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Abstract. This paper presents a theoretical and experimental comparison of different forms
of SSD and normalised cross-correlation of image neighborhoods.  Signal detection theory is
used as a framework for analysis of correlation techniques. A sum of squared difference (SSD) of
two image neighborhoods is shown to provide an optimal matching measure for tracking and
registration in the case fo additive Gaussian noise. Correlation of the image, its gradient
magnitude or its Laplacian are discussed. The relations between SSD and Cross Correlation are
demonstrated, and different normalisation techniques are described. An experimental
comparison is made of SSD, Normalized Cross Correlation, and Zero-Mean normalised cross
correlation, in the presence of changes in light level, additive Gaussian noise, and salt-and-
pepper noise.
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1. Introduction

Many computer vision techniques require matching
parts of images. Examples include registering
images to determine shift and deformation for
reconstruction using stereo and motion, matching to
a reference for recognition, verification and event
detection and extraction of information to index into
an image database. Matching is fundamental to
computer vision.

For many years, vision researchers have believed
that the central problem of matching was one of
computational cost. To reduce the cost of matching,
researchers have sought to perform matching at the
highest possible level of abstraction. Most
techniques involved constructing a hierarchy of
increasingly abstract image descriptions, matching at
the most abstract level, and then propagating
correspondences back down the hierarchy to
determine association of parts. A typical image
hierarchy is composed of descriptions of the image
contents at following abstraction levels:
Level 0: The raw image or its derivatives.
Level 1: Edges (represented as segments or

contours).
Level 2: Groupings of edges, (a network of

structures).
Level 3: Recognised objects and object parts.

Unfortunately, the processes for deriving each level
of description from the immediately lower level are
typically prone to errors. At each level, unstable
reactions to noise in the lower level leads to both

extraneous components and to missing parts. Efforts
to overcome such errors lead to processes whose
computational complexities are of relatively high
order. In particular, recognition by matching
networks of structures in the presence of missing
and extraneous symbols has an exponential
complexity. The complexity and unreliability of ad
hoc "higher level" matching processes has lead some
non-specialists to assert that computer vision has
failed. Fortunately, this opinion is incorrect.

As available computing power has increased (by a
factor of 2 each 1.5 years) it has become apparent
that mastering computational cost requires mastering
computational complexity.  Signal processing
theory (and the related areas of information theory
and estimation theory) provide the mathematical
tools to design robust low-level matching
procedures, complete with estimates of the
probability of error. Furthermore, these techniques
have constant computational complexities and can
easily be computed at video rates using relatively
simple hardware. Image signals can be matched
robustly and in real time by pixel based operations
derived using signal processing tools.

Optimal techniques for comparing signals generally
use a form of "Sum of Squared Difference" of the
signals expressed in a discrete basis set (Wozencraft
and Jacobs 1965). For image neighborhoods, this
similarity measure can be computed using the
individual pixels as the basis space, or using more
exotic spaces such as multi-resolution pyramids
(Burt and Adelson 83; Crowley and Stern 84), tensor
spaces based on Gabor filters (Granlund 78;



Knutssson 89), or spaces derived by principle
components analysis (Turk and Pentland 91). Sum
of Squared Difference (or SSD), (Anandan 87),
provides a general expression which can yield a
variety of specialised forms of cross-correlation,
depending on how normalisation is performed.

The correlation of a template neighbourhood with a
search region of an image is a direct extension of
operations which are basic tools in signal processing
and communications theory. Although cross-
correlation was used in the early years of computer
vision (Moravec 77), it has been neglected over the
last few decades.  The common wisdom was
unreliable and computationally expensive. Vision
researchers sought to reduce computational cost by
operating on more abstract descriptions such as
groupings of edge segments (Binford 82).
Unfortunately, the reliable detection of such abstract
descriptions has proven to be very difficult. In
addition, rapid increases in available computing
power have made video rate correlation possible on
inexpensive hardware (Inoue et al 92).

The basic formula for cross correlation can be
derived directly from an inner product of two vectors,
or equally from the sum of squared differences of two
neighbourhoods. Unfortunately analytical
considerations leave open a number of questions
about the normalisation of the signals to be
correlated. As a result, one finds a variety of
normalisation techniques, each with its own
characteristics. Thus the first part of this paper
examines the derivation of cross-correlation and the
motivations for the different forms of normalisation.
Different normalisation techniques are compared
from both an analytic and an experimental point of
view.

 A comparison is also made of correlation of the raw
signal, the gradient magnitude, and the Laplacian.
Experimental results show that correlation of the
Laplacian is more precise while correlation with the
raw signal is more robust with respect to image
noise.The Gradient provides a good trade-off between
robustness and precision.

This paper presents an experimental comparisons of
different forms of SSD and normalised cross
correlation of image neighborhoods. The
experiments are performed using pixels as the basis
set, but but the results can be extended to
comparisons in other spaces.

2. Signal Processing Background

The optimal receiver principal from communications
theory (Wozencraft and Jacobs 65) provides a

mathematical framework for designing systems
which communicate messages over noisy channels.
This framework permits a designer to estimate the
probability of error for a communication and thus to
design systems for which this probability of error is
minimized.  In this framework, minimizing the
probability of error for matching leads directly to
minimizing a  sum of squared difference. When
signals are suitably normalized, minimizing a sum
of squared difference is equivalent to maximizing a
correlation (Duda and Hart 73). This is interesting
because of the existence of image coding hardware
for the MPEG standard which can beprogrammed to
image correlation at video rates (Inoue et al. 92).  It
is also interesting because correlation is a form of
inner product in a vector space defined by the image
pixels. The key question is how to normalize the
signals.

The optimum receiver principle was developed at
about the same time as the first digital computers,
and thus pre-dates both computer vision and pattern
recognition. This principle has not become a part of
the science of computer vision because the basic
assumption of additive Gaussian noise does not
apply. However, techniques such as principal
components analysis and invariance theory provide a
means to factor out the effects of some non-
Gaussian perturbations.

2.1 The Optimal Receiver Principal

An optimum receiver is designed to determine the
identity of a message given a received signal which
has been corrupted by noise. The message to be
detected, denoted mi, is known to have come from  a
finite set  mi ∈ {M}. The message is coded as a
time varying signal vector, s(t), which is then
transmitted across a channel where it is corrupted by
a noise signal n(t) to produce a received signal r(t).
The receiver uses the received message to produce an

estimate of the most probable message, m̂i, as
shown in figure 1.
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figure 1. A receiver estimates a message from a
received signal corrupted with noise.

Having a model of the noise is fundamental to the
design of an optimal receiver. Because
electromagnetic phenomena obey superposition, the
optimum receiver model assumes that the noise
source is additive. In computer vision, the signals
are discretely sampled vectors, and many of the noise



sources are not additive, but it is possible to design
vector spaces which are relatively equi-variant to
many sources of noise.

To estimate the identity of the communicated
message, the receiver transforms the received
message into an new representation by convolving
with a set of N basis signals  ϕn(t), to produce a set
of channels rn(t) for n = 1, ..., N. This basis set can

be expressed as a vector basis set ϕ→(t) = {ϕn(t)}. For
continuous time varying signals, convolution is
realized by a multiplication followed by integration.
A timing device is used to signal the instant T
where the integration has completed and the signal
may be detected.  In computer vision, the simplest
such basis set are the individual pixels which
compose an image. Basis sets with additional
invariance properties can be added using the gradient
and Laplacian, or other techniques such as principal
components analysis.
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Figure 2. An optimum receiver expresses the
received signal with a set of basis functions and then

applies a detection rule.

Convolution with the basis set ϕ→(t) transforms the
received signal to a point  r

→
  = (r1, r2, .., rN).  Each

message, mi, can be represented as a point, s
→

i,  in
this space obtained by expressing the transmitted
signal with the basis set. In a computer vision
system, the simplest  basis space for  the signal
vector, rn , is the image of pixels,  R(i, j). A
template for a signal to be detected corresponds to a
mask of pixels, S(i, j). The pixel vector space can
be transformed to a space which has lower
dimensionality and better noise invariance by
multiplication with another basis set of filters.

In communication theory, the detection process is
typically performed by a simple "nearest neighbour"
classifier. This is justified by the assumption of
additive Gaussian noise, n(t). For such noise, the
error probabilities are independent for each channel,
and can be described as a noise energy, W. The noise
energy specifies the variance for a Gaussian
probability distribution, and permits the
estimationof the probability of receiving signal

vector r
→

 given that the message was mi.

P( r
→

 | mi)  = P( r
→

 – s
→

i).

Applying Bayes rule, and eliminating P(r
→

) give a
probability of a message as a function of the
received vector.

P(mi | r
→

 )  ∝ P(r
→

 | mi)  P(mi).

Writing the expression for this probability as a
Gaussian function and applying a logarithm gives:

P(mi | r
→

 )  ∝  || r→ – s
→

i ||2  +  W Ln{P(mi)}

Thus, the detector need only determine the message
mi for which distance from  s

→
i to r

→
 is minimum in

the signal space. This process is equivalent to a
normalized cross correlation (Duda and Hart 72), as
can be see by simply computing:
 || r→ – s

→
i ||2  =   || r→||2 – 2 || r

→ 
s

→
i ||  + || s

→
i ||2.

When  r→ 
and  s

→
i are normalised to a unit length, then

minimizing || r→ –s
→

i ||2 is equivalent to maximizing
the cross correlation  || r

→
 s
→

i ||.

2.2 SSD and Correlation.

To apply the optimum receiver principle to the
image matching problem,  r→ 

and  s
→

i are replaced by
arrays of pixels.  Let us define the "received" image
as R  (say of size 512 by 512) and the message
signal to be detected as a small image mask S of
size M by N. In the absence of noise, S is detected
in R at position (i, j) if the sum of squared
differences is a local minimum below a threshold.
Thus, the matching measure SSD is defined at
location (i, j) as shown in equation 1. As seen
above, SSD minimizes the probability of error for
white Gaussian additive noise.

SSD(i,j)= ∑
m=0

M
  ∑

n=0

N
 (R(i+m,j+n)–S(m,n))2 (1)

In computer vision the goal is often to determine the
position at which a reference template best matches
the image. Thus the SSD(i, j) must be computed
over a search region of possible image locations.
For example, in tracking, the search region is
centered on the predicted position and its size
depends on uncertainty in accelerations of the target.
Limiting the size of the search region can speed the
search and permit even faster tracking (Berard 94).

As with the optimum receiver (eq. 1), completing
the squares of SSD gives two times the inner
product of R(i, j) and S subtracted from the sum of



squares of the template and neighborhood. Cross-
correlation is an inner product at each pixel. A
square root of sum of squares is a measure of the
energy of a signal. Thus we can write:

SSD(i, j)  = E
2
R(i, j)  + E

2
S – 2 SR(i, j)   (2)

where :

SR(i, j)  =  ∑
m=0

M
   ∑

n=0

N
 S(m, n) R(i+m,j+n)   (3)

E
2
R(i, j)  = ∑

m=0

M
  ∑

n=0

N
 R(i+m,j+n)2 (4)

and

E
2
S =   ∑

m=0

M
  ∑

n=0

N
 S(m, n)2 (5)

The term  E
2
S  is the energy of the message template

and E
2
R(i, j) is the energy of the N x M image

neighborhood located at position (i, j).

2.3  The Signal Basis Space

Patterns in images are corrupted by many non-
Gaussian and non-additive phenomena. The
sensitivity to non-Gaussian noise can be minimized
by transforming the received signal to a signal space
which is (relatively) invariant to the noise. As an
example, consider the case of a change in the
direction of light source. Beyond the additive and
multiplicative effects of gray-level, which can be
corrected by normalising the energy, light source
direction also changes the appearance (or gray level
pattern) in the image. To overcome this effect, many
computer vision techniques use discrete
approximations of derivatives of the image.

For a discrete signal, a true derivative can only be
computed by convolution with an infinite length
filter. However, it is quite adequate to approximate
derivatives with discrete differences, provided that the
image has been suitably smoothed. The first-order
difference for a row of an image is equivalent to a
small filter of the form [1 0 –1] or the form [1 –1].
The form [1 0 –1] is less sensitive to high frequency
noise. It also makes it possible to define a basis
space with is orthogonal to both a  second derivative
computed by [1  –2  1] a 3 point average [1  1  1].
Thus we define our first difference filters as :

∆i =    1 0 -1    ∆j =   
 1
 0
–1

For a suitably smoothed image, p(i, j), these filters
provide a discrete approximation to the gradient
(Chehikian and Crowley 91) of the form:

∇ p(i, j)  =    [ ]∆i * p(i,j)
∆j * p(i,j)

The Gradient magnitude, ||∇ p(i, j) || computed as
the square root of the sum of the squares, provides
an approximation to the first derivative which is
relatively invariant to rotation.

A number of researchers have asserted that the
Laplacian provides a basis space in which signals
may be represented with greater precision and has a
relative invariance to changes in lighting which is
superior to the derivative. The Laplacian is a sum of
second derivatives and thus requires only one filter.

A discrete second difference which is orthogonal to
the first order difference filter shown above is given
by the filter:

∆2i = 1 –2 1 .

Approximations to the discrete Laplacian are as old
as computer vision. Chehikian (Chehikian and
Crowley 91) has shown analytically that weighted
sums of the second order difference at different angles
provides excellent rotation invariance.

∇2 = 
 -1  -2  -1
 -2   12 -2
 -1  -2  - 1

 

So, should one match the image, the gradient
magnitude or the Laplacian? The answer depends on
the nature of the signal and the requirements of the
task. In the frequency domain, an ideal first
derivative grows linearly with higher frequency,
while a second derivative grows quadratically. Thus a
correlation of first derivatives should have a more
precise peak than a correlation of raw images, but be
more sensitive to high frequency noise, such as the
noise caused by aliasing in the digitizer. A second
derivative doubles the effect. The gradient magnitude
approximation presented above is in fact a band-pass
filter, that tapers monotonically to zero at the
Nyquist frequency. As a result, it is very well suited
to suppress aliasing noise. The Laplacian filter
shown above is a high pass filter. The choice of
basis depends on the noise characteristics of the
signals and the precision and stability requirements



of the task.

3. Normalisation Techniques

The existence of low cost correlation hardware
makes cross-correlation a very attractive operation.
Section 2 showed that the SSD of a template and an
image neighborhood could be replaced by cross-
correlation, provided that both the template and the
image neighborhood are suitably normalized.  This
section compares common normalisation techniques.

3.1 Normalized Cross Correlation

The most direct normalisation is to divide each inner
product by the square root of the energy of the
template and the neighborhood. Mathematically, this
can be expressed as

NCC(i, j) =
 SR(i, j)

 √E
2
R (i, j) . E

2
S   

(6)

The template can be normalised before starting the
correlation. A simple algorithm exists to compute
the energy within an N by M neighborhood at each
pixel, based on a fast algorithm for computing the
sum of a rectangular neighborhood. The cost of this
algorithm is independent of the size of the template,

and requires 1 multiply, 4 additions and 1 square root
per pixel of the search neighborhood. However,
most experimenters consider that individually
normalising each image neighborhood is too costly,
and design an approximation. For example, it is not
unusual to see the energy of a neighborhood replaced
by the global energy of the image.

3.2 Zero Mean Normalized Cross
Correlation

With zero mean cross correlation, the mean is
subtracted from both the template and the image
neighborhood before computing either the inner
product or the neighborhood energy. The mean of
the template, µS, and of the image neighborhood
µR(i, j) are given by:

µS   = 
1

M.N
   ∑

m=0

M
   ∑

n=0

N
 S(m,n)  

µR(i, j)  = 
1

M.N
   ∑

m=0

M
   ∑

n=0

N
 R(m+i,n+j)  

This gives the formula, ZNCC, shown in equation 6
(Shown below because of the two column layout
required by the conference).

                                                                                                                                                               

ZNCC(i, j)  = 

  ∑
m=0

M
   ∑

n=0

N
 (S(i, j)–µS) (R(i+m,j+n)–µR(i, j)) 

 √∑
m=0

M
  ∑

n=0

N
 (R(i+m,j+n)–µR(i, j))2 . ∑

m=0

M
  ∑

n=0

N
 (S(m, n)–µS)2  

(6)

MOR(i, j)  = 

  ∑
m=0

M
   ∑

n=0

N
 (R(i+m,j+n)–µR(i, j)) (S(m, n)–µS)

 ∑
m=0

M
  ∑

n=0

N
 (R(i+m,j+n)–µR(i, j))2 + ∑

m=0

M
  ∑

n=0

N
 (S(m, n)–µS)2 

 (7)

FUA(i, j)  = 

  ∑
m=0

M
   ∑

n=0

N
 ((R(i+m, j+n)–µR(i, j)) – (S(m,n)–µS))2

 ∑
m=0

M
  ∑

n=0

N
 (R(i+m,j+n)–µR(i, j))2 + ∑

m=0

M
  ∑

n=0

N
 (S(m, n)–µS)2 

 (8)



                                                                                                                                                      



4. Experimental Comparisons

The choice of basis set and normalisation depends on
the sharpness of the peak required, the stability of
the peak in the presence of perturbations, and the
kinds of noise which are embedded in the signal.
This section compares different forms of correlations
in the presence of changes in lighting, additive
Gaussian noise, and salt and pepper noise. For each
noise source the response of the correlation of the
raw image, the gradient magnitude and the Laplacian
are presented as a function of the parameter of the
noise.

4.1 Change of Light Level.

Accommodating changes in ambient light is one of
the most fundamental requirements for any computer
vision system. To test the sensitivity to light
changes, a sequence of 7 images of size 256 by 256
were acquired of a person standing in the laboratory
with a background of desk, tables and chairs while
the light level was adjusted with the rheostat of a
halogen lamp. The average gray level of the images
were (229, 209, 183, 154, 124, 94, 65). The 4th
image (avg 154) was selected as a template and
compared to the other images using SSD. The
results are summarized in table 1.

No. SSD of SSD of SSD of
Image Gradient Laplacian

1 17231548 1209662 2464934
2 8502748 379890 805602
3 2155414 94139 184864
4 0 82918 150133
5 2160000 82918 150133
6 8640000 82918 150133
7 19360516 86654 174786
Table 1. SSD of image, gradient and Laplacian as

a function of change in gray level.

The results shown in Table 1 are displayed in a more
synthetic manner by the graph in figure 3. As one
would expect, the SSD of the gradient and Laplacian
are relatively immune to changes in lighting, while
the correlation of the raw image signal is quite
sensitive.
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Figure 3. SSD of Image, Gradient and Laplacian
as a function of light level.
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Figure 4.Results of Normalized Cross-Correlation
(NCC) as a function of light level.
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Figure 5. Results of ZNCC as a function of light
intensity.

The same images are used to compare NCC in figure
4, and ZNCC in figure 5. All measures except the
SSD of the raw image appear to be relatively stable
with regards to a change in ambient light intensity.
The SSD of the Gradient and Laplacian, and the
ZNCC of the image appeared to exhibit the most
stability.



4.2 Additive Gaussian Noise.

This second experiment tests the sensitivity of the
different match measures to additive Gausian noise.
An image was successively corrupted with additive
Gaussian noise with a standard deviation varying
from 0 to 0.7 in steps of 0.1.  The SSD of original
image and its corrupted copy were correlated using
SSD (figure 6), NCC (Figure 7) and ZNCC (figure
8).
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Figure 6. Results of SSD as a function of standard
deviation of additive Gaussian Noise.
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Figure 7. Results of NCC as a function of
standard deviation of additive Gaussian Noise.
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Figure 8. Results of ZNCC as a function of
standard deviation of additive Gaussian Noise.

4.3 Salt and Pepper Noise.

Images are sometimes corrupted by "replacement"
noise. In such a case, a random value replaces the
value of a pixel. A common model for such noise is
"Salt and Pepper" noise, in which some percentage
of the pixels are randomly replaced by white (255) or
black (0) pixels. Figures 9, 10 and 11 show SSD,
NCC and ZNCC as a function of number of pixels
modified by "Salt and Pepper" noise.
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Figure 9. SSD with Salt and Pepper noise as a
function of percent pixels.
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Figure 10. NCC with Salt and Pepper noise as a
function of percent pixels.
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Figure 11. ZNCC with Salt and Pepper noise as
a function of percent of pixels changed.



5 Conclusions

The appropriate choice of basis set and
normalisation are determined by the task. None-the-
less, the analysis and experiments permit us to make
the following observations. In general, SSD
provides a more stable result than NCC or ZNCC.
For the sources of noise in these tests, the SSD of
the gradient usually provides the most stable result.
When SSD must be replaced by a correlation, it is
generally preferable to use the NCC of the gradient.
In general, NCC seems to provide a more stable
detection than ZNCC (and is also less costly)
although, we feel that this last conclusion must be
the subject of further experiments. Furthermore, the
gradient provides a more stable result than the
Laplacian.
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