field was dominated by the
scientific field of "Pattern Recognition" through the 1960's and 1970's.

We now understand that machine learning can be used to learn any computable
function from data or experience, and can be used to learn techniques for pattern
generation, for control of machines, for natural language interaction with humans,
and for any form of intelligent behavior. Machine Learning is now seen as a core
enabling technology for artificial intelligence. A modern definition would be:

Machine learning involves computers discovering how they can perform tasks
without being explicitly programmed to do so.

Many of the techniques, including neural networks, have originally been developed
for pattern recognition. Thus we will begin with techniques for the problems of
recognizing patterns, and then show how these can be generalized to other forms of
learning.

For pattern recognition, the classic approach is to use a set of “training data” training
data {

!
Xm} to estimate the discriminant function

€

! g
!
X () . This can be done with a

variety of techniques. A decision function d !g
!
X()() is then used to select a pattern

label from a set of possible target labels.

Machine Learning with Neural Networks ACAI 2021 Tutorial

6

Supervised Learning
Most classical methods for machine learning, learn to estimate a function a set of
labeled training data, composed of M independent examples,

€

{
!
X m} for which we

know a target value {ym} . The set

€

{
!
X m} is called the training data. The set {ym} are

the indicator variables or target variables. Having target values

€

{ym} makes it much

easier to estimate the function ŷ = f (
!
X) .

Semi-Supervised Learning.
A number of hybrid algorithms exist that initiate learning from a labeled training set
and then extend the learning with unlabeled data, using the initial algorithm to
generate synthetic labels for new data.

Unsupervised Learning
Unsupervised Learning techniques learn the function without a labeled training set.
Most unsupervised learning algorithms are based on clustering techniques that
associate data based on statistical properties. Examples include K-nearest neighbors,
and Expectation Maximisation.

Self-Supervised Learning
Self-supervised learning learns to reconstruct data missing data and to guess
associated data from examples. Two classic self-supervised techniques are masked-
token completion and next sentence prediction. With Self-supervised learning, the
data set is its own ground truth.

Reinforcement Learning
Reinforcement learning refers to techniques were a system learns through interaction
with an environment. While originally developed for training robots to interact with
the world, reinforcement learning combined with deep learning has recently produced
systems that outperform humans at games such as Go or Chess. Deep reinforcement
learning uses training with realistic simulators adapted through additional training
with a target domain by transfer learning.

Transfer Learning
With transfer learning a system is first trained with a very large general-purpose data
set or simulator, and then refined through additional training in a target domain.
Transfer learning has provided a very useful method for overcoming the need for
very large training data sets for most modern machine learning techniques based on
Neural networks.

Machine Learning with Neural Networks ACAI 2021 Tutorial

7

Perceptrons

History
The Perceptron is an incremental learning algorithm for linear classifiers invented by
Frank Rosenblatt in 1956. The approach was first proposed by Warren McCullough
and Walter Pitts in 1943 as a possible universal computational model. During the
1950’s, Frank Rosenblatt developed the idea to provide a trainable machine for
pattern recognition. The first Perceptron was a room-sized analog computer that
implemented Rosenblatz’s learning function for recognition. However, it was soon
recognized that both the learning algorithm and the resulting recognition algorithm
are easily implemented as computer programs.

The Perceptron Classifier
The perceptron is an on-line learning algorithm that learns a linear decision
boundary (hyper-plane) for separable training data. As an "on-line" learning
algorithm, new training samples can be used at any time to update the recognition
algorithm. However, if the training data is non-separable, the method will not
converge, and must be stopped after a certain number of iterations.

The Perceptron algorithm uses errors in classifying the training data to iteratively
update the hyper-plane decision boundary. Updates may be repeated until no errors
exist.

Assume a training set of M observations

€

{
!
X m} of D features, with indicators variables,

€

{ym} where

€

!
X m =

x1m

x2m

"
xDm

"

$
$
$
$

%

&

'
'
'
'

 and ym = {–1, +1}

The indicator variable,

€

{ym}, tells the class label for each sample.
For binary pattern detection,
 ym = +1 for examples of the target class (class 1)
 ym = –1 for all others (class 2)

The Perceptron will learn the coefficients,

!w,b , for a linear boundary

Machine Learning with Neural Networks ACAI 2021 Tutorial

8

€

! w =

w1

w2

"
wD

"

$
$
$
$

%

&

'
'
'
'

 and b

Such that for all training data, ,

€

! w T
"
X m + b ≥ 0 for Class 1 and !wT "Xm +b < 0 for Class 2.

Note that

€

! w T
"
X m + b ≥ 0 is the same as

€

! w T
"
X m ≥ −b .

Thus b can be considered as a threshold on the product:

€

! w T
"
X m

The decision function is the sgn() function:

€

sgn(z) =
1 if z ≥ 0
−1 if z < 0
$
%
&

Where z =
!wT "Xm + b

A training sample is correctly classified if:

€

ym ⋅
! w T
"
X m + b() ≥ 0

The algorithm requires a learning rate, η. Typically set to a very small number such
as η = 10-3

Machine Learning with Neural Networks ACAI 2021 Tutorial

9

The Perceptron Learning Algorithm

The algorithm will continue to loop through the training data until it makes an entire
pass without a single misclassified training sample. If the training data are not
separable then it will continue to loop forever.

Algorithm:

€

! w (0) ← 0;

€

b (i)← 0, i← 0 ; set η (for example η = 10-3)
WHILE update DO

 update ← FALSE;
 FOR m = 1 TO M DO
 IF

€

ym ⋅
! w (i)T
"
X m + b(i)() < 0 THEN

 update ← TRUE
 !w(i+1) ← !w(i) −η⋅ ym ⋅

!
Xm

 b(i+1) ← b(i) −η⋅ ym
 i ← i + 1
 END IF
 END FOR
 END WHILE.

Notice that the weights are a linear combination of training data that were incorrectly
classified.

The final classifier is: if

€

! w (i)T
"
X m + b(i) ≥ 0 then P else N.

If the data is not separable, then the Perceptron will not converge, and will continue
an infinite loop. Thus it is necessary to have a limit the number of iterations.

In 1969, Marvin Minsky and Seymour Papert of MIT published a book entitled
“Perceptrons”, that claimed to document the fundamental limitations of the
perceptron approach. Notably, they claimed that a linear classifier could not be
constructed to perform an “exclusive OR”. While this is true for a one-layer
perceptron, it is not true for multi-layer perceptrons.

The fact that the algorithm requires separable training data WAS a major weakness.
This limitation was later overcome by reformulating the algorithm using a soft
decision surface and Gradient descent. The result was promoted as a form of
"Artificial Neural Network".

Machine Learning with Neural Networks ACAI 2021 Tutorial

10

Artificial Neural Networks

In the 1970s, frustrations with the limits of Artificial Intelligence research based on
Symbolic Logic led a small community of researchers to explore a perceptron based
approach. In 1973, Steven Grossberg, showed that a two layered perceptron could
overcome the problems raised by Minsky and Papert, and solve many problems that
plagued symbolic AI. In 1975, Paul Werbos developed an algorithm referred to as
“Back-Propagation” that uses gradient descent to learn the parameters for perceptrons
from classification errors with training data. Back-propagation is a parallel form of
Gradient descent easily implemented on a SIMD parallel computer.

Artificial Neural Networks are computational structures composed a weighted sums
of “neural” units. Each neural unit is composed of a weighted sum of input units,
followed by a non-linear decision function.

x1

…

xD

+1
Layer 1

Layer 2

Layer 0

+1

a1
(1)

a2
(1)

a3
(1)

w11
(1)

w11
(2)

b1
(1) b1

(2)

a1
(2) a

Note that the term “neural” is misleading. The computational mechanism of a neural
network is only loosely inspired from neural biology. Neural networks do NOT
implement the same learning and recognition algorithms as biological systems.

During the 1980’s, Neural Networks went through a period of popularity with
researchers showing that Networks could be trained to provide simple solutions to
problems such as recognizing handwritten characters, recognizing spoken words, and
steering a car on a highway. However, the resulting systems were fragile and difficult
to duplicate. The popularity of Artificial Neural Networks was overtaken by more
mathematically sound approaches for statistical pattern recognition based on
Bayesian learning. These were, later, overtaken by techniques such support vector
machines and kernel methods.

Machine Learning with Neural Networks ACAI 2021 Tutorial

11

The Artificial Neuron

The simplest possible neural network is composed of a single neuron.

A “neuron” is a computational unit that integrates information from a vector of
features,

€

!
X , to compute the likelihood of an activation, a.

€

a = f (z)

The neuron is composed of a weighted sum of input values

€

z = w1x1 +w2x2 + ...+wDxD +b

 followed by a non-linear “activation” function,

€

f (z)

 a = f (z) = f (!wT

!
X + b)

A popular choice for activation function is the sigmoid:

€

σ (z) =
1

1+ e−z

The sigmoid is useful because the derivative is:

€

dσ (z)
dz

=σ (z)(1−σ (z))

For the sigmoid, the target function is ym ∈ 0,1{ } , enabling easy generalization to
multi-class decisions. This can give a decision function:

 if f (!wT "X + b) ≥ 0.5 the P else N

We will use Gradient descent to learn the best weights and bias for a training set of M
samples

!
Xm{ } with indicator variables ym{ } .

Machine Learning with Neural Networks ACAI 2021 Tutorial

12

Gradient Descent
Gradient descent is a first-order iterative optimization algorithm for finding the local
minimum of a differentiable function. Gradient descent is a popular algorithm for
estimating parameters for a large variety of models.

The gradient of a scalar-valued differentiable function of several variables, f (

!
X) is

vector derivatives:

!
∇f (
"
X) = ∂ f (

"
X)

∂
"
X

=

∂ f (
"
X)

∂x1
∂ f (
"
X)

∂x2
#

∂ f (
"
X)

∂xD

"

#

$
$
$
$
$
$
$
$
$$

%

&

'
'
'
'
'
'
'
'
''

The gradient of a function f (

!
X)at a point

!
X is the direction and rate of change for the

greatest slope of a surface. The direction of the gradient is the direction of greatest
slope, the magnitude is the gradient is the rate of change in that direction.

To find a local minimum of a function using gradient descent, we iteratively update
the function by subtracting corrections proportional to the gradient of the function at
the current point. To use this to determine the parameters for a perceptron (or neural
unit), we must introduce the notion of a Loss or cost for an error.

Loss (Cost) Function
The Loss (or cost) function is the cost of an error for classifying a data sample

!
Xm

with ground truth ym using with network parameters !w . Assume M samples of
training data

!
Xm with indicator variables ym. The vector,

!
Xm , has D dimensions. The

indicator ym, gives the expected result for the vector. Suppose that the neural unit
uses a vector of weights,

!w and a bias, b, to estimate ym from
!
Xm .

am = f (zm) = f (

!wT
!
Xm +b)

The cost (or Loss) for using the weights and biases

€

! w to discriminate
!
Xm is Cm

 Cm =

1
2
am − ym()2

	
Where we have multiplied by "1/2" to simplify the algebra.

Machine Learning with Neural Networks ACAI 2021 Tutorial

13

The gradient of the cost with respect to each of the parameters tells us how much
each parameter contributed to the error. We will use these to define a vector of
correction factors for each parameter.

!
∇Cm =

∂Cm

∂
!w
=

∂Cm

∂w1
!

∂Cm

∂wD

∂Cm

∂b

"

#

$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'

=

∆ w1
!

∆ wD

∆ b

"

#

$
$
$
$$

%

&

'
'
'
''

In order to evaluate these derivatives, we use the chain rule. Each gradient term can
provides a correction term for the function parameters. For a single neural unit:

 ∆ w1 =

∂Cm

∂w1
=
∂Cm

∂am
⋅
∂am
∂zm

⋅
∂zm
∂w1

To correct the network, we will subtract a fraction of this change from each of the
network parameters. Because the training data typically contains many unmodelled
phenomena (noise), the correction is weighted by a (very small) learning rate “η” to
stabilize learning

€

! w (i) =
! w (i−1) −ηΔ ! w m

The fraction, η, is referred to as the Learning rate. Typical values for η are from
η=0.01 to η=0.001.

(Drawing recovered from the internet - Source unknown)

The "optimum" coefficients are the coefficients that provide the smallest loss. To
determine the optimum coefficients, we iteratively refine the model to reduce the
errors, by subtracting a part of the derivative from the model parameters.

Machine Learning with Neural Networks ACAI 2021 Tutorial

14

Ideally, at the optimum parameters, both the loss and the gradient are zero. For all
other parameters, the loss increases. With real data, this will rarely be obtained
because of noise in the training data.

Noise (un-modeled phenomena) in the training data will drive individual updates in
random directions. A small learning rate is used to limit noise from driving the
parameters too far from the optimum.

Warning: If you evaluate gradient descent by hand with real data, do not expect to
easily see a path to convergence. Typically, arriving at the optimum requires a LOT
of training data and MANY passes through the training data. Each pass through the
training data is referred to as an “epoch”. Gradient descent may require many epochs
to reach an optimal (minimum loss) model.

Feature Scaling
For a training set

€

{
!
X m} of M training samples with D values, if the individual features

do not have a similar range of values, than large values will dominate the gradient.
Small errors in this dimension are magnified.

One way to assure sure that features have similar ranges is to normalize the training
data. A simple technique is to normalize the range of sample values.

For example, ∀m=1
M : xdm :=

xdm −min(xd)
max(xd)−min(xd)

After estimating the model, use max(xd) and min(xd) to project the data back to the
original space.

Note that the 2D surface shown here would correspond to two parameters, for
example w, b for a single neural unit with a scalar input x. The actual surface is
hyper-dimensional and not easy to visualize.

Machine Learning with Neural Networks ACAI 2021 Tutorial

15

Local Minima
Gradient descent assumes that the loss function is convex. However, the loss
function depends on real data

€

!
X m with unmodeled phenomena (noise).

 Cm =

1
2
f (
!
Xm)− ym()

2

	

Noise in the training samples {

€

!
X m } can create a non-convex loss with local minima.

(Drawing recovered from the internet - Source unknown)

In fact the gradient has MANY parameters, and the Loss function is evaluated in a
very high dimensional space. It is helpful to see the data as a hyper-dimensional
cloud descending (flowing over) a complex hyper-dimensional surface.

(Drawing recovered from the internet - Source unknown)

Machine Learning with Neural Networks ACAI 2021 Tutorial

16

Batch mode

Individual training samples will send the model in arbitrary directions. While,
updating with each sample will eventually converge, this tends to be costly. A more
efficient approach is to correct the model with the average of a large set of training
samples. The training data is typically divided into “folds” and the model is updated
with the average of each fold.

This is called “batch mode”.

 Δ
!w = 1

M
Δ
!wm

m=1

M

∑ =
1
M

!
∇Cm

m=1

M

∑

The model is then updated with the average error.

€

! w (i) =
! w (i−1) −ηΔ ! w

Stochastic Gradient Descent

Batch gradient descent often efficiently converges to a local minimum and becomes
stuck. This can be avoided with stochastic gradient descent. With Stochastic
gradient descent, a single training sample is randomly selected and used to update the
model. This will send the model in random directions, that eventually flow to the
global minima. While much less efficient than batch mode, this is less likely to
become stuck in local minima.

Machine Learning with Neural Networks ACAI 2021 Tutorial

17

Artificial Neural Networks
Artificial Neural Networks, also referred to as “Multi-layer Perceptrons”, are
computational structures composed a weighted sums of “neural” units. Each neural
unit is composed of a weighted sum of input units, followed by a non-linear decision
function.

The simplest possible neural network is composed of a single neuron.

A “neuron” is a computational unit that integrates information from a vector of
features,

€

!
X , to compute the likelihood of an activation, a. The neuron is composed of

a weighted sum of input values

€

z = w1x1 +w2x2 + ...+wDxD +b followed by a non-
linear “activation” function,

€

f (z)

€

a = f (! w T
"
X + b)

Many different activation functions may be used. Historically, the classic activation
function is the sigmoid (or Logistic) activation function:

σ(z) = 1
1+ e− z

=
ez

ez +1

The sigmoid has long been used in biology and in economics to model processes that
grow exponentially to a point of saturation. For example, the population of bacteria
during fermentation, or the growth in performance of a new technology.

The sigmoid is useful because the derivative is:

€

dσ (z)
dz

=σ (z)(1−σ (z))

Another classic decision functions is the hyperbolic tangent:

€

f (z) = tanh(z) =
ez − e−z

ez + e−z

Machine Learning with Neural Networks ACAI 2021 Tutorial

18

For multiple classes, we can use the Softmax activation function.

€

f (zk) =
ezk

ezk
k=1

K
∑

The softmax function takes as input a vector

!z of K real numbers, and normalizes it
into a probability distribution consisting of K probabilities.

The softmax function is used to select the maximum from a vector of activations for
K classes. Before applying softmax, the vector components of

!z will generally not
sum to 1, and some of the components may be negative, or greater than one. After
applying softmax, each component will be in the interval [0, 1] and the components
will sum to 1. Thus the output can be interpreted as a probability distribution
indicating the likelihood of each component.

Softmax is used as the last activation function of a neural network to normalize the
output of a network to a probability distribution over predicted output classes.

The rectified linear function is popular for deep learning because of a trivial
derivative:

relu(z) =max(0, z)

For z≤ 0 d(relu(z))dz
= 0 for z > 0 :

€

d(relu(z))
dz

=1

Recently, a variation of RELU called GELU (Gaussian Error Linear Unit) has gained
popularity.

gelu(z) = 0.5z 1+ 2
π

e−x
2

0

z

2

∫ dx

$

%

&
&
&

'

(

)
)
)

From Wikipedia: By Ringdongdang -
https://commons.wikimedia.org/w/index.php?curid=95947821

Machine Learning with Neural Networks ACAI 2021 Tutorial

19

The Multilayer Neural Network model

A neural network is a multi-layer assembly of neurons. For example, this is a 2-layer
network:

The circles labeled +1 are the bias terms.
The circles on the left are the input terms. Some authors, notably in the Stanford
tutorials, refer to this as Level 1.

We will NOT refer to this as a level (or, if necessary, level L=0).
The rightmost circle is the output layer, also called L.
The circles in the middle are referred to as a “hidden layer”. In this example there is
a single hidden layer and the total number of layers is L=2.

The parameters carry a superscript, referring to their layer.
We will use the following notation:
L The number of layers (Layers of non-linear activations).
l The layer index. l ranges from 0 (input layer) to L (output layer)
N(l) The number of units in layer l. N(0)=D

€

aj
(l) The activation output of the jth neuron of the lth layer.

€

wij
(l) The weight from the unit i of layer l-1 for the unit j of layer l.

€

bj
(l) The bias term for jth unit of the lth layer

f(z) A non-linear activation function, such as a sigmoid, relu or tanh.

For example:

€

a1
(2) is the activation output of the first neuron of the second layer.

€

W13
(2) is the weight for neuron 1 from the first level to neuron 3 in the second level.

The above network would be described by:

€

a1
(1) = f (w11

(1)X1 +w21
(1)X2 +w31

(1)X3 +b1
(1))

€

a2
(1) = f (w12

(1)X1 +w22
(1)X2 +w32

(1)X3 +b2
(1))

€

a3
(1) = f (w13

(1)X1 +w23
(1)X2 +w33

(1)X3 +b3
(1))

€

a1
(2) = f (w11

(2)a1
(1) +w21

(2)a2
(1) +w31

(2)a3
(1) +b1

(2))

Machine Learning with Neural Networks ACAI 2021 Tutorial

20

This can be generalized to multiple layers. For example:

 !am

(3) is the vector of network outputs (one for each class) at the third layer.

Each unit is defined as follows:

€

a1
(l−1)

 …

€

aN (l−1)
(l−1)

+1

€

f z j
(l)()

€

zj
(l)

€

aj
(l)

€

wij
(l)

€

wN (l−1) j
(l)

€

bj
(l)

…
€

w1 j
(l)

€

ai
(l−1)

€

wjk
(l+1)

The notation for a multi-layer network is

€

! a (0) =
!
X is the input layer.

€

ai
(0) = Xd

 l is the current layer under discussion.
 N(l) is the number of activation units in layer l. N(0) = D
 i,j,k Unit indices for layers l-1, l and l+1: i→j→k

€

wij
(l) is the weight for the unit i of layer l-1 feeding to unit j of layer l.

€

aj
(l) is the activation output of the jth unit of the layer l

€

bj
(l) the bias term feeding to unit j of layer l.

€

zj
(l) = wij

(l)ai
(l−1) +bj

(l)

i=1

N (l−1)

∑ is the weighted input to jth unit of layer l

 f(z) is a non-linear decision function, such as a sigmoid, tanh(), or soft-max

€

aj
(l) = f (zj

(l)) is the activation output for the jth
 unit of layer l

For layer l this gives:

€

zj
(l) = wij

(l)ai
(l−1)

i=1

N (l−1)

∑ +bj
(l)

€

aj
(l) = f wij

(l)ai
(l−1) +bj

(l)

i=1

N (l−1)

∑
$

%
& &

'

(
))

and then for l+1 :

€

zk
(l+1) = wjk

(l+1)aj
(l)

j=1

N (l)

∑ +bk
(l+1)

€

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N (l)

∑

$
% %

&

'
((

Machine Learning with Neural Networks ACAI 2021 Tutorial

21

So how to do we learn the weights W and biases B?

We could train a 2-class detector from a labeled training set

€

{
!
X m} ,

€

{ym} using gradient
descent. For more than two layers, we will need to use the more general “back-
propagation” algorithm.

Back-propagation adjusts the network the weights

€

wij
(l) and biases

€

bj
(l) so as to

minimize an error function between the network output

€

! a m
L and the target value

€

! y m for
the M training samples

€

{
!
X m} ,

€

{! y m}.

This is an iterative algorithm that propagates an error term back through the hidden
layers and computes a correction for the weights at each layer so as to minimize the
error term.

This raises two questions:
1) How do we initialize the weights?
2) How do we compute the error term for hidden layers?

Initializing the weights
How do we initialize the weights?
The obvious answer is to initialize all the weights to 0.
However, this causes problems.

If the parameters all start with identical values, then the algorithm will end up
learning the same value for all parameters. To avoid this, the parameters should be
initialized with small random variables that are near 0, for example computed with a
normal density with variance ε (typically 0.01).

€

∀
i, j ,l
wji
(l) = N (X;0,ε) and

€

∀
j,l
bj
(l) = N (X;0,ε) where

€

N is a sample from a normal

density.

An even better solution is provided by Xavier GLOROT’s technique.

Glorot, X. and Bengio, Y., 2010, March. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial intelligence
and statistics (pp. 249-256). JMLR Workshop and Conference Proceedings.

Machine Learning with Neural Networks ACAI 2021 Tutorial

22

Backpropagation

Back propagation is a distributed parallel algorithm for computing gradient descent.
Back-propagation propagates the error term back through the layers, using the
weights. We will present this for individual training samples. The algorithm can
easily be generalized to learning from sets of training samples (Batch mode).

Given a training sample,

€

!
X m , we first propagate the

€

!
X m through the L layers of the

network (Forward propagation) to obtain an output activation

€

! a (L) .

We then compute an error term. In the case, of a multi-class network, this is a vector,
with k components, one output for each hypothesis. In this case the indicator vector
would be a vector, with one component for each possible class:

!
δm
(out) =

!am
(L) −
!ym() or for each class k: δk,m(out) = ak,m

(L) − yk,m()

To keep things simple, let us consider the case of a two class network, so that

€

δm
out ,

€

h(
!
X m),

€

am
(L) , and

€

ym are scalars. The results are easily generalized to vectors for multi-
class networks.

 For a single neuron, at the output layer, the “error” for each training sample is:

 δm

out = am
(L) − ym()

The error term

€

!
δ m
out is the total error for the whole network for sample m. This error is

used to compute an error for the weights that activate the neuron:

€

δm =
∂f (z)
∂z

δm
out

This correction is then used to determine a correction term for the weights:

 Δwd,m = xdδm
 Δbm = δm

Machine Learning with Neural Networks ACAI 2021 Tutorial

23

Backpropagation can be generalized for multiple neurons at multiple layers (l=1 to
L). The error term for unit k at layer L is:

 δk ,m

(L) =
∂f (zk

(L))
∂zk

(L)
δm
out

For the hidden units in layers l < L the error

€

δ j
(l) is based on a weighted average of the

error terms for

€

δk
(l+1) .

€

δ j,m
(l) =

∂f (z j
(l))

∂zj
(l) wjk

(l+1)δk,m
(l+1)

k=1

N l+1

∑

We compute error terms,

€

δ j
(l) for each unit j in layer l back to layer l–1 using the sum

of errors times the corresponding weights times the derivative of the activation
function. This error term tells how much the unit j was responsible for differences
between the activation of the network

€

!
h (! x m;wjk

(l) ,bk
(l)) and the target value

€

! y m .

For the sigmoid activation function,

€

σ (z) =
1

1+ e−z
 the derivative is:

€

dσ (z)
dz

=σ (z)(1−σ (z))

For

€

aj
(l) = f (zj

(l)) this gives:

€

δ j,m
(l) = aj ,m

(l) (1− aj ,m
(l)) ⋅ wjk

(l+1)δk,m
(l+1)

k=1

N (l+1)

∑

This error term can then used to correct the weights and bias terms leading from layer
j to layer i.

 Δwij,m

(l) = ai
(l−1)δ j,m

(l)
 Δbj,m

(l) = δ j,m
(l)

Note that the corrections

€

Δwij,m
(l) and

€

Δbj ,m
(l) are NOT applied until after the error has

propagated all the way back to layer l=1, and that when l=1,

€

ai
(0) = xi .

For “batch learning”, the corrections terms,

€

Δwji,m
(l) and

€

Δbj ,m
(l) are averaged over M

samples of the training data and then only an average correction is applied to the
weights.

Machine Learning with Neural Networks ACAI 2021 Tutorial

24

€

Δwij
(l) =

1
M

Δwij,m
(l)

m=1

M

∑

€

Δbj
(l) =

1
M

Δbj,m
(l)

m=1

M

∑

then

 wij

(l)← wij
(l) −η ⋅ Δwij

(l) bj
(l)← bj

(l) −η ⋅ Δbj
(l)

where

€

η is the learning rate.

Back-propagation is equivalent to computing the gradient of the loss function for
each layer of the network. A common problem with gradient descent is that the loss
function can have local minimum. This problem can be minimized by regularization.
A popular regularization technique for back propagation is to use “momentum”

 wij

(l) ← wij
(l) −η ⋅ Δwij

(l) + µ ⋅wij
(l)

 bj
(l)← bj

(l) −η ⋅ Δbj
(l) +µ ⋅bj

(l)

where the terms

€

µ ⋅wj
(l) and

€

µ ⋅bj
(l) serves to stabilize the estimation.

The back-propagation algorithm may be continued until all training data has been
used. For batch training, the algorithm may be repeated until all error terms,

€

δ j,m
(l) , are

a less than a threshold.

Machine Learning with Neural Networks ACAI 2021 Tutorial

25

Derivation of Backpropagation as gradient Descent.

To derive the backpropagation equations, consider a simple 2 layer network with 1
neuron at each level that maps a scalar feature, x, to a activation a(2).

a(1)z(1)w(1)

f (z(1))

+1

b(2)b(1)

a(2)z(2)x

f (z(2))

w(2)

+1

The network equations are

 z(1) = w(1)x + b(1)
 a(1) = f (z(1)) = f (w(1)x + b(1))
 z(2) = w(2)a(1)+ b(2)
 a(2) = f (z(2)) = f (w(2)a(1) + b(2))

The network has 4 parameters

 !w =

w(1)

b(1)

w(2)

b(2)

!

"

#
#
#
##

$

%

&
&
&
&&

The “cost”, C, of the error of the network for using the parameters
to discriminate the input, Xm, with ground truth, ym, is:

 Cm =

1
2
am
(2) − ym()

2 	

Where we have multiplied by "1/2" to simplify the algebra.

The gradient of the cost with respect to each of the parameters in !w
tells us how much each parameter contributed to the error.

Machine Learning with Neural Networks ACAI 2021 Tutorial

26

€

am
(1)

€

zm
(1)

€

f (zm
(1))

€

∇Cm

€

Δb(1)

€

am
(2)

€

zm
(2)

€

f (zm
(2))

€

Δw2)

€

Δw(1)

€

Δb(2)

For our 2 layer network.

∇C = ∂C

∂
!w
=

∂C
∂w(1)

∂C
∂b(1)

∂C
∂w(2)

∂C
∂b(2)

"

#

$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'

=

∆ w(1)

∆ b(1)

∆ w(2)

∆ b(2)

"

#

$
$
$
$$

%

&

'
'
'
''

To evaluate these derivatives we use the chain rule. For example the derivative with
of the cost with respect to the weight of the second neuron, w(2) is

 ∂C

∂w(2) =
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
⋅
∂z(2)

∂w(2) =∆ w
(2)

This can be seen graphically as:

∂C
∂a(2)

a(2)z(2)

f (z(2))

∂a(2)

∂z(2)

∂z(2)

∂w(2)
∆ w(2)

The derivative with respect to b(2) is:

 ∂C

∂b(2)
=
∂C
∂a(2)

⋅
∂a(2)

∂z(2)
⋅
∂z(2)

∂b(2)
=∆ b(2)

This can be seen graphically as:

 ∆ b(2)

∂z(2)

∂b(2)

∂C
∂a(2)

a(2)z(2)

f (z(2))

∂a(2)

∂z(2)

We can simplify the notation by defining an error term for each neuron.

Machine Learning with Neural Networks ACAI 2021 Tutorial

27

Let δm(out) = am(2) − ym() = ∂Cm
∂am

(2)
 be the error for the error for the network for training sample

Xm with ground truth indicator ym.

The error term for 2nd neural unit is δm

(2) =
∂am

(2)

∂zm
(2)
⋅ δm
(out)

$

%
&&

'

(
))=

∂f (zm
(2))

∂zm
(2)

⋅ δm
(out)

$

%
&&

'

(
))

with this notation Δwm

(2) =
∂Cm
∂am

(2)
⋅
∂am

(2)

∂zm
(2)

$

%
&&

'

(
))⋅
∂zm

(2)

∂w(2)
=
∂zm

(2)

∂w(2)
⋅ δm
(2)

Reordering the terms and noting that ∂zm

(2)

∂w(2)
=
∂(w(2)am

(1) +b(2))
∂w(2)

= am
(1)

gives: Δwm(2) = am(1) ⋅ δm(2) δ (out)

a(2)z(2)

f (z(2))

δ (2)

∂f (z(2))
∂z(2)

Δw(2) = δ (2) ⋅a(1)

Similarly for the bias term for the 2nd neural unit: Δbm(2) =

∂Cm
∂am

(2)
⋅
∂am

(2)

∂zm
(2)

$

%
&&

'

(
))⋅
∂zm

(2)

∂b(2)
= δm

(2) ⋅
∂zm

(2)

∂b(2)

Noting that ∂z

(2)

∂b(2)
=
∂(w(2)a(1) + b(2))

∂b(2)
=1

We obtain: Δbm
(2) = δm

(2)
δ (2)

∆ b(2)

a(2)z(2)

f (z(2))

∂f (z(2))
∂z(2)

δ (out)

For the next layer we continue the same process recursively

The derivative of the cost with respect to w(1) is:

 Δwm

(1) =
∂Cm
∂w(1)

=
∂C
∂am

(2)
⋅
∂am

(2)

∂zm
(2)

$

%
&&

'

(
))⋅

∂zm
(2)

∂am
(1)

$

%
&&

'

(
))⋅

∂am
(1)

∂zm
(1)

$

%
&&

'

(
))⋅
∂zm

(1)

∂w(1)

Machine Learning with Neural Networks ACAI 2021 Tutorial

28

Substituting δm
(2) =

∂C
∂am

(2)
⋅
∂am

(2)

∂zm
(2)

$

%
&&

'

(
)) gives Δwm(1) = δm(2) ⋅

∂zm
(2)

∂am
(1)

%

&
''

(

)
**⋅

∂am
(1)

∂zm
(1)

%

&
''

(

)
**⋅
∂zm

(1)

∂w(1)

Substituting wm

(1) =
∂(w(2)am

(1) +b(2))
∂am

(1)
=
∂zm

(2)

∂am
(1)

"

#
$$

%

&
'' gives Δwm

(1) = δm
(2) ⋅w(2) ⋅

∂am
(1)

∂zm
(1)

%

&
''

(

)
**⋅
∂zm

(1)

∂w(1)

Substituting ∂ f (z(1))
∂z(1)

=
∂a(1)

∂z(1)
!

"
#

$

%
& gives Δw(1) = δ (2) ⋅w(2) ⋅

∂ f (z(1))
∂z(1)

#

$
%

&

'
(⋅

∂z(1)

∂w(1)

#

$
%

&

'
(

Substituting xm =

∂(w(1)xm +b
(1))

∂w(1)
=

∂zm
(1)

∂w(1)
"

#
$$

%

&
'' gives Δwm(1) = δm

(2) ⋅w(2) ⋅
∂f (zm

(1))
∂zm

(1)

%

&
''

(

)
**⋅ xm

We define the error term for level 1 as δm

(1) = δm
(2) ⋅w(2) ⋅

∂f (zm
(1))

∂zm
(1)

$

%
&&

'

(
))

Rearranging the terms gives: Δwm(1) = xm ⋅ δm(1)

∂C
∂a(2)

∂f (z(2))
∂z(2)

w2x
∆ w(1) a(1)z(1) a(2)z(2)

f (z(2))f (z(1))

∂f (z(1))
∂z(1)

δ (2) δ (out)δ (1)

Similarly for the correction factor of b(1)

Δbm
(1) =

∂Cm
∂b(1)

=
∂Cm
∂am

(2)
⋅
∂am

(2)

∂zm
(2)

$

%
&&

'

(
))⋅

∂zm
(2)

∂am
(1)

$

%
&&

'

(
))⋅

∂am
(1)

∂zm
(1)

$

%
&&

'

(
))⋅
∂zm

(1)

∂b(1)

∂C
∂a(2)

∂f (z(2))
∂z(2)

w2a(1)z(1) a(2)z(2)

f (z(2))f (z(1))

∂f (z(1))
∂z(1)

δ (2) δ (out)δ (1)

1

∆ b(1)

Substituting δm

(2) =
∂Cm
∂am

(2)
⋅
∂am

(2)

∂zm
(2)

$

%
&&

'

(
)) gives Δbm(1) = δm(2) ⋅

∂zm
(2)

∂am
(1)

%

&
''

(

)
**⋅

∂am
(1)

∂zm
(1)

%

&
''

(

)
**⋅
∂zm

(1)

∂b(1)

Substituting wm

(2) =
∂(w(2)am

(1) +b(2))
∂am

(1)
=
∂zm

(2)

∂am
(1)

"

#
$$

%

&
'' gives Δbm

(1) = δm
(2) ⋅w(2) ⋅

∂am
(1)

∂zm
(1)

%

&
''

(

)
**⋅
∂zm

(1)

∂b(1)

Machine Learning with Neural Networks ACAI 2021 Tutorial

29

Substituting ∂a(1)

∂z(1)
!

"
#

$

%
&=

∂ f (z(1))
∂z(1)

 gives Δbm
(1) = δm

(2) ⋅w(2) ⋅
∂f (zm

(1))
∂zm

(1)

%

&
''

(

)
**⋅

∂zm
(1)

∂b(1)
%

&
''

(

)
**

noting ∂zm

(1)

∂bm
(1)

"

#
$$

%

&
''=

∂(w(1)xm +b
(1))

∂wm
(1)

=1 and substituting δm(1) = δm
(2) ⋅w(2) ⋅

∂f (zm
(1))

∂zm
(1)

$

%
&&

'

(
))

Gives: Δbm

(1) = δm
(1)

General formula for the error term

In general, the chain rule ∂C

∂w(l) =
∂C
∂a(L)

⋅
∂a(L)

∂z(L)
⋅
∂z(L)

∂a(L−1)
⋅!⋅

∂z(l+1)

∂a(l)
⋅
∂a(l)

∂w(l)

Provides a recursive formula for each neural unit:

 δ (l) =
∂ f (z(l))
∂z(l)

⋅w(l+1) ⋅
∂ f (z(l+1))
∂z(l+1)

⋅w(l+2) ⋅ !⋅
∂ f (z(L))
∂z(L)

⋅δ (out)
"

#
$

%

&
'

"

#
$$

%

&
''

"

#
$$

%

&
''

"

#
$
$

%

&
'
'

Giving a simple formula for adjusting the values of weights and biases
	

Δw(l) = a(l−1)δ (l) and Δb(l) = δ (l)

Formula for multiple activations
In the case where there are N neural units at level l+1,
the error at level l is the weighted sum of the errors at level l+1.

δ (l) =
∂ f (z(l))
∂z(l)

⋅ wk
l+1 ⋅δk

(l+1)

k=1

N

∑
#

$
%

&

'
(

+1

a(l)z(l)w(l)

b(l)

δ (l)

f (z(l))

w1
(l+1)

wk
(l+1)

wN
(l+1)

a(l−1)
δk
(l+1)

δ1
(l+1)

δN
(l+1)

∂ f (z(l))
∂z(l)

Machine Learning with Neural Networks ACAI 2021 Tutorial

30

Summary of Backpropagation

The Back-propagation algorithm can be summarized as:

1) Initialize the network and a set of correction vectors:

€

∀
i, j ,l
wji
(l) = N (X;0,ε)

€

∀
i,l
bj
(l) = N (X;0,ε)

€

∀
i, j ,l
Δwji

(l) = 0

€

∀
i,l
Δbj

(l) = 0

where

€

N is a sample from a normal density, and

€

ε is a small value.

2) For each training sample,

€

! x m, propagate

€

! x m through the network (forward
propagation) to obtain a network activation

€

am
(L) . Compute the error and propagate

this back through the network:

 a) Compute the network error term: δmout = am

(L) − ym()

 b) Compute the error term at Layer L:

€

δm
(L) =

∂f (zj
(l))

∂zj
(l) δm

out

 c) Propagate the error back from l=L-1 to l=1:

€

δ j,m
(l) =

∂f (z j
(l))

∂zj
(l) wjk

(l+1)δk ,m
(l+1)

k=1

N (l+1)

∑

 d) Use the error at each layer to set a vector of correction weights.

 Δwij,m

(l) = ai
(l−1)δ j,m

(l) Δbj,m
(l) = δ j,m

(l)

3) For all layers, l=1 to L, update the weights and bias using a learning rate,

€

η

 wij

(l) ← wij
(l) −η ⋅ Δwij,m

(l) + µ ⋅wij
(l)

 bj
(l)← bj

(l) −η ⋅ Δbj,m
(l) +µ ⋅bj

(l)

Note that this last step can be done with an average correction matrix obtained from
many training samples (Batch mode), providing a more efficient algorithm.

Machine Learning with Neural Networks ACAI 2021 Tutorial

31

Generative Networks

Deep learning was originally invented for recognition. The same technology can be
used for generation. Up to now we have looked at what are called “discriminative”
techniques. These are techniques that attempt to discriminate a class label, y from a
feature vector,

€

!
X .

€

ˆ y

€

D(
!
X)

€

!
X

The same process can be used to learn a network that generates

€

!
X given a code y.

This is called a “generative” process.

€

y

€

G(y)

€

!
X

Given an observable random variable

€

!
X , and a target variable, gradient descent

allows us to learn a joint probability distribution,

€

P(
!
X ,
!
Y), where

€

!
X , is generally

composed of continuous variables, and

€

!
Y is generally a discrete set of classes

represented by a binary vector.

A discriminative model gives a conditional probability distribution

€

P(
!
Y |
!
X).

A generative model gives a conditional probability

€

P(
!
X |
!
Y)

We can combine a discriminative process for one data set with a generative process
from another and use these to make synthetic outputs.

€

ˆ y

€

D(
!
X)

€

!
X

€

y

€

G(y)

€

!
X

A classic example is an autoencoder. However, to learn the Autoencoder we need to
change use a new form of loss function based on entropy.

Machine Learning with Neural Networks ACAI 2021 Tutorial

32

Entropy

The entropy of a random variable is the average level of "information", "surprise", or
"uncertainty" inherent in the variable's possible outcomes. Consider a set of M
random scalars {Xm} with N possible values, [1,N].

Formally:

€

∀m = 1,M : h(Xm)← h(Xm)+1

From this training set we can compute a probability distribution P(Xm = x) more
commonly written as P(x)

€

P(Xm = x) =
1
M
h(x)

The information in any one observation is

 I (Xm = x) = −log2 P(x)()

Using a log of base 2 gives us information measured in binary digits (bits). The
negative sign assures that the number is always positive or zero, because the log of a
number less than 1 is negative.

Information expresses the number of bits needed to encode and transmit the value for
an event.

Low probability events are surprising and convey more information.
High probability events are unsurprising and convey less information.

For example, consider x to have N=2 values, say 1, or 2. Then the P(X=x)=0.5 and
the information is I(X) is 1 bit. If X had 8 possible values then, all equally likely,
then P(X=x) = 1/8 =1/(23) and the information is –3 bits.

Computing Entropy

For a set of M observations, the entropy is the expected value from the information
from the observations. The entropy of the distribution measures the surprise (or
information) obtained from an observation of a sample in the distribution. .

For a distribution P(x) of feature values X with N possible values, the entropy is

Machine Learning with Neural Networks ACAI 2021 Tutorial

33

 H (X) = − P(x)log2 P(x)()
x=1

N

∑

For example, for tossing a coin, there are two possible outcomes (N=2).
The probability of each outcome is P(X=x)=1/2.
This is the situation of maximum entropy

 H (X) = − P(x)log2(P(x))
x=1

2

∑ = −
1
2x=1

2

∑ log2
1
2
#

$
%
&

'
(= −

1
2x=1

2

∑ −1() =1

This is the most uncertain case. Similarly, in the case where there are N possible
values for X, and all values are equally likely, then P(Xm = x) = 1N and

 H (X) = − 1
N
log2

1
N

"

#
$

%

&
'

x=1

N

∑ = −
N
N

"

#
$

%

&
'log2

1
N

"

#
$

%

&
'= −log2

1
N

"

#
$

%

&
'

For example, for 4 values, the entropy is 2 bits. It would require 2 bits to
communicate an observation. On the other hand, consider when the distribution is a
Dirac function, where Xm is always the same value of xo,

 P(x) = δ(x − xo) =
1 if x = xo
0 otherwise

#
$
%

&%

In this case, the value of Xm will always be xo. Thus there is no information in an
observation and the entropy will be zero. There is no surprise in an observation.

For any other distribution, Entropy measures the non-uniformity of the distribution.

Copied from https://en.wikipedia.org/wiki/Entropy_(information_theory)

Machine Learning with Neural Networks ACAI 2021 Tutorial

34

Cross entropy

Cross-entropy is a measure of the difference between two probability distributions for
a given set of events. Cross-entropy can be thought of as the total entropy between
the distributions.

Copied from (https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html)

Cross-entropy loss can be used to measure the performance of a classification model
whose output is a probability value between 0 and 1, as with the sigmoid or soft-max.
Cross-entropy loss increases as the predicted probability diverges from the actual
label. So predicting a probability of .012 when the actual observation label is 1 would
be bad and result in a high loss value. A perfect model would have a log-loss of 0.

Binary Cross-entropy loss is useful for training binary classifiers with the sigmoid
activation function. Categorical Cross-Entropy is used to train a a multi-class network
where softmax activation is used to output a probability distribution, !a(out) , over the K
classes .

Binary cross entropy

For a network with a single activation output, a(out)

 a(out) = f (z(L)) = 1
1+ e−z

(L) =
ez

(L)

ez
(L)

+1

The Binary cross entropy is

 C(am , ym) = yk log(am)+ (1− ym)log(1− am)

Machine Learning with Neural Networks ACAI 2021 Tutorial

35

Categorical Cross Entropy Loss

For a network with a vector of K activation outputs,

!
a (out) with indicator vector

!y
we calculate a separate loss for each target class.

The output activation is the softmax is

 ak = f (zk) =
ezk

ezk
k=1

K
∑

and the Categorical cross entropy is

 C(
!
a (out) ,

!
y) = − yk

k=1

K

∑ log(ak
(out))

When the indicators variables are encoded with one-hot encoding (Binary encoding
with one variable for each output class), only the positive class where yk =1 is
included in the loss. All other K-1 activations are multiplied by 0. In this case .

 C(!a (out) , !y) = ezk

ezk
k=1

K
∑

Where zk is the linear input for the positive case. The derivative for the positive
activations is

 ∂ak
∂zk

=
∂f (zk)
∂zk

=
∂
∂zk

− log ezk

ezk
k=1

K
∑

$

%

&
&

'

(

)
)

$

%

&
&&

'

(

)
))
=

ezk

ezk
k=1

K
∑

−1
$

%

&
&

'

(

)
)

The derivative for the negative class activations.

 ∂ak
∂zk

=
∂f (zk)
∂zk

=
∂
∂zk

− log ezk

ezk
k=1

K
∑

$

%

&
&

'

(

)
)

$

%

&
&&

'

(

)
))
=

ezk

ezk
k=1

K
∑

$

%

&
&

'

(

)
)

Machine Learning with Neural Networks ACAI 2021 Tutorial

36

The Kullback-Leibler Divergence

The Kullback-Leibler divergence, DKL (P ||Q) also known as the relative entropy of Q
with respect to P measures the divergence between two distributions, P(X) and Q(X).

This can be used to define cross entropy as
 H (P,Q) = H (P)+DKL (P ||Q)

We can use the Kullback-Leibler divergence to measure the divergence between a
constant target activation, a, and an average observed activation for each unit, aj.
The KL divergence between the desired and average activation is:

 KL(a ||
j=1

N (1)

∑ a j) = a log a
a j
+ (1− a)log 1− a

1− a j

#

$
%
%

&

'
(
(

j=1

N (1)

∑

Machine Learning with Neural Networks ACAI 2021 Tutorial

37

AutoEncoders

An auto-encoder is an unsupervised learning algorithm that uses back-propagation to
learning a sparse set of features for describing the training data. Rather than try to
learn a target variable, ym, the auto-encoder tries to learn to reconstruct the input X
using a minimum set of features (latent variables).

The autoencoder was initially invented as means to use back-propagation to perform
Principal Components Analysis (PCA). For PCA, the loss (or cost) is the
reconstruction error for a signal.

Let X̂ = f (

!
X)be the reconstructed version of a pattern

!
X . For PCA, cost (or loss

function) of using X̂ = f (
!
X) to reconstruct

!
X is the means square error of the

reconstruction.
 C(

!
X, f (

!
X)) = 1

2
(X̂ −

!
X)2

An Autocoder learns to reconstruct (generate) clean copies of data without noise.
The Key concepts are:
1) The training data is the target. The error is the difference between input and output
2) Training is with standard back-propagation (or gradient descent).

Machine Learning with Neural Networks ACAI 2021 Tutorial

38

Using the notation from our 2 layer network, given an input feature vector

€

!
X m the

auto-encoder learns

€

{wij
(1) ,bj

(1)} and

€

{wjk
(2) ,bk

(2)} such that for each training sample,

€

! a m
(2) = ˆ X m ≈

!
X m using as few hidden units as possible.

Note that N(2) =D and that N(1) << N(2)

When the number of hidden units N(2) is less than the number of input units, D,

€

! a m
(2) = ˆ X m ≈

!
X m is necessarily an approximation. The hidden units provide a

“lossy” encoding for

€

!
X m . This encoding can be used to suppress noise!

The error for back-propagation for each unit is a vector

€

!
δ m
(2) =
" a m
(2) –
"
X m with a

component δi,m for component xi,m of the training sample

€

!
X m

The hidden code is composed of independent “features” that capture some
component of the input vector. Each cell of the code vector is driven by a receptive
field whose sum of products with the receptive fields of other code cells is almost
zero.

With PCA, the code vectors are required to be orthogonal. For pattern recognition, it
is sufficient that that the code vectors use a minimum number of independent hidden
units (Code vectors). This is done with an information theoretic term referred to as
"sparsity". Sparsity forces learning to generate the smallest set of code vectors that
can reconstruct the training data without noise. The code vectors may have some
slight overlap.

The average degree of independence is captured by a “sparsity parameter”,

€

ˆ ρ .

The Sparsity Parameter
The sparsity

€

ˆ ρ j is the average activation for each of the hidden units j=1 to N(1).
The auto-encoder will learn weights subject to a sparseness constraints specified by a
target sparsity parameter

€

ρ , typically set close to zero.

The simple, 2-layer auto-encoder is described by:

Level 0:

€

!
X m =

x1,m
"

xD,m

"

$
$
$

%

&

'
'
'
 an input vector

Machine Learning with Neural Networks ACAI 2021 Tutorial

39

level 1:
!
Ym = aj,m

(1) = f (wij
(1)xi,m + bj

(1)

i=1

D

∑) the code vector

level 2: X̂m = ak,m
(2) = f (wjk

(2)aj,m
(1) + bk

(2)

j=1

N (1)

∑) the reconstruction of the input.

The output should approximate the input.

€

! a m
(2) =

a1
(2)

"
aD

(2)

"

$
$
$

%

&

'
'
'

= ˆ X m ≈
!
X m , with error

€

!
δ m
(2) =
" a m
(2) –
"
X m

The sparsity

€

ˆ ρ j for each hidden unit (code component) is computed as the average
activation for the M training samples:

€

ˆ ρ j =
1
M

aj,m
(1)

m=1

M

∑

The auto-encoder is trained to minimize the average sparsity. This is accomplished
using back propagation, with a simple tweak to the cost function.

Standard back propagation tries to minimize a loss based on the sum of squared
errors. The loss for each sample is.

 Cm(
!
Xm , ym) =

1
2
(!am

(L) − ym)
2

For an auto-encoder, the target output is the input vector, and the loss is squared
difference from the input vector:

 Cm(
!
Xm , ym) =

1
2
(!am

(L) −
!
Xm)

2

To impose “sparsity” we add an additional term to the loss.

 Cm(
!
Xm , ym) = 1

2
(!am

(L) −
!
Xm)2 +β KL(ρ ||

j=1

N (1)

∑ ρ̂ j)

where

€

KL(ρ ||
j=1

N (1)

∑ ˆ ρ j) is the Kullback-Leibler Divergence of the vector of hidden unit

activations and

€

β controls the importance of the sparsity parameter.

Machine Learning with Neural Networks ACAI 2021 Tutorial

40

The average activation

€

ˆ ρ j is used to compute the correction. Thus you need to
compute a forward pass on a batch of training data, before computing the back-
propagation. Thus learning is necessarily batch mode.

The auto-encoder forces the hidden units to become approximately orthogonal,
allowing a small correlation determined by the target sparsity,

€

ρ . Thus the hidden
units act as a form of basis space for the input vectors. The values of the hidden code
layer are referred to as latent variables. The latent variables provide a compressed
representation that reduces dimensionality and eliminates random noise.

To incorporate the KL divergence into back propagation, we replace

€

δ j
(1) =

∂f (zj
(1))

∂zj
(1) wjk

(2)δk
(2)

k=1

N (2)

∑

with

 δ j
(1) =

∂f (z j
(1))

∂z j
(1)

wjk
(2)δk

(2)

k=1

N (2)

∑ +β −
a
a j
+
1− a
1− a j

&

'
(
(

)

*
+
+

&

'
(
(

)

*
+
+

where N(2) = D, the size of the size of the input and output vectors. (The network
output has the same number of components as the input).

AutoEncoders project the data onto a non-linear manifold that (should) provide a
better representation of the latent space.

The Manifold Learning Hypothesis
•  Examples%concentrate%near%a%lower%dimensional%

“manifold”%(region%of%high%density%where%small%changes%are%only%
allowed%in%certain%direcGons)%

83%
Affine Transformations of a Bitmap Image

(Illustration from the NAACL 2013 lecture from R. Socher and C. Manning)

Positions on this manifold are expressed as vectors of latent variables. Noise is not
encoded in the latent variables. Thus the latent variable can be used to reconstruct
any signal on the manifold, without the presence of any signal (noise) that was not
part of the manifold.

Machine Learning with Neural Networks ACAI 2021 Tutorial

41

Variational Autoencoders

The output of an auto-encoder can be used to drive a decoder to produce a filtered
version of the encoded data or of another training set. However, the output from an
auto-encoder is discrete.

We can adapt an auto-encoder to generate a *nearly* continuous output by replacing
the code with a probabilistic code represented by a mean and variance.

This is called a Variational Autoencoder (VAE). VAEs combine a discriminative
network with a generative network. VAEs can be used to generate "deep fake"
videos sequences.

For a fully connected network, decoding is fairly obvious. The network input is a
binary vector

€

!
Y with k binary values

€

yk , with one for each target class. This is a
code. The output for a training sample

€

!
Y m is an approximation of a feature vector

belonging to the code class,

€

! ˆ X m

€

! a m
(2) = ˆ X m ≈

!
X m

and the error is the difference between a output and the actual members of the class.

€

!
δ m
(2) =
" a m
(2) –
"
X m

The average error for at training set

€

!
Y m{ },

€

!
X m{ } can be used to drive back-

propagation.

Machine Learning with Neural Networks ACAI 2021 Tutorial

42

Generative Adversarial Networks
It is possible to put a discriminative network together with a generative network and
have them train each other. This is called a Generative Adversarial Network (GAN).

A Generative Adversarial Network places a generative network in competition with a
Discriminative network.

The two networks compete in a zero-sum game, where each network attempts to fool
the other network. The generative network generates examples of an image and the
discriminative network attempts to recognize whether the generated image is realistic
or not. Each network provides feedback to the other, and together they train each
other. The result is a technique for unsupervised learning that can learn to create
realistic patterns. Applications include synthesis of images, video, speech or
coordinated actions for robots.

Generally, the discriminator is first trained on real data. The discriminator is then
frozen and used to train the generator. The generator is trained by using random
inputs to generate fake outputs. Feedback from the discriminator drives gradient
ascent by back propagation. When the generator is sufficiently trained, the two
networks are put in competition.

Machine Learning with Neural Networks ACAI 2021 Tutorial

43

Convolutional Neural Networks.

Fully-Connected Networks
Towards the end of the first wave of popularity of Neural Networks in the late 80s,
several researchers began experimenting with networks composed of more than 3
layers. Most experiments explored fully connected networks, where each unit at
layer l+1 receives activations from all units at layer l. The result is a very rapid
growth in the number of parameters to learn, even for simple problems.

If there are N(l) units at layer l and N(l+1) units are layer l+1 then a fully connected
network requires learning N(l)·N(l+1) parameters for layer l. Reliable learning requires
that the number of data samples exceed the number of parameters. While this may be
tractable for small examples, it quickly becomes excessive for practical problems, as
found in computer vision or speech recognition.

For example, a typical image may have 1024 x 2048 = 221 pixels. If we assume, say
a 512 x 512 =218 hidden units we have 239 parameters to learn for a single class of
image pattern, requiring more than 239 training images. Clearly this is not practical
(and, in any case not necessary).

Early Convolutional Neural Networks: LeNet5
From 1988, Yann LeCunn began experimenting with a series of multi-layer
architectures, referred to as LeNet, for the task of recognizing handwritten characters.

LeCunn's first insight was to limit each neural unit to a connection to small window
of units in the previous level, and to learn the same weights for all units. This leads to
a technique where all possible, overlapping, image windows of size NxN provide
training data to train a small number of parameters for a receptive fields network.
The network then uses the same learned weights with every hidden cell. Recall that,
generally, the amount of training required for a network depends on the number of
parameters to be trained. Thus any technique that gives equivalent performance with
fewer parameters will scale to larger networks.

The resulting operation is equivalent to a “convolution” of the learned weights with
the input signal and the learned weights are referred to as “receptive fields” in the
neural network literature.

Machine Learning with Neural Networks ACAI 2021 Tutorial

44

A second insight was to use several convolutional units in parallel to describe each
window. This lead to a map of features for each pixel with the number of units
referred to as "depth".

A third insight was to reduce the resolution of the image by resampling while
increasing the number of parallel receptive fields (depth) at each level. This can be
illustrated with the LeNet5 architecture shown here:

The LeNet5 architecture (1994)

In 1994 Yann LeCunn showed that LeNet5 provided the best performance for written
character recognition. Because processing power, memory and training data were
very limited at that time, many of the innovations in LeNet5 concerned methods to
reduce parameters and computing without degrading performance.

LeNet5 is composed of multiple repetitions of 3 operations: Convolution, Pooling,
Non-linearity. Convolution windows were of size 5x5 with a stride of 1, no zero
padding and a depth of 6. That is 6 receptive fields are learned for each pixel in the
first layer. Using 5x5 filters without zero padding reduced the input window of 32 x
32 pixels to a layer of composed of 6 sets of 28 x 28 units. A Sigmoid was used for
the activation function. Pooling was performed as a spatial averaging over 2x2
windows giving a second layer of 6 x 14 x 14. The output was then convolved with
16 5x5 receptive fields, yielding a layer with 16 x 10x10 units. Average pooling over
2x2 windows reduced this to a layer of 16x5x5 units. These were then fed to two
fully connected layers and then smoothed with a Gaussian filter to produce 10 output
units, one for each possible digit.

Despite the experimental success, LeCun found it very difficult to publish his results
in the computer vision and machine learning literatures, which were more concerned
with multi-camera geometry and Bayesian approaches to recognition. The situation
began to change around 2010, driven by the availability of GPUs, and planetary scale
data (continued exponential growth of the World Wide Web) and the emergence of
challenged based research in computer vision. During this period, computer vision

Machine Learning with Neural Networks ACAI 2021 Tutorial

45

and machine learning were increasingly organized around open competitions for
Performance Evaluation on benchmark data sets.

Many of the insights of LeNet5 continued to be relevant as more training data, and
additional computing power enabled larger and deeper networks, because they
allowed more effective performance for a given amount of training data and
parameters.

The Convolution Equation
For a digital signal, s(n), the equation for convolution of a Finite Impulse Response
(FIR) digital filter, w(n) composed of N coefficients is:

 (w* s)(n) = w(m)s(n−m)
m=1

N

∑

For image processing, the signal and filter are generally 2D: To avoid overloading the
symbols x and y, we will refer to the image columns and rows as i and j. Thus the
image is P(i, j). The formula for 2D convolution of an NxN filter w(i,j) with an
image is:

 w*P(i, j) = w(u,v)P(i −u, j − v)

u=1

N

∑
v=1

N

∑

The value at each position i, j is the sum of the product of a filter (kernel, or receptive
field) w(u,v) with a neighborhood of the image placed at i,j. Note that a 2D
convolution can easily be re-expressed as a 1D convolution by mapping successive
rows of the NxN filter w(u,v) into 1 long column with N2 coefficients, f(n), using:
n = (v−1) ⋅N +u

The use of i–u and j–v is rather than i+u and j+v is purely to assure equivalence with
the classical signal processing operation of convolution. In convolution, the filter is
“flipped” around the center pixel. In reality, many implementations simply use i+u
and j+v. Technically, in signal processing, this would be called a “cross-correlation”.

a(i, j) = f (z(i, j)) = f w(u,v)P(i−u, j − v)+ bk
u,v

N

∑
#

$
%%

&

'
((

Machine Learning with Neural Networks ACAI 2021 Tutorial

46

Multiple Receptive Fields at each Layer
A second innovation was to learn multiple NxN receptive fields at each layer, as was
observed by David Hubel and Torsten Wiesel and used in Computer Vision. The
number of receptive fields is called the “depth” at that layer. We will use the symbol
d from 1 to D as an index for the depth (number of receptive fields) at each level.

ad (i, j) = f (zd (i, j)) = f Wd (u,v)P(i−u, j − v)+ bd
u,v
∑
#

$
%%

&

'
((

For each NxN window, the CNN will compute the product with a vector of K
receptive fields, Wk(u,v) with a bias bk.

 zd = Wd (u,v)Xi, j (u,v)
u,v
∑ + bd = Wd (u,v)P(i−u, j − v)+ bd

u,v
∑

The weighted sum is then processed with a non-linear activation function, f(),
typically a relu or sigmoid of the sum of the product.

€

ak = f (zk) = f Wk (u,v)Xi, j (u,v)+bk
u,v
∑

$
% %

&

'
((

Because a vector of activations !ad =
a1
!
aD

!

"

#
#
##

$

%

&
&
&&
 is computed for each image position, this

should properly be written as ad (i, j) = f (zd) = f Wd (u,v)Xi, j (u,v)+ bd
u,v
∑
"

#
$$

%

&
''

The result is a “feature map” of d features at each position ad(i,j), with d values at
each image position (i,j).

The receptive fields,

€

Wk (u,v) can be learned using back-propagation, from a training
set where each window is labeled with a target class, using an “indicator” image
y(i,j). For multiple target classes, the indicator image can be represented as a vector
image,

€

! y (i, j). More classically, y(i, j) is a binary image with 1 at each location that
contains the target class and 0 elsewhere.

Machine Learning with Neural Networks ACAI 2021 Tutorial

47

CNN Hyper-parameters

CNNs are typically configured with a number of “hyper-parameters”:

Spatial Extent: This is the size of the filter, NxN. Early networks followed computer
vision theory and used 11x11 or 9x9 filters. Experimentation has shown that 3x3
filters can work well with multi-layer networks.

Depth: This is the number D of receptive fields for each position in the feature map.
For a color image, the first layer depth at layer 0 would be D=3. If described with 32
image descriptors, the depth would be D=32 at layer 1. Some networks will use
NxNxD receptive fields, including 1x1xD.

Stride: Stride is the step size, S, between window positions. By default it generally
1, but for larger windows, it is possible define larger step sizes.

Zero-Padding: Size of region at the border of the feature map that is filled with zeros
in order to preserve the image size (typically N).

Pooling

Pooling is a form of down-sampling that partitions the image into non-overlapping
regions and computes a representative value for each region. The feature map is
partitioned into small non-overlapping rectangles, typically of size 2x2 or 4x4, and a
single value it determined for each rectangle. The most common pooling operators
are average and max. Median is also sometimes used. The earliest architectures used
average, creating a form of multi-resolution pyramid. Max pooling was soon shown
to work better.

Machine Learning with Neural Networks ACAI 2021 Tutorial

48

Classic CNN Architectures

The emergence of the internet and the world-wide web made it possible to assemble
massively large data sets of training data, and to issue global challenges for computer
vision techniques to compete on these challenges. Many of the most famous CNN
architectures have been established by winning large scale image classification
challenges. The parameters of the challenge often explain the choice of parameters
for the network, such as the size of the input image and the number of output
categories.

Several key data sets that have influenced the evolution of the domain. Many of the
popular architectures were designed specifically to address research challenges based
on these data sets. Most state-of-the-art object detection networks pre-train on
ImageNet and then rely on transfer learning to adapt the learned recognition system
to a specific domain.

ImageNet
ImageNet is an image database organized according to the nouns in the WordNet
hierarchy. Each node of the WordNet hierarchy is depicted by hundreds of images in
ImageNet. In 2006, Fei-Fei Li began working on the idea for ImageNet based on the
word-database of WordNet, eventually using Amazon Mechanical Turk to help with
the classification of images. The database was first presented as a poster at the 2009
Conference on Computer Vision and Pattern Recognition (CVPR) in Florida.

In 2010 Fei-Fei Li joined with the PASCAL VOC team to create a joint research
challenge where research teams compete to achieve higher accuracy on several visual
recognition tasks. The resulting annual competition is known as the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC). The ILSVRC uses a "trimmed" list
of only 1000 image categories or "classes", including 90 of the 120 dog breeds
classified by the full ImageNet schema. In 2010 and 2011, a good score for the
ILSVRC top-5 classification error rate was 25%.

Machine Learning with Neural Networks ACAI 2021 Tutorial

49

75
163

AlexNet ISI

OXFORD_VGG

XRCE/IN
RIA

Amste
rdam

XRCE/IN
RIA

LEAR-XRCE
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

To
p

5
er

ro
rs

1990 1995 2000 2005 2010 2015 2020

0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

16 000

18 000

SVM

DNN

P
u
b
lic
a
ti
o
n
s

Publications SVM vs DNN1

1 Web of Science [WOS1][WOS2]
2 AlexNet [ALEX]
3 ImageNet Large Scale Visual Recognition [ILSVRC]

AlexNet2

A. Krizhevsky,
I. Sutskever,
G. Hinton
2012 ILSVRC
Top5 error�: 26�% 15�%

Images classi7cation
Top 5 error at ILSVRC 20123,4

DNN

Real
human2nd Winter

(For DL)

The Revenge

of th
e Neurons

4 Similar evolution in Natural language processing, translation, board games, etc.
See�: DeepL.com, AlphaGo, AlphaZero, ...

Without mathematical
guarantee, DNN have proven to
be more eSective in the face of
the complexity of the real
world�!

Real
humans

The big

Contro
versy

Initial champions were statistical recognition techniques using techniques such as
SIFT and HoG. However, in 2012, Alex Krizhevsky won the competition with a deep
convolutional neural net based on LeNet5 called AlexNet. AlexNet achieved and
error rate of 16% (accuracy of 84%). This dramatic quantitative improvement marked
the start of the rapid shift to techniques based on Deep Learning using Neural
Networks. By 2014, more than fifty institutions participated in the ILSVRC, almost
exclusively with different forms of Network Architectures. In 2017, 29 of 38
competing teams demonstrated error rates less than 5% (better than 95% accuracy).

AlexNet
AlexNet, is a deeper and larger variation of LeNet5.

AlexNet Architecture (2010)

Innovations in AlexNet include:

1. The use of relu instead of sigmoid or tanh. Relus provided a 6 times speed up with

the same accuracy, allowing more training.
2. A technique called “dropout” in which randomly chosen units are temporarily

removed during learning. This regularizes the network preventing over-fitting to
training data.

3. Overlap pooling, in which pooling is performed on overlapping windows.

Machine Learning with Neural Networks ACAI 2021 Tutorial

50

The architecture is composed of 5 convolutional layers followed by 3 fully connected
layers. Relu is used after each convolution and in each fully connected layer. The
input image size of 224 x 224 is dictated by the number of layers in the architecture.
Larger images are generally texture mapped to this size.

A good implementation can be found in PyTorch. The network has 62.3 million
parameters, and needs 1.1 billion computations in a forward pass. The convolution
layers account for 6% of all the parameters, and consume 95% of the computation.
The network is commonly trained in 90 epochs, with a learning rate 0.01, momentum
0.9 and weight decay 0.0005. The learning rate is divided by 10 once the accuracy
reaches a plateau.

VGG - Visual Geometry Group

The VGG Architecture (2014)

In 2014, Karen Simonyan and Andrew Zisserman of the Visual Geometry Group at
the Univ of Oxford demonstrated a series of networks referred to as VGG. An
important innovation was the use of very many small (3x3) convolutional receptive
fields. The also introduced the idea of a 1x1 convolutional filter.

For a layer with a depth of D receptive fields, a 1x1 convolution performs a weighted
sum of the D features, followed by non-linear activation. The weights can be learned
with back-propagation.

Machine Learning with Neural Networks ACAI 2021 Tutorial

51

A stack of convolutional layers is followed by three Fully-Connected layers: the first
two have 4096 channels each, the third performs classification and thus contains one
channel for each class (1000 channels for ILSVRC). The final layer is the soft-max
layer. The configuration of the fully connected layers is the same in all networks. All
layers use Relu activation.

YOLO: You Only Look Once

YOLO poses object detection as a single regression problem that estimates bounding
box coordinates and class probabilities at the same time directly from image pixels. A
single convolutional network simultaneously predicts multiple bounding boxes and
class probabilities for each box in a single evaluation. The result is a unified
architecture for detection and classification that is very fast.

making predictions. Unlike sliding window and region
proposal-based techniques, YOLO sees the entire image
during training and test time so it implicitly encodes contex-
tual information about classes as well as their appearance.
Fast R-CNN, a top detection method [14], mistakes back-
ground patches in an image for objects because it can’t see
the larger context. YOLO makes less than half the number
of background errors compared to Fast R-CNN.

Third, YOLO learns generalizable representations of ob-
jects. When trained on natural images and tested on art-
work, YOLO outperforms top detection methods like DPM
and R-CNN by a wide margin. Since YOLO is highly gen-
eralizable it is less likely to break down when applied to
new domains or unexpected inputs.

YOLO still lags behind state-of-the-art detection systems
in accuracy. While it can quickly identify objects in im-
ages it struggles to precisely localize some objects, espe-
cially small ones. We examine these tradeoffs further in our
experiments.

All of our training and testing code is open source. A
variety of pretrained models are also available to download.

2. Unified Detection

We unify the separate components of object detection
into a single neural network. Our network uses features
from the entire image to predict each bounding box. It also
predicts all bounding boxes across all classes for an im-
age simultaneously. This means our network reasons glob-
ally about the full image and all the objects in the image.
The YOLO design enables end-to-end training and real-
time speeds while maintaining high average precision.

Our system divides the input image into an S ⇥ S grid.
If the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object.

Each grid cell predicts B bounding boxes and confidence
scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and
also how accurate it thinks the box is that it predicts. For-
mally we define confidence as Pr(Object) ⇤ IOUtruth

pred . If no
object exists in that cell, the confidence scores should be
zero. Otherwise we want the confidence score to equal the
intersection over union (IOU) between the predicted box
and the ground truth.

Each bounding box consists of 5 predictions: x, y, w, h,
and confidence. The (x, y) coordinates represent the center
of the box relative to the bounds of the grid cell. The width
and height are predicted relative to the whole image. Finally
the confidence prediction represents the IOU between the
predicted box and any ground truth box.

Each grid cell also predicts C conditional class proba-
bilities, Pr(Class

i

|Object). These probabilities are condi-
tioned on the grid cell containing an object. We only predict

one set of class probabilities per grid cell, regardless of the
number of boxes B.

At test time we multiply the conditional class probabili-
ties and the individual box confidence predictions,

Pr(Classi|Object) ⇤ Pr(Object) ⇤ IOUtruth
pred = Pr(Classi) ⇤ IOUtruth

pred (1)

which gives us class-specific confidence scores for each
box. These scores encode both the probability of that class
appearing in the box and how well the predicted box fits the
object.

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S⇥S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S ⇥ S ⇥ (B ⇤ 5 + C) tensor.

For evaluating YOLO on PASCAL VOC, we use S = 7,
B = 2. PASCAL VOC has 20 labelled classes so C = 20.
Our final prediction is a 7⇥ 7⇥ 30 tensor.

2.1. Network Design

We implement this model as a convolutional neural net-
work and evaluate it on the PASCAL VOC detection dataset
[9]. The initial convolutional layers of the network extract
features from the image while the fully connected layers
predict the output probabilities and coordinates.

Our network architecture is inspired by the GoogLeNet
model for image classification [34]. Our network has 24
convolutional layers followed by 2 fully connected layers.
Instead of the inception modules used by GoogLeNet, we
simply use 1⇥ 1 reduction layers followed by 3⇥ 3 convo-
lutional layers, similar to Lin et al [22]. The full network is
shown in Figure 3.

We also train a fast version of YOLO designed to push
the boundaries of fast object detection. Fast YOLO uses a
neural network with fewer convolutional layers (9 instead
of 24) and fewer filters in those layers. Other than the size
of the network, all training and testing parameters are the
same between YOLO and Fast YOLO.

The input image is divided into an S x S grid of cells. Each grid cell predicts B
bounding boxes as well as C class probabilities. The bounding box prediction has 5
components: (x, y, w, h, confidence).

(From Kim, J. and Cho, J. Exploring a Multimodal Mixture-Of-YOLOs Framework for Advanced
Real-Time Object Detection. Applied Sciences, 2020, vol. 10, no 2, p. 612.)

Machine Learning with Neural Networks ACAI 2021 Tutorial

52

The (x, y) coordinates represent the center of the predicted bounding box, relative to
the grid cell location. Width and height (w, h) are predicted relative to the entire
image.

Both the (x, y) coordinates and the window size (w, h) are normalized to a range of
[0,1]. Predictions for bounding boxes centered outside the range [0,1] are ignored. If
the predicted object center (x, y) coordinates are not within the grid cell, then object
is ignored by that cell. Each grid cell also predicts C class conditional probabilities
P(Classi |Object)

These are conditioned on the grid cell containing an object. Only one set of class
probabilities are predicted per grid cell, regardless of the number of boxes.
These predictions are encoded as an S x S x (5B+C) tensor. Where SxS is the
number of grid cells, B is the number of Bounding Boxes predicted and C is the
number of image classes. For the Pascal visual Object Classification challenge, S =
7, B = 2 and C=20 yielding a 7x7x30 tensor.

These scores encode the probability of a member of class i appearing in a box, and
how well the box fits the object. If no object exists in a cell, the confidence score
should be zero. Otherwise the confidence score should equal the intersection over
union (IOU) between the predicted box and the ground truth.

Yolo-1 was inspired by GoogleLeNet. The detection network has 24 convolutional
layers followed by 2 fully connected layers. Alternating 1 by 1 convolutional layers
reduce the features space from preceding layers.

(from: http://datahacker.rs/how-to-peform-yolo-object-detection-using-keras/)

Machine Learning with Neural Networks ACAI 2021 Tutorial

53

 The convolutional layers were pretrained on the ImageNet data-set at half the
resolution (224 by 224 input image). Image resolution was then doubled to (448 x
448) for detection.

Layer	 Name	 Filters	 Stride	 Output	 Dimension	

Conv	 1	 7	 x	 7	 x	 64	 2	 224	 x	 224	 x	 64	

Max	 Pool	 1	 2	 x	 2	 2	 112	 x	 112	 x	 64	

Conv	 2	 3	 x	 3	 x	 192	 1	 112	 x	 112	 x	 192	

Max	 Pool	 2	 2	 x	 2	 2	 56	 x	 56	 x	 192	

Conv	 3	 1	 x	 1	 x	 128	 1	 56	 x	 56	 x	 128	

Conv	 4	 3	 x	 3	 x	 256	 1	 56	 x	 56	 x	 256	

Conv	 5	 1	 x	 1	 x	 256	 1	 56	 x	 56	 x	 256	

Conv	 6	 1	 x	 1	 x	 512	 1	 56	 x	 56	 x	 512	

Max	 Pool	 3	 2	 x	 2	 2	 28	 x	 28	 x	 512	

Conv	 7	 1	 x	 1	 x	 256	 1	 28	 x	 28	 x	 256	

Conv	 8	 3	 x	 3	 x	 512	 1	 28	 x	 28	 x	 512	

Conv	 9	 1	 x	 1	 x	 256	 1	 28	 x	 28	 x	 256	

Conv	 10	 3	 x	 3	 x	 512	 1	 28	 x	 28	 x	 512	

Conv	 11	 1	 x	 1	 x	 256	 1	 28	 x	 28	 x	 256	

Conv	 12	 3	 x	 3	 x	 512	 1	 28	 x	 28	 x	 512	

Conv	 13	 1	 x	 1	 x	 256	 1	 28	 x	 28	 x	 256	

Conv	 14	 3	 x	 3	 x	 512	 1	 28	 x	 28	 x	 512	

Conv	 15	 1	 x	 1	 x	 512	 1	 28	 x	 28	 x	 512	

Conv	 16	 3	 x	 3	 x	 1024	 1	 28	 x	 28	 x	 1024	

Max	 Pool	 4	 2	 x	 2	 2	 14	 x	 14	 x	 1024	

Conv	 17	 1	 x	 1	 x	 512	 1	 14	 x	 14	 x	 512	

Conv	 18	 3	 x	 3	 x	 1024	 1	 14	 x	 14	 x	 1024	

Conv	 19	 1	 x	 1	 x	 512	 1	 14	 x	 14	 x	 512	

Conv	 20	 3	 x	 3	 x	 1024	 1	 14	 x	 14	 x	 1024	

Conv	 21	 3	 x	 3	 x	 1024	 1	 14	 x	 14	 x	 1024	

Conv	 22	 3	 x	 3	 x	 1024	 2	 7	 x	 7	 x	 1024	

Conv	 23	 3	 x	 3	 x	 1024	 1	 7	 x	 7	 x	 1024	

Conv	 24	 3	 x	 3	 x	 1024	 1	 7	 x	 7	 x	 1024	

Fully-‐Connected	 1	 -‐	 -‐	 4096	

Fully-‐Connected	 2	 -‐	 -‐	 7	 x	 7	 x	 30	 (1470)	

Machine Learning with Neural Networks ACAI 2021 Tutorial

54

YOLO-9000 (YOLOv2)

YOLO9000:
Better, Faster, Stronger

Joseph Redmon⇤†, Ali Farhadi⇤†
University of Washington⇤, Allen Institute for AI†

http://pjreddie.com/yolo9000/

Abstract
We introduce YOLO9000, a state-of-the-art, real-time

object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOv2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
faster. Finally we propose a method to jointly train on ob-
ject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don’t have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

1. Introduction
General purpose object detection should be fast, accu-

rate, and able to recognize a wide variety of objects. Since
the introduction of neural networks, detection frameworks
have become increasingly fast and accurate. However, most
detection methods are still constrained to a small set of ob-
jects.

Current object detection datasets are limited compared
to datasets for other tasks like classification and tagging.
The most common detection datasets contain thousands to
hundreds of thousands of images with dozens to hundreds
of tags [3] [10] [2]. Classification datasets have millions
of images with tens or hundreds of thousands of categories
[20] [2].

We would like detection to scale to level of object clas-
sification. However, labelling images for detection is far
more expensive than labelling for classification or tagging
(tags are often user-supplied for free). Thus we are unlikely

Figure 1: YOLO9000. YOLO9000 can detect a wide variety of
object classes in real-time.

1

ar
X

iv
:1

61
2.

08
24

2v
1

 [c
s.C

V
]

25
 D

ec
 2

01
6

YOLO9000:
Better, Faster, Stronger

Joseph Redmon⇤†, Ali Farhadi⇤†
University of Washington⇤, Allen Institute for AI†

http://pjreddie.com/yolo9000/

Abstract
We introduce YOLO9000, a state-of-the-art, real-time

object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOv2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
faster. Finally we propose a method to jointly train on ob-
ject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don’t have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

1. Introduction
General purpose object detection should be fast, accu-

rate, and able to recognize a wide variety of objects. Since
the introduction of neural networks, detection frameworks
have become increasingly fast and accurate. However, most
detection methods are still constrained to a small set of ob-
jects.

Current object detection datasets are limited compared
to datasets for other tasks like classification and tagging.
The most common detection datasets contain thousands to
hundreds of thousands of images with dozens to hundreds
of tags [3] [10] [2]. Classification datasets have millions
of images with tens or hundreds of thousands of categories
[20] [2].

We would like detection to scale to level of object clas-
sification. However, labelling images for detection is far
more expensive than labelling for classification or tagging
(tags are often user-supplied for free). Thus we are unlikely

Figure 1: YOLO9000. YOLO9000 can detect a wide variety of
object classes in real-time.

1

ar
X

iv
:1

61
2.

08
24

2v
1

 [c
s.C

V
]

25
 D

ec
 2

01
6

YOLO9000:
Better, Faster, Stronger

Joseph Redmon⇤†, Ali Farhadi⇤†
University of Washington⇤, Allen Institute for AI†

http://pjreddie.com/yolo9000/

Abstract
We introduce YOLO9000, a state-of-the-art, real-time

object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOv2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
faster. Finally we propose a method to jointly train on ob-
ject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don’t have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

1. Introduction
General purpose object detection should be fast, accu-

rate, and able to recognize a wide variety of objects. Since
the introduction of neural networks, detection frameworks
have become increasingly fast and accurate. However, most
detection methods are still constrained to a small set of ob-
jects.

Current object detection datasets are limited compared
to datasets for other tasks like classification and tagging.
The most common detection datasets contain thousands to
hundreds of thousands of images with dozens to hundreds
of tags [3] [10] [2]. Classification datasets have millions
of images with tens or hundreds of thousands of categories
[20] [2].

We would like detection to scale to level of object clas-
sification. However, labelling images for detection is far
more expensive than labelling for classification or tagging
(tags are often user-supplied for free). Thus we are unlikely

Figure 1: YOLO9000. YOLO9000 can detect a wide variety of
object classes in real-time.

1

ar
X

iv
:1

61
2.

08
24

2v
1

 [c
s.C

V
]

25
 D

ec
 2

01
6

YOLO9000:
Better, Faster, Stronger

Joseph Redmon⇤†, Ali Farhadi⇤†
University of Washington⇤, Allen Institute for AI†

http://pjreddie.com/yolo9000/

Abstract
We introduce YOLO9000, a state-of-the-art, real-time

object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOv2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
faster. Finally we propose a method to jointly train on ob-
ject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don’t have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

1. Introduction
General purpose object detection should be fast, accu-

rate, and able to recognize a wide variety of objects. Since
the introduction of neural networks, detection frameworks
have become increasingly fast and accurate. However, most
detection methods are still constrained to a small set of ob-
jects.

Current object detection datasets are limited compared
to datasets for other tasks like classification and tagging.
The most common detection datasets contain thousands to
hundreds of thousands of images with dozens to hundreds
of tags [3] [10] [2]. Classification datasets have millions
of images with tens or hundreds of thousands of categories
[20] [2].

We would like detection to scale to level of object clas-
sification. However, labelling images for detection is far
more expensive than labelling for classification or tagging
(tags are often user-supplied for free). Thus we are unlikely

Figure 1: YOLO9000. YOLO9000 can detect a wide variety of
object classes in real-time.

1

ar
X

iv
:1

61
2.

08
24

2v
1

 [c
s.C

V
]

25
 D

ec
 2

01
6

In 2016, the YOLO team published performance evaluation results and source code
for a new version of YOLO referred to as Yolo-9000. Yolo-9000 employed a number
of innovations, including ideas that had emerged in the machine learning literature
the previous year. These included:

• Batch Normalization
• Higher Resolution Classifie
• Convolutional With Anchor Boxes.
• Dimension Clusters.
• Bounding boxes with dimension priors and location prediction.
• Fine-Grained Features
• Multi-Scale Training

At low resolutions YOLOv2 operates as a cheap, fairly accurate detector. At 288x288
it runs at more than 90 FPS. This makes it ideal for smaller GPUs, high framerate
video, or multiple video streams. At high resolution the network is competitive with
the state of the art giving 78.6 mAP on VOC 2007 while still operating above real-
time speeds

Code and pre-trained models for Yolo-9000 are available on-line at
http://pjreddie.com/yolo9000/. Additional incremental improvements have been
provided for YOLOv3 and YOLOv4.

Machine Learning with Neural Networks ACAI 2021 Tutorial

55

Generative Convolutional Networks
Generating images with deconvolution.

Just as it is possible to generate signals from codes using fully connected generative
networks, it is possible to construct Generative Convolutional Networks for CNNs
using an operation known as deconvolution.

Deconvolution is often used with convolutional networks to determine the location of
a detected pattern in an image. Deconvolution provides a coarse pixel-wise label
map that segments the image into regions corresponding to recognized classes and
can be used for semantic segmentation.

De-convolution treats the learned receptive fields as basis functions, and uses the
activation at level l to create a weighted sum of bases at level l+1. The learned
receptive fields are multiplied by the map of activation at level l to generate
overlapping projections of receptive fields. These are then summed to create an
image at level l+1. In some cases, the boundary is cropped to obtain an image at the
target window size.

A stride greater than 1 can be used to create a larger image. The stride acts as the
opposite of pooling. For 2x2 average pooling, de-convolution simply projects 4
displaced copies of the receptive field onto a 2 x 2 grid of overlapping receptive
fields. These are then summed to give an image. An example of such a network is
DCGAN architecture.

Machine Learning with Neural Networks ACAI 2021 Tutorial

56

DCGAN

A DCGAN (deep convolutional generative adversarial network) takes 100 random
numbers as an input (or code) and outputs an color image of size 64x64x3

The first fully connected layer is a 4 x 4 array of 1024 cells (Depth = 1024). Total
number of cells is 16 K. This layer has 160 K weights and 16 K biases to train. This
first layer is deconvolved into an 8 x 8 by 512 second layer, where deconvolution
projects each of the cells in the 4x4 layer onto an overlapping set of 5x5 receptive
field with a stride of 2. The process is repeated to create a 3rd layer that is
16x16x256 and then a 4th layer that is 32 x 32 by 128. The final output is a 5th layer
with 64 x64 pixels of 3 colors.

The following are some examples of images generated using DCGAN:

Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10

Example smiling man images generated from smiling woman images.

From:
Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep
convolutional generative adversarial networks, ICLR 2016.

Machine Learning with Neural Networks ACAI 2021 Tutorial

57

Deconvolution with VGG16

VGG16 is a convolutional neural network architecture proposed by K. Simonyan and
A. Zisserman from the University of Oxford in the paper “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. VGG16 scored 92.7% top-5 test
accuracy in ImageNet, which is a dataset of over 14 million images belonging to
1000 classes.

VGG16 improves on AlexNet by replacing large kernel-sized filters (11 x 11 and 5 x
5) with a cascade of 3×3 kernel-sized filter. VGG16 was trained for weeks and using
NVIDIA Titan Black GPU’s.

VGG accepts a 224 x 224 RGB image as input. The first 17 layers use 3x3
convolutions, relu and 2x2 max pooling with a stride of 2 after layers 2, 4, 7, 10 and
13. The depths are D=64 (layers 1, 2), D=128 (layers 3, 4), D=256 (layers 5, 6, 7).
D=512 (layers 8 to 13). Layers 14 and 15 are a 1 x 1 convolution with depth 4096.
Layer 16 is 1 x 1 x 1000 likelihood score for 1000 pretrained classes using softmax
activation.

Three Fully-Connected (FC) layers follow a stack of 1x1 convolutional layers. The
first two full-connected layers have 4096 channels each. The third layer has 1000
channels corresponding to the 1000 image classes corresponding to the 1000 image-
net classes used in the ILSVRC (Image-net Large Scale Visual Recognition
Classification) challenge for which it was designed. The final layer uses soft-max
activation to determine the most likely classes in the 224 x 224 input image.

Machine Learning with Neural Networks ACAI 2021 Tutorial

58

Normally VGG16 is used by scaling (texture mapping) the input image into a 224 by
224 window, without regard for the scale of the input, and produces only a
probability for 1000 trained classes in the image. However, VGG16 can be adapted
as a multiple object detector using deconvolution. The deconvolution network is a
mirror image, replacing pooling with "un-pooling" and convolution with
"deconvolution". This is often referred to as a U-net encoder-decoder.

VGG uses max pooling. With Max pooling, unpooling requires remembering which
unit was selected for each pooling operation. This is done with a "switch Variable"
that records the selected unit. The output is a larger sparse layer in which 3/4 of the
activations are zero.

The following shows an example with deconvolution of the VGG net of a bicycle. (a)
is the original image. The other images show the results of max-pooling for the
14x14, 28x28, 56x56, 112x112, and 224x224 layers

Machine Learning with Neural Networks ACAI 2021 Tutorial

59

The output pixels can be used to provide scores for semantic segmentation for each
pixel. Alternatively bounding boxes can be estimated by computing the 1st and 2nd
moments (center of gravity and covariance), with a likelihood provided by the zeroth
moment (sum of pixel class likelihoods) for each class.

For example, the following are multi-class object detection and semantic
segmentation images obtained from deconvolution with VGG taken from Nachwa
Aboubakr's thesis on observation of cooking activities. Her experiments use the 50
Salads data set.

ÔĸƍƢêō�~ąŇĕĆƚ�'ĕƚĕĆƚĸŢŘ

ʤʤ˺ʨʧ

ƚŢŖêƚŢ
~ąŇĕĆƚ�čĕƚĕĆƚĸŢŘ

~ąŇĕĆƚ�ōêąĕō�̦�ŢąŇĕĆƚ�ōŢĆêƚĸŢŘ

䚉 Tƚ�ĸƍ�ƚĳĕ�ƂƅŢĆĕƍƍ�ŢĬ�êƢƚŢŖêƚĸĆ�ōêąĕōĸŘĭ�ŢĬ�êŘ�ĸŖêĭĕ�ƺĸƚĳ�êŘ�ŢąŇĕĆƚ�ōêąĕō�êŘč�ĸƚƍ�
ōŢĆêƚĸŢŘ˴

gêĆŊ�ŢĬ�ōêąĕōĕč�čêƚêƍĕƚ�ĬŢƅ�ŢąŇĕĆƚ�êŘč�ƚĳĕĸƅ�ƍƚêƚĕƍ

ʤʥ˺ʨʧ

¶êąōĕ�˾ʤ˿ˮ�ÔĸčĕŢ�êĆƚĸŢŘ�ƅĕĆŢĭŘĸƚĸŢŘ�čêƚêƍĕƚƍ

䚉 �ƹêĸōêąōĕ�ƹĸčĕŢ�čêƚêƍĕƚƍ�čŢ�ŘŢƚ�
ƂƅŢƹĸčĕ�ōêąĕōƍ�ŢĬ�ŢąŇĕĆƚ�ƍƚêƚĕƍ˴�

䚉 Õĕ�Řĕĕč�ƚŢ�ĆŢōōĕĆƚ�ê�čêƚêƍĕƚ˴

䚉 'êƚê�ōêąĕōĸŘĭ�ĸƍ�ĆŢƍƚōǀ˴

䚉 TŖêĭĕ̆ōĕƹĕō�ōêąĕōĸŘĭ�ĸƍ�ŖŢƅĕ�
êĬĬŢƅčêąōĕ�ƚĳêŘ�Ƃĸƿĕō̆ōĕƹĕō�ōêąĕōĸŘĭ˴

1ƿêŖƂōĕ�ŢĬ�Ƃĸƿĕō̆ƺĸƍĕ�ōêąĕōĸŘĭ�ŢĬ�ê�ƍĆĕŘĕ

ÕĳŢōĕ�ĆƢĆƢŖąĕƅ

ÕĳŢōĕ�ōĕƚƚƢĆĕ

'ĸĆĕč�ƚŢŖêƚŢ

©ōĸĆĕč�ƚŢŖêƚŢ

Machine Learning with Neural Networks ACAI 2021 Tutorial

60

Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are used to discriminate and generate data that
have an intrinsic order relation (sequences). Examples of sequences that may be
discriminated and generated with RNNs include Speech, Music, Text, and Time
Series data. RNNs can be combined with convolutional networks to recognize and
generate video sequences of actions. RNNs have been traditionally used for natural
language processing including for understanding written text and machine translation,
although they are rapidly being replaced with Transformer using Self-Attention.

Recurrent Networks are Turing Universal, which means that any function that can be
computed by a Turing machine can be computed by a recurrent network.

Copied from Andrej Karpathy, "The Unreasonable Effectiveness of Recurrent Neural Networks",

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

History
In the early days of neural networks (1980's), a frequent criticism was that networks
have no memory, other than the parameter learning. It was said that because
networks did not maintain temporal state, they could not be suitable for tasks
involving temporal or spatial sequences.

In the late 1980s, Rumelhart addressed this question by building on a class of
completely connected networks proposed by Hopfield, leading to the idea of
"unfolding" the network over time. Such networks are now called recurrent neural
networks.

A recurrent neural network (RNN) is a neural network where connections between
nodes form a directed graph along a temporal sequence. This enables the network to
exhibit temporal dynamic behavior. RNNs can use internal state (memory) to process
variable length sequences of inputs. This makes them applicable to tasks such as
handwriting recognition or speech recognition.

Machine Learning with Neural Networks ACAI 2021 Tutorial

61

Finite vs Infinite impulse networks
The term “recurrent neural network” refers to two broad classes of networks finite
impulse and infinite impulse. Both classes exhibit temporal dynamic behavior.

Finite Impulse: A finite impulse recurrent network is a directed acyclic graph that
can be unrolled and replaced with a strictly feed-forward neural network. The
temporal dynamics are similar to a Finite Impulse Response (FIR) digital filter. In
digital signal processing, FIR filters are known to be easy to design, stable, but
limited in the duration of their response. With convolutional networks these are
called 3D, and are a natural extension of convolutional networks. However,
extending the temporal scale by more than a few frames makes learning impossible
because Gradients become too small. This is called the Vanishing Gradient Problem.

Infinite impulse: An infinite impulse recurrent network is a directed cyclic graph
that cannot be unrolled because of internal feedback. These have similar temporal
dynamics to Infinite Impulse Response (IIR) digital filters. In digital signal
processing, IIR filters are known to be difficult to design, unstable, but very powerful
and efficient. The classic Infinite Impulse Recurrent network is the LSTM (Long-
Short-Term Memory) architecture.

Both finite impulse and infinite impulse recurrent networks can have additional
states, and storage can be under direct control of the network. The storage can also be
replaced by another network or graph. Such controlled states are referred to as gated
states or gated memory, and are a key part of gated recurrent units including long
short-term memory (LSTMs) networks.

Recurrent Networks
The classic model for a dynamic process is a function, f (−) , that predicts the state,
s(t) of a system at time t, from the state s(t-1) at time t-1, using parameters !w . Such
as process is known as a "markov" process.

S(t+3) S(t) S(t-2) S(t-1) fW(-) fW(-) fW(-) fW(-) fW(-)

s(t) = f !w (s

(t−1))
In the case of a recurrent network, the "state" is the activation (or vector of
activations) of one or more "hidden" units. In previous lectures we represented the
activation state of a cell with the symbol a. In the recurrent network literature,
activation is generally represented with a state variable h(t)

Machine Learning with Neural Networks ACAI 2021 Tutorial

62

h(t+2) h(t) h(t-1) h(t-1) fW(-) fW(-) fW(-) fW(-) fW(-)

h(t) = f !w (h

(t−1))

The time variable is traditionally represented with a superscript, to keep it apart from
the unit indices at each level.

We can model the effects of an external input by adding an additional term, x(t), to the
temporal transition function.

h(t+2) h(t) h(t-1) h(t-1) fW(-) fW(-) fW(-) fW(-) fW(-)

x(t) x(t+1) x(t+2) x(t-1)

h(t) = f !w (h

(t−1), x(t))

The temporal duration of the network is typically represented the variable τ, so that
the network is said to operate on a temporal sequence x(t) from t=1 to τ.

Normally, the network generates an output represented by an output variable, o(t).

h(t+2) h(t) h(t-1) h(t-1) fW(-) fW(-) fW(-) fW(-) fW(-)

x(t) x(t+1) x(t+2) x(t-1)

o(t) o(t+1) o(t+2) o(t-1)

For example, in a many-to-one network, the network would produce a single output
after τ time steps. For example, the following network assembles the words "This",
"is", "a", and "phrase", into a single output "This is a phrase". In this case, t is the
number of words in the phrase, 4.

h(t+τ) h(t+1) h(t) fW(-) fW(-) fW(-) fW(-) fW(-)

x(t+1) x(t+τ) x(t)

o(τ)

…

… This a phrase

This is a phrase

…

Machine Learning with Neural Networks ACAI 2021 Tutorial

63

A one-to-many network would produce a sequence of τ outputs from a single input.
For example, a single symbol for "This is a phrase" can be expanded into a sequence
of outputs, where τ = 4.

h(t+τ) h(t+1) fW(-) fW(-) fW(-) fW(-) fW(-)

o(t+1) o(t+τ) O(t)

h(t)

x(t)

…

…
… This is phrase

This is a phrase
Folding and Unfolding

Recurrent networks are classically "folded" into a recurrent structure:

h(t+2) h(t) h(t-1) h(t-1)
fW(-) fW(-) fW(-) fW(-) fW(-)

x(t) x(t+1) x(t+2) x(t-1)

o(t) o(t+1) o(t+2) o(t-1)

!
!
!
⇔ !
!

!

h(t)

x(t)

o(t)

Where the black square represents a time delay of 1 time unit. The recurrent
structure can be unfolded to see the network as a 2-D structure.

h(t)

x(t)

o(t)

!
!
!
⇔ !
!

!

h(t+2) h(t) h(t-1) h(t-1)
fW(-) fW(-) fW(-) fW(-) fW(-)

x(t) x(t+1) x(t+2) x(t-1)

o(t) o(t+1) o(t+2) o(t-1)

Machine Learning with Neural Networks ACAI 2021 Tutorial

64

Long Short-Term Memory (LSTM)
In theory, RNNs can keep track of arbitrary long-term dependencies in an input
sequences. However, this generally proves impractical because of a problem known
as the "vanishing gradient" problem. When training a normal RNN using back-
propagation, the gradients which are back-propagated can tend to zero (vanish) or
diverge to infinity (explode), because of the accumulation of errors resulting from
computation with finite-precision numbers. Long short-term memory (LSTM)
provide a solution to this problem.

A long short-term memory (LSTM) is a form of RNN with a recursive memory
structure. LSTM are appropriate for long temporal sequences of such as speech or
video, and have been used to build systems for unsegmented, connected handwriting
recognition, speech recognition and anomaly detection in network traffic.

 LSTMs use feedback connections to enable design of a compact, powerful structure
that can represent an arbitrarily long temporal duration, but can easily result in
instability. A common LSTM unit is composed of a cell, an input gate, an output gate
and a forget gate. The cell remembers values over arbitrary time intervals and the
three gates regulate the flow of information into and out of the cell.

LSTMs were developed to deal with the vanishing gradient problem that can be
encountered when training traditional RNNs. LSTM partially solve the vanishing
gradient problem, because LSTM units allow gradients to also flow unchanged.
However, LSTM networks can still suffer from the exploding gradient problem.

LSTM with a forget gate Copied from: Understanding LSTM Networks - Christopher Olah

(https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
In the above diagram, each line carries an entire vector, from the output of one node
to the inputs of others. The pink circles represent point-wise operations, like vector
addition, while the yellow boxes are learned neural network layers. Merging lines
denote concatenation, while a forking line denotes copies of the vector going to
different locations.

Machine Learning with Neural Networks ACAI 2021 Tutorial

65

Attention is All You Need: Transformers

Attention is a form of filter that suppresses unnecessary tokens allowing the system
to associate relevant tokens. Attention has long been studied in Computer vision as
mechanism to focus processing on the relevant parts of scene. Human vision system
is known to make extensive use of top-down attention processes to suppress
irrelevant part of the visual environment and limit recognition to the most salient or
the most relevant phenomena. Over the years, many researchers have proposed ideas
for using Salience and a-priori knowledge to highlight important phenomena.

In 2010, Hinton proposed that attention could be used to a mechanism to explain the
processing of deep networks. The idea was to reconstruct the parts of the input signal
that contribute to the output of a recognition network. We saw an example of this
with generative convolutional networks using VGG.

This idea was rapidly adopted in Natural Language processing in order to associate
relevant words in a sentence through word highlighting.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Example of attention visualization for an aspect-based sentiment analysis task, from [1, Fig. 6]. Words are highlighted according to attention scores.
Phrases in bold are the words considered relevant for the task or human rationales.

TABLE I

NONEXHAUSTIVE LIST OF WORKS THAT EXPLOIT ATTENTION, GROUPED
BY THE TASK(S) ADDRESSED

recommendation [22], [23], time-series analysis [24], [25],
games [26], and mathematical problems [27], [28].

In NLP, after an initial exploration by a number of seminal
papers [2], [59], a fast-paced development of new attention
models and attentive architectures ensued, resulting in a highly
diversified architectural landscape. Because of, and adding to,

the overall complexity, it is not unheard of different authors
who have been independently following similar intuitions lead-
ing to the development of almost identical attention models.
For instance, the concepts of inner attention [68] and word
attention [41] are arguably one and the same. Unsurprisingly,
the same terms have been introduced by different authors to
define different concepts, thus further adding to the ambiguity
in the literature. For example, the term context vector is used
with different meanings by Bahdanau et al. [2], Yang et al.
[52], and Wang et al. [129].

In this article, we offer a systematic overview of attention
models developed for NLP. To this end, we provide a general
model of attention for NLP tasks and use it to chart the
major research activities in this area. We also introduce a
taxonomy that describes the existing approaches along four
dimensions: input representation, compatibility function, dis-
tribution function, and input/output multiplicity. To the best
of our knowledge, this is the first taxonomy of attention
models. Accordingly, we provide a succinct description of each
attention model, compare the models with one another, and
offer insights on their use. Moreover, we present the examples
regarding the use of prior information in unison with attention,
debate about the possible future uses of attention, and describe
some interesting open challenges.

We restrict our analysis to attentive architectures designed
to work with vector representation of data, as it typically is
the case in NLP. Readers interested in attention models for
tasks where data have a graphical representation may refer to
Lee et al. [130].

What this survey does not offer is a comprehensive account
of all the neural architectures for NLP (for an excellent
overview, see [131]) or of all the neural architectures for NLP
that uses an attention mechanism. This would be impossible
and would rapidly become obsolete because of the sheer
volume of new articles featuring architectures that increasingly
rely on such a mechanism. Moreover, our purpose is to
produce a synthesis and a critical outlook rather than a flat
listing of research activities. For the same reason, we do not
offer a quantitative evaluation of different types of attention
mechanisms since such mechanisms are generally embedded
in larger neural network architectures devised to address

Taken from from Galassi, A., Lippi, M., and Torroni, P. Attention in natural language processing. IEEE Transactions
on Neural Networks and Learning Systems., 2020.

In 2017, a revolutionary paper by Vaswani et al from Google showed that the deep
convolutional and recurrent networks using layers of could be completely replaced
with attention.

Attention allows a network to individually focus on specific elements of a complex
input. The goal is to break down complicated tasks into smaller areas of attention that
are processed sequentially. Attention enhances the important parts of the input data
and fades out the rest, allowing the network to devote more power on a small but
important part of the data. Which part of the data is more important depends on the
context and is learned through training data by gradient descent.

Attention is typically implemented as a function that maps a query and a set of key
value pairs to an output. The attention function compares a query to a set of keys for
possible targets. The keys provide a form of address (hash code) for targets. When a
query matches a key, a value is generated to indicate the relevance of each target to
the query.

Machine Learning with Neural Networks ACAI 2021 Tutorial

66

The Query, Q, is encoded as a form of code, similar to a hash code. Each target
record is identified with a key, K, in the same code. A dot product of Q and K
indicates the degree that the record corresponds to the Query. This product is fed to a
Softmax, to obtain a probability distribution for the set of keys.

Vn = softmax(Q
TKn) =

eQ
TK

eQ
TKn

n=1

N
∑

The resulting attention score is a form of filter that suppresses unnecessary tokens
allowing the system to associate relevant tokens for subsequent encoding.

Attention can be implemented by adding an attention index indicating the relevance
of each word token to a query (additive attention), or by multiply the amplitude of a
each component (dot-product or multiplicative attention) according to relevance to a
query.

Additive Attention
Additive attention computes the compatibility function using a feed-forward network
with a single hidden layer. Here is an example taken where the relevance of the
components of from an input are modified by addition of an attention score and the
sum is normalized to a probability distribution by soft-max.

!
Image from Jay Alammar, The Illustrated Transformer

(http://jalammar.github.io/illustrated-transformer/)

Dot Product Attention
Dot product attention is used to determine the components of a vector, V, that are
most relevant to a query vector, Q using a key vector, K, for each element of the
value. Queries and keys of dimension dk, and values of dimension dv. A key vector
is computed for each token of the input vector. The product is then normalized and
used to modulate a value vector to emphasize relevant components. The weight
assigned to each value expressed by a compatibility function of the query with the

Machine Learning with Neural Networks ACAI 2021 Tutorial

67

corresponding key value. The result is used to select the most relevant parts of an
input for recognition.

From: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L and Polosukhin, I.

(2017). Attention is all you need.

hi = attention(Qi,K j,Vj) = aijVj
j=1

N

∑ where aij = softmax
Qi
TK j

dK

!

"

#
#

$

%

&
&
=
e

Qi
TK j
dK

e
Qi
T Kn
dK

n=1

N

∑

Note that the product of Q and K are scaled by the square root of dk. Dividing the
produce of Q and K by the square root of dk compensates for the extremely small
gradients that can arise from large vector lengths for Q and K.

While the two are similar in theoretical complexity, dot-product attention is much
faster and more space-efficient in practice, since it can be implemented using highly
optimized matrix multiplication code.

Transformers
A Transformer is a transduction model relying entirely on self-attention to compute
representations of its input and output without using sequence-aligned RNNs or
convolution. Most modern sequence transduction models have an encoder-decoder
structure, in which the encoder maps an input sequence of symbol representations to
a sequence of continuous representations. The Transformer follows a similar
approach, using stacked self-attention and point-wise, fully connected layers for both
the encoder and decoder to replace recurrent and convolutional layers used in early
architectures.

Self-attention is an attention mechanism relating different positions of a single
sequence to other positions in order to compute a representation of the same
sequence. Self-attention model is an auto-regressive model, consuming the
previously generated symbols as additional input when generating the next. Self-
attention allows each word in a sentence or paragraph to look at other words to better
know which word contributes to the current word. Words have different meaning.
Self-attention captures the meaning by encoding context words that establish the
meaning.

Machine Learning with Neural Networks ACAI 2021 Tutorial

68

!
Image from Jay Alammar, The Illustrated Transformer

(http://jalammar.github.io/illustrated-transformer/)

Transformers consist of multiple layers where each layer contains multiple attention
heads.

!
Image from Jay Alammar, The Illustrated Transformer

(http://jalammar.github.io/illustrated-transformer/)

Each encoder is composed of a parallel set of attention heads for self-attention,
followed by a linear transformation that maps the selected tokens to a set of latent
variables.

The Encoder
The encoder is composed of a stack of N = 6 identical layers. Each layer has two sub-
layers. The first is a multi-head self-attention mechanism, and the second is a simple,
position- wise fully connected feed-forward network.

!
Image from Jay Alammar, The Illustrated Transformer

(http://jalammar.github.io/illustrated-transformer/)

Machine Learning with Neural Networks ACAI 2021 Tutorial

69

The Decoder

!
Image from Jay Alammar, The Illustrated Transformer

(http://jalammar.github.io/illustrated-transformer/)

In addition to the two sub-layers in each encoder layer, the decoder inserts a third
sub-layer, which performs multi-head attention over the output of the encoder stack.
Similar to the encoder, residual connections are made around each of the sub-layers
followed by layer normalization.

BERT - Bidirectional Transformers
Bidirectional Encoder Representations from Transformers (BERT) is a Transformer-
based machine learning technique for natural language processing (NLP) pre-training
developed by Google. BERT was created and published in 2018 by Jacob Devlin and
his colleagues from Google. BERT was trained by self-supervised learning using
unlabeled data extracted from English Wikipedia with 2,500M words the
BooksCorpus with 800M words. The source code for a trained version of BERT may
be found at https://github.com/google-research/bert

BERT is pre-trained on 3.3 billion tokens of English text to perform two tasks: Mask
Language Model (MLM) and Next Sentence Prediction (NSP). In the MLM task, the
model predicts the identities of words that have been masked-out of the input text. In
the NSP task, the model predicts whether the second half of the input follows the first
half of the input in the corpus, or is a random paragraph. Further training the model
on supervised data results in impressive performance across a variety of tasks ranging
from sentiment analysis to question answering.

The BERT architecture is easily extended to multimodal perception and interaction
by simple concatenation of encodings of different modalities. Each layer uses
multiple Self-Attention Heads to associate multiple mutually relevant entities to be
interpreted at that next level. Thus BERT can be trained to complete missing data
with multiple modalities, or to predict an appropriate reaction in all modalities for a
stimulus in one or more modalities.

Machine Learning with Neural Networks ACAI 2021 Tutorial

70

Programming Environments For Machine Learning

Research in Machine Learning is essentially Empirical. Most research in Machine
Learning is performed in the interactive Python environment in response to public
research challenges using publically available data sets published along with the
research challenge. Researchers are expected to publish their code so that others can
compare results. This style of research has enabled extremely rapid progress at the
expense of ever-growing requirements for computing power and data. Currently, the
computing power required for state of the art research is doubling every 3 to 4
months (5 times faster than Moore's law!).

Python
Python is an interpreted, high-level programming language that is widely used in
machine learning research. Python was created in the late 1980s by Guido van
Rossum at the CWI research center in the Netherlands as a language that emphasizes
code readability. Its language constructs and object-oriented approach are intended to
help programmers write clear, logical code for small and large-scale projects. Python
is ideal for rapid protyping of software. Python 3.0 was released in 2008 and was a
major revision of the language that is not completely backward-compatible with
Python 2.

Python uses whitespace indentation, rather than curly brackets or keywords, to
delimit blocks. An increase in indentation comes after certain statements; a decrease
in indentation signifies the end of the current block. Thus, the program's visual
structure accurately represents the program's semantic structure. This feature is
sometimes termed the off-side rule, which some other languages share, but in most
languages indentation does not have semantic meaning. You can find many on-line
tutorials and MOOCs on the web.
For example, https://www.python.org/about/gettingstarted/

Conda Python
Conda is an open source environment and package management system that runs
on Windows, Apple macOS and Linux. Conda quickly installs, runs and updates
packages and their dependencies. Conda can easily be used to create, save, load and
switch between environments on your a computer. It was created for Python
programs, but can package and distribute software for any language including C and
HTML.

Machine Learning with Neural Networks ACAI 2021 Tutorial

71

As a package manager, conda makes it easy to find and install packages. If you need
a package that requires a different version of Python, you do not need to switch to a
different environment manager, because conda is also an environment manager. With
just a few commands, you can set up a totally separate environment to run a different
version of Python, while continuing to run your usual version of Python in your
normal environment.

In its default configuration, conda can install and manage the thousands of packages
available at repo.anaconda.com that are built, reviewed and maintained by Anaconda.
 Anaconda install packages are available for Linux, Apple MacOS, or MS Windows.
Installer packages for full anaconda can be found at
https://www.anaconda.com/download/
We recommend a simple minimal version referred to as miniconda. The installer
packages for miniconda are at (https://conda.io/miniconda.html)

Jupyter Notebooks.
Jupyter notebooks (http://jupyter.org/) are widely used for collaborative machine
learning. A Jupyter Notebook is an open-source web application that allows creation
and sharing of documents that contain live code, equations, visualizations, HTML
markups and narrative text. Jupyter notebooks provide a browser-based tool for
interactive authoring of documents that may combine explanatory text, mathematics,
computations and their rich media output.

Jupyter notebooks provide:
• In-browser editing for code, with automatic syntax highlighting, indentation, and

tab completion/introspection.
• The ability to execute code from the browser, with the results of computations

attached to the code which generated them.
• Displaying the result of computation using rich media representations, such as

HTML, LaTeX, PNG, SVG, etc.
• In-browser editing for rich text using the Markdown markup language, which can

provide commentary for the code, is not limited to plain text.
• The ability to easily include mathematical notation within markdown cells using

LaTeX, and rendered natively by MathJax.

To install Jupyter Notebooks with miniconda, type:

$ conda install jupyter notebook

Machine Learning with Neural Networks ACAI 2021 Tutorial

72

Keras Example of a network to recognize handwritten digits
The MNIST (Modified National Institute of Standards and Technology) database is a
large collection of handwritten digits. The MNIST database contains 60,000 training
images and 10,000 testing images. The database was created by "re-mixing" samples
of digits from NIST's original datasets taken from American Census Bureau
employees and American high school students. The black and white images from
NIST were normalized to fit into a 28x28 pixel bounding box and anti-aliased, which
introduced gray-scale levels.

The following is an example of a 2-layer fully connected neural network to classify
MNIST digits written using Keras and Pytorch. The first layer has 784 units using
RELU activation and the second layer is composed of 10 units using Softmax
activation. We train this network using the MNIST training data with Categorical
Cross Entropy and an Adam Optimizer. We then print the accuracy and loss for the
resulting network using the MINST test data.

An example of a 2 layer network for MNIST digits
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical

Define a 3 layer fully connected model with 2 layers of 784 units using relu
and a final layer of 10 units using softmax

model = Sequential([
 Dense(28*28, input_shape=(28*28,), activation='relu'),
 Dense(10, activation='softmax')
])

Compile the model with categorical_crossentropy, adam optimizer using accuracy
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

load MNIST Training and Test sets
(trainingSet, trainingLabel), (testSet, testLabel) = mnist.load_data()

Keras digits are 28 by 28 pixels with 8 bits per pixel
Flatten the training and test data arrays to 1-D
and normalize grayscale pixels to values of 0 to 1.

trainingSet = trainingSet.reshape((60000, 28 * 28))
trainingSet = trainingSet.astype('float32') / 255
testSet = testSet.reshape((10000, 28 * 28))
testSet = testSet.astype('float32') / 255

Machine Learning with Neural Networks ACAI 2021 Tutorial

73

map the training and test labels from integers to one-hot coding
trainingLabel = to_categorical(trainingLabel)
testLabel = to_categorical(testLabel)

Train for 5 epochs using a batch size of 128
model.fit(trainingSet, trainingLabel, epochs=5, batch_size=128)

#evaluate the model with the test data and print the results
test_loss, test_acc = model.evaluate(testSet, testLabel)
print('test_loss', "%.4f" % test_loss, ' - test_accuracy:', "%.4f" % test_acc)

Epoch 1/5
60000/60000 [===================] - 6s 97us/step - loss: 0.2475 - accuracy: 0.9305
Epoch 2/5
60000/60000 [===================] - 6s 95us/step - loss: 0.0973 - accuracy: 0.9709
Epoch 3/5
60000/60000 [===================] - 6s 101us/step - loss: 0.0621 - accuracy: 0.9811
Epoch 4/5
60000/60000 [===================] - 6s 103us/step - loss: 0.0438 - accuracy: 0.9868
Epoch 5/5
60000/60000 [===================] - 6s 104us/step - loss: 0.0313 - accuracy: 0.9908
10000/10000 [===================] - 1s 83us/step
test_loss 0.0602 - test_accuracy: 0.9803

A Keras example of a simple CNN
The following is a simple Keras example of to detect MNIST digits provided by
Frank Cholet of Google. This example processes 28x28 pixel imagettes with a
convolutional layer of 32 3x3 filters using relu, followed by 2x2 max pooling, a
convolutional layer of 64 3x3 filters, using relu, followed by 2x2 max pooling, a
flatten layer, dropout of 0.5 and a fully connected layer.

model = keras.Sequential(
 [
 keras.Input(shape=input_shape),
 layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
 layers.MaxPooling2D(pool_size=(2, 2)),
 layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
 layers.MaxPooling2D(pool_size=(2, 2)),
 layers.Flatten(),
 layers.Dropout(0.5),
 layers.Dense(num_classes, activation="softmax"),
]
)
conv2d (Conv2D) (None, 26, 26, 32) 320

max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0

conv2d_1 (Conv2D) (None, 11, 11, 64) 18496

max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0

flatten (Flatten) (None, 1600) 0

Machine Learning with Neural Networks ACAI 2021 Tutorial

74

dropout (Dropout) (None, 1600) 0

dense (Dense) (None, 10) 16010

Machine Learning with Neural Networks ACAI 2021 Tutorial

75

Performance Evaluation for Pattern Classification

Pattern Recognition is the process of assigning observations to categories.
An observation is sometimes called an "entity" or "data" depending on the context
and domain.

Our problem is to build a function, called a recognizer or classifier,

€

D(
!
X), that maps

the observation,

€

!
X into a statement that the observation belongs to a class

€

ˆ C k from a
set of K possible classes.

€

D(
!
X)→ ˆ C k

€

D(
!
X)

€

!
X

€

ˆ C k

In most classic techniques, the class

€

ˆ C k is from a set of K known classes

€

Ck{ }.
For a 2-class detection function, there are K=2 classes : k=1 is a positive detection P,
k=2 is a negative detection, N. Thus

€

Ck ∈ P,N{ }

Almost all current classification techniques require the number of classes, K, to be
fixed. (

€

Ck{ } is a closed set). An interesting research problem is how to design
classification algorithms that allow

€

Ck{ } to be an open set that grows with experience.

In most learning algorithms, we partition the training data in distinct sets in order to
estimate the recognizer and to evaluate the results.
A FUNDAMENTAL RULE in machine learning:

 NEVER LEARN AND TEST WITH THE SAME DATA !

A typical approach is to use cross validation (also known as rotation estimation) in
learning. Cross validation partitions the training data into N folds (or complementary
subsets). A subset of the folds are used to train the classifier, and the result is tested
on the other folds. A taxonomy of common techniques include:

• Exhaustive cross-validation

o Leave p-out cross-validation
o Leave one-out cross-validation

• Non-exhaustive cross-validation
o k-fold cross-validation
o 2-fold cross-validation
o Repeated sub-sampling validation

Machine Learning with Neural Networks ACAI 2021 Tutorial

76

When training neural networks, we will generally divide the data into three sets:

Training Set - used to train the discriminant functions
Evaluation Set - Used to monitor learning and avoid overfitting to the training set
Test Set - used to evaluate the final result and compare different techniques and
architectures.

Two-Class Pattern Detectors

A pattern detector is a classifier or recognizer with K=2.
 Class k=1: The target pattern, also known as P or positive
 Class k=2: Everything else, also known as N or negative.

Pattern detectors are used in computer vision, for example to detect faces, road signs,
publicity logos, or other patterns of interest. They are also used in signal
communications, data mining and many other domains.

The pattern detector is learned as a discriminant function

€

g
!
X () followed by a decision

rule, d(). For K=2 this can be reduced to a single function, as

€

g1

!
X () ≥ g2

!
X () is equivalent to

€

g
!
X () = g1

!
X () – g2

!
X () ≥ 0

A “threshold” value, B, can be used to bias the detector.

The detection function is learned from a set of training data composed of M sample
observations

€

{
!
X m} where each sample observation is labeled with an indicator

variable

€

{ym}
 ym = P or Positive for examples of the target pattern (class k=1)
 ym = N or Negative for all other examples (class k=2)

Observations for which

€

g(
!
X)+ B ≥ 0 are estimated to be members of the target

class. This will be called POSITIVE or P.

Observations for which

€

g(
!
X)+ B < 0 are estimated to be members of the

background. This will be called NEGATIVE or N.

We can encode this as a decision function to define our detection function

€

R(
!
X m)

Machine Learning with Neural Networks ACAI 2021 Tutorial

77

€

D(
!
X) = d(g(

!
X)) =

P if g(
!
X)+ B ≥ 0

N if g(
!
X)+ B < 0

$
%

For training we need ground truth (annotation). For each training sample the
annotation or ground truth tells us the real class

€

ym

€

ym =
P
!
X m ∈ Target -Class

N otherwise

$
%

The Classification can be TRUE or FALSE.

 if

€

D(
!
X m) = ym then T else F

This gives

€

D(
!
X m) = ym AND

€

D(
!
X m) = P is a TRUE POSITIVE or TP

€

D(
!
X m) ≠ ym AND

€

D(
!
X m) = P is a FALSE POSITIVE or FP

€

D(
!
X m) ≠ ym AND

€

D(
!
X m) = N is a FALSE NEGATIVE or FN

€

D(
!
X m) = ym AND

€

D(
!
X m) = N is a TRUE NEGATIVE or TN

To better understand the detector we need a tool to explore the trade-off between
making false detections (false positives) and missed detections (false negatives). The
Receiver Operating Characteristic (ROC) provides such a tool

Performance Metrics for 2 Class Detectors

A number of performance metrics are commonly used to compare 2-class classifiers.
These can be extended to multi-class detectors by using “one vs many”.
That is, the detector for each class, Ck, is evaluated individually by labeling Ck as the
target or Positive (P) class and all other classes as the non-target or Negative (N)
class.

ROC Curves
Two-class classifiers have long been used for signal detection problems in
communications and have been used to demonstrate optimality for signal detection
methods. The quality metric that is used is the Receiver Operating Characteristic
(ROC) curve. This curve can be used to describe or compare any method for signal or
pattern detection.

Machine Learning with Neural Networks ACAI 2021 Tutorial

78

The ROC curve is generated by adding a variable Bias term to a discriminant
function.

€

D(
!
X) = d(g(

!
X)+ B)

and plotting the rate of true positive detection vs false positive detection.

As the bias term, B, is swept through a range of values, it changes the ratio of true
positive detection to false positives.

When B << 0 all detections will be Negative.
When B >>0 all detections will be Positive.
For some range of values of B,

€

D(
!
X) will give a mix of TP, TN, FP and FN.

The bias term, B, can act as an adjustable gain that sets the sensitivity of the detector.
The bias term allows us to trade False Positives for False Negatives.

The resulting curve is called a Receiver Operating Characteristics (ROC) curve.
The ROC plots True Positive Rate (TPR) against False Positive Rate (FPR) as a
function of B for the training data

€

{
!
X m} ,

€

{ym}.

True Positives and False Positives
For each training sample, the detection as either Positive (P) or Negative (N)

 IF

€

g(
!
X m)+B ≥ 0 THEN P else N

The detection can be TRUE (T) or FALSE (F) depending on the indicator variable ym

 IF

€

ym = D(
!
X m) THEN T else F

Combining these two values, any detection can be a True Positive (TP), False
Positive (FP), True Negative (TN) or False Negative (FN).

For the M samples of the training data

€

{
!
X m} ,

€

{ym} we can define:
 #P as the number of Positives in the training data.
 #N as the number of Negatives in the training data.
 #T as the number of training samples correctly labeled by the detector.
 #F as the number of training samples incorrectly labeled by the detector.
From this we can define:

Machine Learning with Neural Networks ACAI 2021 Tutorial

79

 #TP as the number of training samples correctly labeled as Positive
 #FP as the number of training samples incorrectly labeled as Positive
 #TN as the number of training samples correctly labeled as Negative
 #FN as the number of training samples incorrectly labeled as Negative

Note that #P = #TP + #FN (positives in the training data)
And #N = #FP+ #TN (negatives in the training data)

The True Positive Rate (TPR) is

€

TPR =
#TP
#P

=
#TP

#TP+#FN

The False Positive Rate (FPR) is

€

FPR =
#FP
#N

=
#FP

#FP+#TN

The ROC plots the TPR against the FPR as a bias B is swept through a range of
values.

Performance Evaluation

11

When B is at its minimum, all the samples are detected as N, and both the TPR and
FPR are 0. As B increases both the TPR and FPR increase. Normally TPR should rise
monotonically with FPR. If TPR and FPR are equal, then the detector is no better
than chance.

The closer the curve approaches the upper left corner, the better the detector.

!

ym = R(
!
X m)

!

ym " R(
!
X m)

!

d(g(
!
X m)+B > 0.5) True Positive (TP) False Positive (FP)

!

d(g(
!
X m)+B " 0.5) True Negative (TN) False Negative (FN)

Precision and Recall

Precision, also called Positive Predictive Value (PPV), is the fraction of retrieved
instances that are relevant to the problem.

!

PPV =
TP

TP+FP

A perfect precision score (PPV = 1.0) means that every result retrieved by a search
was relevant, but says nothing about whether all relevant documents were retrieved.

Recall, also known as sensitivity (S), hit rate, and True Positive Rate (TPR) is the
fraction of relevant instances that are retrieved.

!

S =TPR =
TP
T

=
TP

TP+FN

A perfect recall score (TPR=1.0) means that all relevant documents were retrieved by
the search, but says nothing about how many irrelevant documents were also
retrieved.

Performance Evaluation

11

When B is at its minimum, all the samples are detected as N, and both the TPR and
FPR are 0. As B increases both the TPR and FPR increase. Normally TPR should rise
monotonically with FPR. If TPR and FPR are equal, then the detector is no better
than chance.

The closer the curve approaches the upper left corner, the better the detector.

!

ym = R(
!
X m)

!

ym " R(
!
X m)

!

d(g(
!
X m)+B > 0.5) True Positive (TP) False Positive (FP)

!

d(g(
!
X m)+B " 0.5) True Negative (TN) False Negative (FN)

Precision and Recall

Precision, also called Positive Predictive Value (PPV), is the fraction of retrieved
instances that are relevant to the problem.

!

PPV =
TP

TP+FP

A perfect precision score (PPV = 1.0) means that every result retrieved by a search
was relevant, but says nothing about whether all relevant documents were retrieved.

Recall, also known as sensitivity (S), hit rate, and True Positive Rate (TPR) is the
fraction of relevant instances that are retrieved.

!

S =TPR =
TP
T

=
TP

TP+FN

A perfect recall score (TPR=1.0) means that all relevant documents were retrieved by
the search, but says nothing about how many irrelevant documents were also
retrieved.

When B is at its minimum, all the samples are detected as N, and both the TPR and
FPR are 0. As B increases both the TPR and FPR increase. Normally TPR should rise
monotonically with FPR. If TPR and FPR are equal, then the detector is no better
than chance.

The closer the curve approaches the upper left corner, the better the detector.

 ym = D(
!
Xm) ym ≠ D(

!
Xm)

€

d(g(
!
X m)+B ≥ 0) True Positive (TP) False Positive (FP)

€

d(g(
!
X m)+B < 0) True Negative (TN) False Negative (FN)

Precision and Recall

Precision, also called Positive Predictive Value (PPV), is the fraction of retrieved
instances that are relevant to the problem.

Machine Learning with Neural Networks ACAI 2021 Tutorial

80

PP = TP

TP +FP

A perfect precision score (PPV=1.0) means that every result retrieved by a search
was relevant, but says nothing about whether all relevant documents were retrieved.

Recall, also known as sensitivity (S), hit rate, and True Positive Rate (TPR) is the
fraction of relevant instances that are retrieved.

€

S =TPR =
TP
P

=
TP

TP+FN

A perfect recall score (TPR=1.0) means that all relevant documents were retrieved by
the search, but says nothing about how many irrelevant documents were also
retrieved.

Both precision and recall are therefore based on an understanding and measure of
relevance. In our case, “relevance” corresponds to “True”.
Precision answers the question “How many of the Positive Elements are True ?”
Recall answers the question “How many of the True elements are Positive”?

In many domains, there is an inverse relationship between precision and recall. It is
possible to increase one at the cost of reducing the other.

F-Measure
The F-measures combine precision and recall into a single value. The F measures
measure the effectiveness of retrieval. The best value is 1 when Precision and Recall
are perfect. The worst value is at Zero.

The F1 score weights recall higher than precision.

F1 Score:

F1 =

2
1

Recall
+

1
Precision

= 2 Precision ⋅Recall
Precision +Recall

The F1 score is the harmonic mean of precision and recall.

Accuracy

Machine Learning with Neural Networks ACAI 2021 Tutorial

81

Accuracy is the fraction of test cases that are correctly classified (T).

€

ACC =
T
M

=
TP+TN
M

where M is the quantity of test data.

Note that the terms Accuracy and Precision have a very different meaning in
Measurement theory. In measurement theory, accuracy is the average distance from a
true value, while precision is a measure of the reproducibility for the measurement.

Benchmark Data Sets Visual Task Challenges

As we saw in lesson 11, many of the popular architectures were designed specifically
to address research challenges based on image data sets. Classically, these data sets
were for challenges related to object detection. More recently the challenges
increasingly address other visual tasks.

The ImageNet Challenge for Object Detection
ImageNet was originally concerned with Image Classification: Does an image (or
imagette) contain an instance of a class? Most state-of-the-art object detection
networks pre-train on ImageNet and then rely on transfer learning to adapt the
learned recognition system to a specific domain. The ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) uses a "trimmed" list of only 1000 image
categories or "classes", including 90 of the 120 dog breeds classified by the full
ImageNet schema.

ImageNet crowdsources its annotation process. In 2018 there were more than 14
million images have been hand-annotated by the project to indicate what objects are
pictured and in at least one million of the images, bounding boxes are also provided.
Image-layer annotations indicate the presence or absence of an object class in an
image. Object-layer annotations provide a bounding box around the (visible part of
the) indicated object.

In 2014, more than fifty institutions participated in the ILSVRC, almost exclusively
with different forms of Network Architectures. In 2017, 29 of 38 competing teams in
the ILSVRC demonstrated error rates less than 5% (better than 95% accuracy).

However, the ILVSRC task is to identify images as belonging to one of a thousand
categories; humans can recognize a larger number of categories, and also (unlike the

Machine Learning with Neural Networks ACAI 2021 Tutorial

82

programs) can judge the context of an image. More importantly, humans are capable
of MANY other visual tasks involving Spatio-temporal interaction with 3D. In
cognitive psychology, these are referred to as visual competences.

COCO - Common Objects in Context
Microsoft COCO is a large-scale object detection, segmentation, and captioning
dataset created in 2015. Images in the COCO data set display are everyday objects
captured from everyday scenes. This adds some “context” to the objects captured in
the scenes

COCO contains more than 2.5M instances in 91 object categories, with 5 captions per
image 330K images (200K+ annotated) with 250,000 people with key points.

Data sets for other visual tasks
An extensive (very large) list of publically available benchmark data sets and
research challenges for visual tasks may be found at.
https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
This list continues to grow rapidly.

There is a growing interest in developing techniques for recognizing actions and
activities from video sequences and multimodal data. The recent emergence of
generative techniques, combined with rapid advances in Robotics and Autonomous
Systems appear likely greatly expand this set of tasks. In particular the recent
progress in Transformers and Attention-based techniques in Natural Language
processing appear likely to enable many new competences for computer vision.

The following are some techniques for multiple object detection and semantic
detection.

