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A Comparison of Three Methods for Measure of Time to Contact

Guillem Alenya, Amaury Negre and James L. Crowley

Abstract— Time to Contact (TTC) is a biologically inspired  of shape obstacles. Moreover, TTC naturally encodes the
method for obstacle detection and reactive control of motion dynamics of the motion of the observer. As a consequence,
that does not require scene reconstruction or 3D depth €s- TT¢ can e used to construct motion reflexes for collision

timation. Estimating TTC is difficult because it requires a id ided that a fast. reliabl b d
stable and reliable estimate of the rate of change of distance avoldance, provided that a iast, rellable measure can be ma

between image features. In this paper we propose a new Of distance in the image.

method to measure time to contact, Active Contour Affine Scale Providing a fast, reliable distance measurement for TTC is
(ACAS). We experimentally and analytically compare ACAS 3 challenging task. Classical methods to compute TTC rely
with two other recently proposed methods: Scale Invariant o the estimation of optical flow and its first derivative [1],

Ridge Segments (SIRS), and Image Brightness Derivatives . . .
(IBD). Our results show that ACAS provides a more accurate [2]. However, optical flow methods are iterative and tend

estimation of TTC when the image flow may be approximated {0 be computationally expensive and relatively imprecise.
by an affine transformation, while SIRS provides an estimate Calculating the derivative of optical flow to estimate TTC
that is generally valid, but may not always be as accurate as further amplifies noise, generally leading to an unstabt an
ACAS, and IBD systematically over-estimate time to contact.  prgliable estimate of TTC. Most demonstrations of this

. INTRODUCTION approach tend to use highly textured objects in order to

Time to Contact (TTC) can be defined as the time th(,j{%bt(:un a dense velocity fields [3]. Such textured objects

an observer will take to make contact with a surface undépeanyef’;ﬁv'?: ragsgﬁgz\lléagf tﬁ?{%.gig%ﬁfﬁggg’i:l;é:t;\?vgm
constant relative velocity. TTC can be estimated as the yrep J

X . . L enes.
d|stance'betweenl two image points d.'V'ded by the rate. &CThe use of the temporal derivative of the area of a closed
change in that distance. The result is a form of relative

distance to the object in temporal units that does not requifrjlcnve contour [4] has been proposed to avoid the problems

camera calibration, 3D reconstruction or depth estimatian associated with the computation of image velocity fields and

. . . . eir derivatives. This is an additional step in the tragkaf
such, TTC can potentially provide the basis for fast visual . . :
; N active contours that can be avoided using the parameters of
reflexes for obstacle avoidance and local navigation.

There is a biological evidence that something like TT he deformation of the active contour [5]. Active contour

is used in biological vision systems, including the huma|11nltlallzatlon is usually performed manually, and is thus

visual system, for obstacle avoidance, manipulation an‘gﬁicu“ to implement in real moving robots.
y X ' P Horn [6] has proposed a method that avoids the the

navigational tasks. For the human retina, it is possible to : .
L L roblem of background segmentation by computing the
show that the accuracy of the estimation of TTC is influenceq ~." ~ . . . . :

erivatives over the entire image. TTC obtained with this

by the relative angle of approach. TTC is more accurate . ; . .
R ._method is only valid when a large fraction of the image

when the observed motion is in the center of the retina

céorresponds to the obstacle.

as well as when the distance between the observer and 1 E‘Some of these approaches restrict viewing conditions or al-

obstacle is small. For artificial systems, if we know the &ng . .
. i, . lowed motions. When affine camera models are assumed [7],
of translational velocities for the observing system we ca

choose the appropriate focal length to adapt the resolutigﬁ]’ .[3]‘ .then aff|r-1e image c_:ondltlons are requﬂ‘ediamera
motion is sometimes restricted to planar motion [3], [8] or
to the expected mean speed.

It is well known that the egomotion of a robot andto not include vertical displacements [7] or cyclotorsi@} [

its relative position with respect to the obstacle cannot bAn alternative approach is to compute TTC from scaled
P P epth [1], [5]. This approach [9] is more complex and can

estimated with a single uncalibrated camera. Part of tqu ; . o
. . . . . e shown to introduces new constraints and additional ®rror
attraction of TTC is that the calculation relies only on ireag

; . .2 when these constrains are not fully satisfied.
measurements and does not require camera calibration or .
. ._ _In this paper we propose a nhew method to compute TTC
knowledge of the structure of the environment or the siz . . .
ased on tracking active contours. We refer to this method
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scale of a scale-normalised ridge segment. The IBD meth@dmputed for a given pixel over a range of scales. The scale
avoids the segmentation and tracking of obstacles by usiiag which the Hessian returns a maximal value is an invariant
the difference of global brightness of the image. Thestor changes of scale and rotation.
methods will be introduced and discussed in more detail in Because the characteristic scale at each pixel varieslgqual
the following sections. with changes in image scale, characteristic scale computed
The remainder of this article is structured as followsfrom the Laplacian or the Hessian can be used to estimate
In Section Il the computation of TTC is introduced. Next, TTC at (nearly) all pixels in image image. However, esti-
in Section Il we introduce briefly the three methods thatmating TTC from characteristic scale requires registetigy
we will compare. Experiments are presented in Section I\images so that the rate of change in scale is measured for
including some theoretical discussion and different pcatt the same image feature.
experiences. Finally, Section V is devoted to conclusions. Image registration is generally estimated by some form of
tracking. A popular approach is to track interest pointshsuc
as the maxima of the Laplacian, as used in the SIFT [11]
The time to contact is usually expressed in terms odetector or the maxima of the Hessian, as provided by the
the speed and the distance of the considered obstacle. THiarris [12] interest point detector. Unfortunately the fitar

II. TIME-TO-CONTACT

classical equation to compute the TTC is detector tends to respond edge and corner points where size
7 is not meaningful. The SIFT detector detects scale-space
T=—"z, (1) maxima of the Laplacian and provides a stable estimate of
dt scale. However, the position of SIFT interest points terds t

whereZ is the distance between the camera and the obstadiecome unstable along elongated shapes, as are common in
and % is the velocity of the camera with respect to themany navigation scenes. The Scale Invariant Ridge Segment
obstacle. However, with a monocular camera the distdhce (SIRS) detector [13] extends the maximum of the Laplacian
is generally unknown. It's possible to derive (1) by using as used in the SIFT detector to detect elongated shapes.
characteristic size of the obstacle in the image [10] and by The SIRS detector consists in maximizing a score function
using that the obstacle is planar and parallel to the imade the 3D segment’s space. We consider a ridge segiient

plane (i.e. affine image conditions) parameterized by two vectors:
o o = (cg,cy,c,) : CeNter position in the image scale-
T= 4o @ space

. ) a o ] o §=(s3,5,,0) = ||5] - @ : half-edge (vector between an
whereo is the size (or the scale) of the object in the image extremity and the center)

d B . . . . . .
and 7 the time derivative of this scale. This equation iS e the score function correspond to the sum of the nor-

more appropriate as the size can be obtained directly in trﬂﬁalized Laplaciarv2L combined with a symmetry detector
image space. This reformulates the problem as a problem

of estimating the size obstacle size, as well as the rate Off S /”F”
l

_ 2 - —
change of size. = IVZL(c+ 1 - )|

Note that the TTC does not rely on the absolute size of —T%ILTLH(EJF L) — V2L(E— 1 - @) dI
the object in the image sequence, but in the relative change
in scale from one frame to another. As a consequence, the —a-|lf]] (3)
TTC computation is not dependent on camera optics or thghereq is a parameter that represent the minimum Laplacian
object size, only is dependent on the depth distance and thgiue needed to detect a segment.
camera velocity. To speed-up the maxima search, we can compute a prin-
cipal direction for any center position by using the eigen

IIl. METHODS FORTTC . .
vectors of the Hessian Matrix

A. Scale Invariant Ridge Segments 0 0%f
A characteristic size for an obstacle can be estimated from H= ( g%”; g%”; >
the characteristic scale using a normalized Laplacianescal dzy  0y?

space. Characteristic scale is computed by computing tfi#en, the score function is performed in a 4 dimensional
Laplacian (or second derivative) of the image for a givespace. A second reduction is also performed by eliminating
pixel over a range of scales. The scale at which the Laplaciaegments where Laplacian value in the center is too low.
is maximized is the "characteristic scale” for that pixel. The algorithm is depicted in Alg. 1. Its result is illustrdte
A characteristic scale can be estimated at all image pointé Fig. 1. We can see that the detected segments fit well
except discontinuous boundaries, where the Laplaciarr@s zemost of visible elements and the segment’s scale depends on
and thus has no maximum, and will return the same valu@e structure size.
for all orientations. A change of scale in the image results For the registration, the detected segments can be tracked
in a similar change in the characteristic scale. using a particle filter described in [13]. The tracking is don

A similar measure can be estimated using the Hessiam the Scale-Space, so the scale automatically estimated at
of the gradient. As with the Laplacian, the Hessian can bany time.
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1: Computation of first and second normalized derivat
Scale-Space

2: Elimination of edge pixel using the ratio of Laplacian

and Gradient values
3: for each pixeldo

4.  Estimation the principal direction using the Hessian

matrix

5. Calculation of the score function and the length that

maximize this function
6: end for
7: Search of local maxima

Algorithm 1: SIRS detector

Fig. 1. An example of Scale Invariant Ridge Segments deteckaich
detected segment is represented by an ellipse where the nisirepresents
the position of the segment and the second axis represenssdle

B. Active contours affine scale

(b) 2m

(& 7m

Fig. 2. Two frames of a robot approaching motion with an activetaur
attached to the rear car window.

where); is the greatest eigenvalue of the 2 matrix MM’
obtained multiplicatingM, formed from the elements of (6)
with its transposéMi”.

If we consider that the sampling period is constant then we
can use the difference between to consecutive framek ¢
as an estimation for the velocity in the change of the scale.
If we define the scaled depth at framas

T

== +1 8
o Z0 + (8)
then the difference of scale in two consecutive frames is
T, —T., .
0y — 0i—1 = 12701 )
and the TTC (2) can be computed as
g; Ty + Zy
= — =— : . 10
’ 0; —04—1 TZI - TZi71 ( )

Note that (8) and (10) include the unknown distari;e
In practice, we se¥, = 1 that will scale all the translations
between 1 and 0.

When the motion is known to be restricted, an approach-
ing trajectory can be parameterized with a redusédpe

Under weak-perspective conditions and general motiomatrix [14]

the deformation of a set of projected points between two
different framesQ, Q' can be parameterized with a 6dof

affine transformation

Q-Q=Wws (4)

where Q is the vector formed with the coordinates &%,
points, first all thez-coordinatesQy and then all they-
coordinatesQy, and W is the shape matrix

Q* Q¥
0 0

1 0

0 0
W_O 1

Q QF
composed oQ*, QY, and theNg-dimensional vector® =
(0,0,...,0)7 and1 = (1,1,...,1)T, and where

®)

S = (ty, ty, M1 — 1, My — 1, Moy, M) (6)

is the 6-dimensionashape vectotthat in fact encodes the
image deformation from the first to the second view.

The scaled translation in depth from the camera to t
observed object can be obtained with

()

10 Q*
W= [ 0o 1 QY] (11)
and the correspondinghape vector
S = (tmatyaa) > (12)

whereo encodes the affine scale parameter. This parameter
can be used instead the scaled translation in (10) to estimat
the TTC.

As can be seen in Fig. 2 few control points are used to
parameterize a complex contour, and with this algorithm not
only the TTC but also robot egomotion can be obtained [15].

As affine imaging conditions are supposed poor TTC
estimations are expected when these are not satisfied. This
will happen basically when perspective effects appearén th
image, due mainly to a translational motion not perpendicul
to the object principal plane.

The main difficulty in this approach is in the initialization
of the contour. Some automatic methods have been pro-

hﬁosed [16], [17] but it is not easy to determine the correct

number and position of the control points. Moreover, when
the robot is far from the obstacle its silhouette is not well
defined, and sometimes it is difficult to initialize a contour
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that fits properly the obstacle once the robot has approached 20
In such conditions the tracking is difficult and the obtained
scale is expected to be of poor quality. 15
C. Image brightness derivative g 10
Recently has been shown [6] that time to contact can be 2

estimated using only spacial and temporal image brightness 5
derivatives. This method is based on the "constant brigistne
assumption” d

d 3000 2000 1000 0

£E($, Y, t) =0 (13) distance (mm)
which assumes that the brightness in the image of a point in (&) Noise in pixels
the scene doesn’t change significantly. This equation can be 20
expanded into the well known "optical flow equation”

15
uE, +vE, + F; =0 (14)

whereu = % andv = % are the x and y component of %10

the motion field in the image, whil&,, £, and E; are the

partial brightness derivatives w.nt y andt. 5
By using a perspective projection model, a relation can

be found between the motion field and the TTC and then 9

a direct relation between image derivatives and TTC. In the 3000 2000 ance () ° 0

special case of translational motion along the optical axis

toward a plane perpendicular to the optical axis, (14) can be

(b) Noise in framerate/velocity

reformulated as Fig. 3. Effect of noise in TTC estimation using a looming motioant
E E 3000mm to 500mm. As expected the same level of induced noise has
Thg + YLy +E =0 (15) different effects on TTC depending on the remaining distance
.
or
— B =0 (16) We will use a simulation environment to test the behavior

of the TTC formulation in presence of noise. TTC compu-

di q d h di ¢ tation involves a ratio between two Gaussian variables. The
gradient(¢E;, + yE,) andz andy are the coordinates o result is a variable with a Cauchy distribution. As is well

considering pixel (mgagure_d from the principal pomt). known it cannot be characterized as a normal distribution
A least square minimization method over all pixels can b, the mean and variance. Instead, the median is used as
used to estimate an average TTC it characterizes the location parameter specifying thatlon
G2 of the peak of the distribution. In the first experience we tes
_ZGEt . (17)  the effect of noise in the scale. Noise expressed directly in
the scale is difficult to determine, as it is strongly related
The computed TTC with IBD is known to be biased duahe image processing algorithm we will use in each case.
to the inclusion of background zones in the TTC estimafTC has been evaluated simulating performing a Monte
tion [6]. This could be avoided using a object detectiorCarlo simulation adding Gaussian noise with zero mean and
method in junction with a tracking algorithm, but the use; = (0.2 to the location in the image of the point features,
of these “higher level” processing is against the philogophwith a looming motion going from 3000mm to 500mm.
of this method that was conceived precisely to avoid featuiResults are shown in Fig. 3(a). Vertical bars in each distanc
extraction or image segmentation and tracking. represent the 25 and 75 percentile of the obtained TTC. The
non-Gaussian nature of the result can be seen primarily in
the beginning of the motion, between 3000mm and 1500mm,
A. Completeness of the TTC where both percentiles are different. As was expectedgenois
The computation of the TTC as presented is completeauses more error when the depth between the camera and
in the sense that a solution is always provided: in absen#ee obstacle is large, and its effects are less importanhwhe
of noise on the inputs the scale is correctly computed (arthis distance is short. This means that TTC is meaningful
consequently also its velocity) and the obtained TTC is th¢hen we are close to the obstacle. This is useful when the
correct one; in noisy conditions, the method formulatiorfiobot is at relatively low velocity, but this will fail at hig
allows to compute a valid TTC, and also reports whe@pproaching velocities.
no motion is present and consequently when the TTC is In the second experiment we consider the constant fram-
meaningless. erate/velocity assumption. In a real scenario, considetie

where is the time to contact of the plané&; is the radial

T =

IV. EXPERIMENTS
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framerate constant is only an approximation. In one side, it
is quite difficult to obtain perfectly constant velocity wian
outdoor robot, taking into account the terrain irregulasit
and possibly some turnings. On the other side, it is difficult
to obtain a constant camera framerate when no specific hard-
ware and software is used. In this experiment we introduced
Gaussian noise with zero mean ane- 0.2 to the derivative

. ; ) (a) First frame (b) Last frame
estimation of the scale to simulate both effects. Results ar
depicted in Fig. 3(b) and, as can be observed, the effect 200,
on noise in the framerate/velocity is less important than th 1800
noise in the scale. 160"
. . 140F
B. TTC in a controlled environment 212
@120,
We have experimented the TTC algorithms in a simu- Emo,

lated environment. The main advantage is that ground truth
here can be exactly known, and problems with illumination
changes, vehicle velocity fluctuations and perturbed camer
framerates can be controlled.

In the previous section we have seen the effects of noise

3(“38(),
60 -
40 |
20 |

in TTC formulation. Here we present a discussion about 00 20 40 e 80 100 120 140
filtering the obtained TTC. We have used a Recursive Least time (frames)

Square (RLS) filter that includes a forgetting factor that (c) TTC using SIRS

allows to weight the importance of old measures.

We have also made some tests using a Kalman filter. 200 — —
The obtained results using Kalman filtering instead of RLS 180} ol :Ligl ]
doesn't justify its use taking into account the additional 1601 ol |
complexity that is added to the algorithm and the additional bl b
work in initialize some of the required parameters. Z 120! o

Two frames of the simulated sequence and the results § 100!
applying different forgetting values can be observed in Eig S
Filtering increases the stability of the computed TTC, but sy
some inertia is introduced by the filter. This can be clearly 60y
observed at the end of the motion at frame 120 of Fig.s 4(c) 40 ¢
and 4(d). 20 1

Comparing SIRS (Fig. 4(c)) with ACAS (Fig. 4(d)) we 0 5 4o 60 B0 150 150 140

can see that in the beginning of the sequence ACAS is not time (frames)
capable of recovering precisely enough the scale (frames
from O to 40) and TTC cannot be recovered. Conversely,
SIRS can compute a value for the TTC, even if it is a littlerig. 4.  (a) Initial and (b) final images of a sequence of 140 frame
bit overestimated. involving a displacement from 8.26m to 1.21m. (c) Obtained Til€ring

. with RLS algorithm. Thick line is the ground truth, and thinds are the
Howe:ver, from frame 40 to 140 ACA_S '_S capable Ofresult applying different “forgetting” values to RLS
recovering the TTC, and results before filtering are clearly

good enough. With these results our robot in the simulagon i
able to stop before crashing with the pedestrian at a sgcurit |, the case of ACAS and SIRS the accuracy of the

distance of 25 frames, 1 second if we assume 25fps.  ompyted TTC depends on the ability to track the selected
object and to measure its size in the image. The SIRS method
is designed to detect and track elongated and contrasted
To evaluate and compare different methods in the reahape, this method should thus perform well when the image
world, we have captured a video sequence with a camecantain one or more pattern with these characteristics, lik
embarked on a Cycab vehicle. The speed of the vehicle tise black lines on the car, or pedestrian’s legs. The ACAS
controlled and set to a constant speed during a period of temethod can be performed only when clean contours are
seconds. The real TTC is not exactly know but as the spe&sible around the object’s shape.
is approximately constant, the expected TTC is linear durin IBD method may be usable for all sequences as it only

(d) TTC using active contours

C. TTC in a real scenario

the constant speed period. require images derivatives, neither detection nor tragkin
In these scenes, we observed a car under different poiretse required. Nevertheless, TTC is computed in the whole
of view (Figs. 5(a), 5(b), 5(c)). image, so it takes into account distant objects with large
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Fig. 5. Three of the experiments performed with car like obetada)(b)(c) One of the frames of the sequence. Robot mot#ts aproximately at 7m
and approaches up to 2m.

TTC and the obtained value is too overestimated. For thishen the image flow may be approximated by an affine
reason, we applied the algorithm only on the middle quartéransformation, while IBD systematically over-estimatae

of the image. As we will see, even with this modificationto contact, and SIRS provides an estimate that is generally
overestimation results are still obtained. valid, but may not always be as accurate as ACAS.

Figs. 5(d), 5(e) and 5(f) shows the results of the TTC A weakness of the ACAS method is that it requires
computed by the different methods. The thin solid line is atat obstacles first be segmented from the background. We
estimation of the ground truth (the slope is obtained fromaye experimented with different automatic methods for
the vehicle speed and the y-intercept has been manuafutomatic initialization of active contours, but not yetifi
adjusted). a satisfactory method.

In the rear and lateral car experiments (Figs. 5(a) and 5(C)) g|rs provides a potential means to initialize ACAS. Mul-
ACAS outperforms the other two methods. Active contourgy e ridges can be tracked in real time, and ridges resyiltin
tracker performs here because the contour of the car Wlndqﬁsma" TTC can be flagged for more accurate computation
is clear.ly defined. IBD using a ceptered window slightlyOf TTC using ACAS. Thus, it should be possible to SIRS
overestimates the TTC and SIRS in sequence 5() iS NQY jetect and initialize potential obstacles, and thenguaim
able to track correctly any elongated feature until the end Qsine scale computed from active contours to obtain a more
the sequence. ccurate estimate from the obstacle.

However, in the sequence with the car oblique (Fig.5(b) .
ACAS is not able to track any contour. This is due the We note that ACAS makes a strong assumption that the

non frontoparallel position of the car. Perspective effente g?;tgc(;ief r:/(l)fvvmegkeljgierexaﬁrilgif a\ggnvr':gﬂgr?n(g't;%?ﬁevyl?e'ﬁ
clearly present, and in this situation affine imaging candi P P

are not _satisfied and ACAS tracker fails to model imaggqsgsucggggfnihétz;ieragr OT;_C_:I_ c;j (;Tjagi% do:/]vit?n SIF;{%“?/\I/EII
gﬁ;o::n;r?;)uqz alz QZEEZ?SeOfStESTI.?CabIe to track a featuﬁéegrade when perspective effects increase. We can, hqwever
’ define methods to test the frontal-parallel condition teedet

V. CONCLUSIONS situations where perspective effects may degrade TTC [4].

In this paper we have proposed a new method to calcu- We note that TTC can be improved by use of smoothing
late TTC using affine scale computed from active contoursver time using a smoothing function such as a Kalman filter,
(ACAS). We have compared this method with two recentlyr other methods. We have found that recursive least squares
proposed measures: Scale Invariant Ridge Segments (SIRBith a forgetting parameter provide reasonably good result
and Image Brightness Derivatives (IBD). Our results shovior such filtering. However, such filtering can introduce a
that ACAS provides a more accurate estimation of TTGelay in TTC estimation, that may be a problem in real time
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