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Abstract. Despite great promise of vision-based user interfaces, com-
mercial employment of such systems remains marginal. Most vision-
based interactive systems are one-time, “proof of concept” prototypes
that demonstrate the interest of a particular image treatment applied to
interaction. In general, vision systems require tedious parameter tuning,
both during setup and later on-line, to accommodate for changing con-
ditions, thus are difficult to handle by non-experts in computer vision.
We present a pragmatic, developer-centric, service-oriented framework
for vision-based interactive systems. Our approach aims to allow devel-
opers unfamiliar with vision to use it as interaction modality. To achieve
this goal, we address specific developer- and interaction-centric require-
ments during the design of our system. An implementation of standard
GUI widgets (buttons and sliders) based on computer vision validates
our approach.

1 Introduction

It is well established that computer vision is a rich source of information that
can be used for user input in interactive systems. Numerous examples from the
literature illustrate the diversity of application domains and interaction styles
created using vision as input modality [9,5,10,13,2,11,6]. Yet, there are surpris-
ingly few examples of commercially available vision-based interactive systems.

Human-computer interface (HCI) designers and developers are used to hard-
ware-based input devices that provide data “out of the box” without any off-line
or on-line setup. In contrast, vision-based input systems can only be integrated
by HCI developers with great difficulty: they require vision expertise for setup,
as well as execution conditions incompatible with typical HCI requirements.
Indeed, most current computer vision systems do not just work.

We believe that to popularize vision-based interfaces, computer vision sys-
tems must be made more developer-friendly and user-friendly. To accomplish
this, it is necessary that vision system developers adopt a different perspec-
tive. In this paper, we present an approach to vision system design that aims
at minimizing the difficulties related to the deployment of vision-based interac-
tive systems by: (a) encapsulating vision components in isolated services, (b)
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imposing these services to meet specific usability requirements, and (c) limit-
ing communications between the services and the interactive applications to a
minimum. We describe our approach in section 3.

In section 4, we design a system for vision-based interactive widgets for aug-
mented surfaces, and propose a breakdown into atomic services. In this context,
we identify the necessary information exchange between services and with the
application. Meeting the requirements detailed in section 3 influences the choices
of the image processing algorithms used; in particular, they require little or no
setup and tuning and feature usability-grade latency. Our implementation is
robust to light changes and is moderate in CPU usage.

Finally, in section 5 we detail an implementation of a simple vision-based
calculator built using the described vision system.

2 Related work

Much work has been done in vision-based gesture recognition and novel interac-
tion styles research, but the problem of integrating vision to standard develop-
ment gained some interest only recently.

In [7] Kjeldsen et al. presents an architecture for dynamically reconfigurable
vision-based user interfaces (VB-UIs). They propose to separate the application
from the vision engine. The core application controls the vision engine by send-
ing XML messages specifying the current interface configuration. The interface
is composed of interaction widgets defined at the level of functional core by
their function and position in the interface. As users actuate widgets, the image
processing engine sends messages that correspond to interaction events to the
application’s functional core.

The modular decomposition of vision components, as well as the separa-
tion of image treatment from the functional core of applications are important
steps toward “developer-usable” VB-UI components. However, in the presented
approach the VB-UI requires its developer to define sets of parameters and cali-
bration data for the vision treatment engine for each interface configuration and
location. Setting parameters for particular conditions allows fine tuning of the
vision system. On the other hand, it requires the user of the vision system to
understand the underlying image processing algorithms, which is contradictory
with the idea of VB-UI deployment by developers unfamiliar with vision.

In [12] Ye et al. present a framework for vision-based interactive components
design. Both Kjeldsen et al. and Ye propose to analyze camera input only in
regions of interest around interactive “zones” of the interface, thus making the
vision engine more economic in CPU usage. However Ye et al. go a step further,
and instead of applying one vision algorithm per widget type, they propose to
use a set of different detection techniques to obtain visual events called Visual In-
terface Cues (VIC). Each VIC detector called also selector examines a small part
of the camera image for visual events that can be of different nature, like color,
texture, motion or object geometry. Selectors are structured into hierarchies,
and each selector can trigger one or more other selectors. Interaction events are
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detected based on sequences of selectors output. For instance, a touch sensitive
button uses only motion detection at first. Once motion is detected, a VIC-based
button switches to color-based image segmentation and to segmentation-based
gesture recognition.

While the VIC paradigm presented in [12] is appealing for widget-oriented
interface design, it lacks the analysis of VIC selectors suitability for interactive
systems. Indeed, the VICs framework is presented from an vision-expert perspec-
tive. It does not consider setup and maintenance issues related to each selector
such as threshold setting or lighting requirements. In section 4 we present a VIC-
based implementation of basic interactive widgets that was conceived to respect
the requirements identified in section 3.

Finally, the Papier-Mâché [8] toolkit features a framework for the creation
of multimodal interactive applications, in particular using computer vision. The
toolkit design is based on a detailed user study, and offers and abstract, event-
based model to work with multiple modalities. The vision part allows object
recognition and tracking to be used as application input. While the design seems
to be well-thought from the HCI perspective, it has several architectural short-
comings; in particular typical problems linked to object recognition (such as
the aspect variations due to lighting changes) are not dealt with, and several
thresholds must be set manually, on-line, by the end user.

3 Service-oriented design

Vision-based user interfaces rely on a vision process that extracts high-level,
more abstract information from streams of images. This information is what is
relevant for the interaction task. Except of “proof of concept” demonstrations
created by computer vision researchers, it will be used by interactive application
developers who have little to no expertise in the field. This statement implies that
a vision system which aims to be used outside the laboratory must be designed
from a user-centric point of view. In this section, we present how user-centric
requirements influence both the structure of a VB system and its application
programming interface (API).

3.1 Non-functional requirements

Typical user-centric criteria against which an interactive system is evaluated
include overall latency, reliability, autonomy [9]. Here, we shortly describe these
criteria and how they constrain the architecture of vision systems.

Latency. Interactive systems always place a constraint on latency. For user input
systems it is measured as the time between the user action and the notification
of the application. Typically, when using a vision-based (VB) finger tracker or
a mouse to drag projected objects on a surface, the latency must be under 50
ms to optimize usability. On the other hand, for a system that monitors the
number of persons present in a room, a latency of 1 second will be acceptable.
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In consequence, a general architecture for vision services must be able to vehicle
information to the application within the strictest latency limits.

Autonomy. Vision-based systems usually require operator intervention for initial
setup and maintenance. While acceptable in a lab setting, this is poorly suited
for deployment. Though it is difficult to enforce for vision systems, we propose to
prevent vision system developers from offering a maintenance API, thus making
them devise automatic maintenance solutions.

Reliability. In some cases, information needs to be reliably conveyed between
the input system and the application. For instance, an application that receives
events when a person enters or exits an augmented room cannot afford to “miss”
an event since its state would become incoherent. On the other hand, it is ac-
ceptable to lose some events from a tracking system, as the interaction will
deteriorate, but not break. Conversely, our architecture will need to feature a
reliable transport for interactive events.

3.2 Functional requirements

We propose a number of (developer-centric) requirements our system must meet
in order to successfully address its target audience, these are: abstraction, isola-
tion, and contract. Together they form the notion of a service.

Abstraction. To HCI developers, “abstracting the input [is] the most time con-
suming and challenging piece of application development” [8]. Since we assume
the user of our vision system (the application developer) has no vision expertise,
vision-specific information should not be made visible. Even though coupling
processing results with a confidence factor might be richer, this information
cannot be processed by non-experts, and thus is irrelevant. For instance, optical
mice use normalized cross-correlation to determine the direction and speed of the
movement. As long as the correlation coefficient is above a threshold they send
positional data to the computer, otherwise they remain silent. The correlation
coefficient is not sent to the system.

Besides, UI developers need to be walled off how the user input reaches the
application. They focus on the interface and interaction, and they are agnostic
about the input system; to them there should be no difference if the user realizes
a pointing task by manipulating a mouse, moving their fingertips, or waving a
laser pointer.

Consequently, the API of a VB input system for interaction should (a) render
the vision aspects invisible, and (b) generalize the input used for a given task.

Isolation. Input subsystems like a VB-UI may need to be used by multiple appli-
cations, possibly running on different machines – for performance or geographic
reasons. Since “a particular piece of input can be used for many different types
of output” [8], information generated by a vision system must be shareable, and
both remotely and locally accessible. Moreover, any input system for interaction
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should be easily extensible (for instance using output adapters, aggregators, or
supervisor patterns) and embeddable in other services or in applications. De-
signing a VB input system as a federation of “black box” components therefore
appears to be adequate.

Contract. Developers of toolkits or input devices usually establish a contract
with the UI developer, in terms of HCI-centric, non-functional criteria. For in-
stance, for positional or tracking input (mice, trackpads, laser trackers, etc.), the
relevant criteria are latency, precision, robustness, and autonomy.

– latency is implicitly under a usability threshold for standard tracking input
devices (the textbook value is around 50 ms);

– precision is also implicitly defined for a mouse/trackpad (under 1 display
pixel, scaled with respect to the device gain)

– robustness is generally “absolute”. In other words the device or system either
works or doesn’t. For instance an optical mouse “just works” as long as used
on an adequate surface, and stops emitting positional events as soon as the
contact stops.

– autonomy, or the lack of setup and maintenance, is also tacit for traditional
devices.

In the case of VB input systems, these criteria are difficult to meet. Therefore
it is the role of the system designer to explicitly state in contract form the
limitations with respect to these criteria. For instance, the system should notify
the end-user application about robustness-related failures rather than provide
incorrect or distorted information along with a (low) confidence factor. This
corresponds to a binary quality of service evaluation and requires the system to
perform introspection.

3.3 A pragmatic approach

Our approach is to generally isolate as much as possible the VB input system
from the application that uses it, and minimize the communications between
them. We propose to encapsulate the relevant services into independent, black-
box processes that use only serialized communications.

To allow for low latency while preserving reliability, we propose to use tra-
ditional socket-based (TCP and UDP) communications. We use the TCP link
to guarantee the connection between services or with the application, and to al-
low for reliable, high-latency communications, and the UDP link for low-latency
communications. This constitutes the base of the “BIP/1.0” protocol we use
for communications between services (draft specification at shadoo.free.fr/
icvs06/bip-draft.pdf).

System autonomy cannot be enforced at the architectural level. Nevertheless,
not providing support for synchronous communications (thus making it difficult
to implement transactions between the application and a service) limits the
possibility of implementing setup mechanisms where automatic setup can be
devised.

shadoo.free.fr/icvs06/bip-draft.pdf
shadoo.free.fr/icvs06/bip-draft.pdf
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Finally, since the contract offered by a VB input system cannot be expressed
simply as a part of an API, we propose to document it explicitly. This means
that the developer of the system must evaluate it against the criteria presented
above in order to circumscribe conditions of use for the vision system.

4 Basic services for vision-based UI design

To illustrate our service-oriented approach with an implementation, we choose to
study vision systems applied to traditional interfaces. Typically, we investigate
the use of graphical WIMP-like interfaces projected on surfaces of mundane
objects. We assume that users are free to interact with projected images without
wearing markers or actuating any hardware.

We break down our VB input system into three services: the widget ser-
vice, which the client will interoperate with; the image capture service, which
abstracts the camera, allowing it to be used by other systems eventually; and
the calibration service, which establishes the geometrical mapping between the
camera view and the display.

4.1 Simple Pattern Occlusion Detectors

In [3] we presented an appearance-based implementation of touch sensitive pro-
jected buttons which we called “Sensitive widgets”. The presence of an object
over a button on the interaction surface was detected by observing the change
of perceived luminance over the button center area with respect to a reference
area. By defining the reference area around the central-one, the button is made
robust to complete occlusion, and sensitive to appearance changes made by ob-
long objects. The very simple image treatment allows to run several dozens of
sensitive widgets at camera frame rate (PAL-size images at 25 Hz). Moreover, it
is robust to lighting changes, thus suitable for front-projection setups.

Implementation and evaluation of several interface prototypes based on sen-
sitive widgets demonstrated that, from the user’s perspective, robustness to par-
tial occlusions is also necessary. Indeed, a user pointing at a part of the interface
would likely hover her/his arm over a part of a button, thus triggering it. A
partial, unsatisfactory solution was obtained by deactivating partly occluded
widgets based on the input from widgets placed further away from the user. The
idea of combining inputs from several sensitive widgets led us to re-think the
touch detection approach.

We choose to assemble atomic occlusion detectors, which are to be placed
within and around widgets, in a way allowing to distinguish some simple oc-
clusion patterns. The geometry of the detectors (called “striplets”) is simplified
to a rectangular strip. These detector federation are used through the SPODs
(Simple Pattern Occlusion Detectors) service. The SPOD service is internally
divided into two separated layers: the image treatment layer called the Striplet
Engine (SE), in charge of image processing, and the Vision Events Interpreta-
tion Layer (VEIL), in charge of input abstraction. Both of them were designed
to meet the requirements described in section 3.
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Striplets are defined as sensitive patches on the interface. Their response is cal-
culated as the integral of the perceived luminance multiplied by a gain function
over the surface of the striplet. The gain function has to be chosen so that the
integral equals zero when the luminance over the whole striplet is constant. In
current implementation the gain function is a symmetric step function with pos-
itive value over the central part of the striplet and negative value at both ends
of the striplet (Figure 1a).

Striplets are designed to detect occlusion by oblong objects. Each striplet is
40 millimeters long and 10 millimeters wide on the projected interface. These di-
mensions are chosen to ensure a maximal response to occlusions made by finger-
sized objects occluding the striplet’s central area. Occlusions of any extremity
of a striplet are intentionally ignored.

The camera coordinates of a striplet are calculated based on its position in
the interface as given by the VEIL service and the camera-interface mapping.
The event trigger threshold, on the other hand, is estimated individually for
each striplet by the SE without any control from the client application. It is
dynamically set to half of the maximal positive response of a striplet during
interaction. The only assumption is that fingers contrast with the interface,
which is true in most setups.

The VEIL is the “brain” of the SPOD service. It (a) translates widgets coordi-
nates defined by the client application to a set of striplets coordinates, and (b)
analyses the occlusion events generated by the SE and issues interaction events
when appropriate.

Currently two types of interactive widgets are implemented: touch buttons
and sliders. This allows to build simple WIMP-like user interfaces. The button
widget is composed of six striplets assembled: two crossed in the center and four
other surrounding the button center (Figure 1b). Touch events are issued only
if occlusion is detected by at least one of the center striplets and no more than
one surrounding striplets. Sliders are simply obtained by assembling multiple
partially overlapping buttons.

x

1

−1

x

y

gain

Finger

Projected button

Stripltes sending
occlusion event

Fig. 1. (a) Striplet gain function. (b) Button widget made of 6 striplets.
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Since monocular vision systems cannot detect when a finger actually touches
the interface, interaction events are generated only after detecting a short pause
of the finger over a widget. The dwelling period, set to 250 ms, corresponds to the
button-down event for mouse-based interaction. To move a slider, the user has to
first “press” it and then drag it. This is coherent with existing WIMP interface
behavior. In contrast, the dragging task requires 2D movement coordination from
the user. If user’s finger exits the SPOD slider area, dragging is stopped.

By ensembling striplet detectors in more sophisticated way, it is also possi-
ble to develop different types of interactive widgets, for instance crossing-based
menus [1]. An extreme would be to cover the whole interface surface with SPOD-
button-like structures, thus making a SPOD-based finger tracker.

Service API. The SPOD service requires the client application to specify the
position of each interactive widget in a normalized coordinate frame of the in-
terface. Additionally, the SPOD service needs to know the mapping between the
camera view and the interface, as well as a rough estimate of the number of pix-
els per unit length of the interface in the scene. Both the mapping and the scale,
are provided by a calibration service (discussed below). The communication be-
tween SPOD service and calibration service is invisible to the client application.
The SPOD service exclusively sends to the client application a stream of interac-
tion events. All communication occurs via TCP/IP connections, using the BIP
protocol described in section 3.3.

Inter-layer API. Both the SE and the VEIL are implemented as independent
services, running in independent processes. Their communication also is asyn-
chronous and event-driven, using BIP. The VEIL sends coordinates of all striplets
to the SE, for an interface configuration together with the interface-camera map-
ping matrix. The SE layer sends state-change events that result from user inter-
action with the system.

Contract for the SPOD service. The initial SPOD service implementation can
handle up to 300 striplets at camera frame rate (30 Hz) with images of 320x240
pixels size on a 2.8 GHz Pentium IV processor. In terms of widgets, this means
the system can handle roughly 50 SPOD buttons simultaneously. Since actuating
buttons is not close coupled interaction the latency is less of an issue. In fact,
the VEIL makes the distinction between accidental occlusions and intentional
actions based on a dwell time. On the other hand, the SE service is implemented
to minimize latency.

Striplets only provide coarse resolution for finger positions. The resolution
can be enhanced by averaging the position of several striplets detecting the same
finger. Our implementation of a slider widget achieves a resolution of about 5
millimeters.

The SPOD service is made autonomous (i.e. exept for the UI-camera mapping
and scale there are no parameters to set), at the expense of robustness to certain
condition changes. In particular, the SE layer would fail to detect occlusion from
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a finger on a dark background, it would also fail if the image contrast decreases
due to a change in camera setting.

While the SPOD service was designed to respect the developer-centric re-
quirements, it does not fully meet user-centric requirements. In particular, the
simplistic automatic threshold estimation results in occasional false positive
touch detections. However, the SPOD service can be described within the Visual
Interface Cues (VICs) framework [12], with local luminance changes as the only
visual cue. Using an similar approach for spacio-temporal gesture recognition
like in [12], we can hope to alleviate the need of setting an occlusion threshold.
Instead the set of striplet responses would be fed to a neural network based
VEIL.

4.2 Support Services

Calibration consists in the geometrical coupling of the camera view (what the
vision system percieves) and the displayed interface (what the application de-
veloper controls). The calibration service clients needs to access the mapping
information to transform vision information (e.g. positions in camera coordi-
nates) into application-relevant data (e.g. positions in display coordinates). This
is achieved by providing the associated projective transformation in matrix form.
Since the calibration service needs information both from the camera and the
application, two approaches are possible: (a) If it controls the graphical output,
it can work without interaction with the application. This is the case in the PDS
example [3], where the interactive surface itself is tracked by the service. (b) In
the general case, it must negotiate with the client application the display of a
calibration grid [9].

Image acquisition service creates an abstraction of the camera. It allows concur-
rent access to the camera by multiple services. In our case, both the calibration
service and the SE require access to the image stream. Low latency video sharing
is implemented using shared memory buffers.

5 Application

Using the widget implementation described above, we have implemented a sim-
ple calculator application. The calculator interface can be projected and ma-
nipulated directly with fingers on the top of a desk. It allows to perform basic
calculations like addition, subtraction, division and multiplication. Numbers can
be either typed on the calculator keyboard or chosen from the history buffer con-
taining results of previous operations. The history buffer can be browsed using
a slider on the left side of the calculator.

An informal evaluation of the calculator application, made by volunteers
from our laboratory, showed that SPOD-widgets are easy to use and allow
fast interface prototyping. A video showing the application working is available
on http://www-prima.inrialpes.fr/prima/pub/Publications/2005/BL05/
demo-spods.avi

http://www-prima.inrialpes.fr/prima/pub/Publications/2005/BL05/demo-spods.avi
http://www-prima.inrialpes.fr/prima/pub/Publications/2005/BL05/demo-spods.avi
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6 Conclusions

This paper presents a developer oriented design approach for vision-based inter-
active systems. Inspired by [7], we decompose the vision-based applications to
isolated processes of vision components and functional core of the application.
The implementation of the vision-components draws on the VICs framework
presented by Ye et. al in [12]. We believe that extending these two design ap-
proaches by an HCI-centric requirements analysis allows to build vision systems
that can be used for interactive systems designed by developers unfamiliar with
vision. Following the guidelines of the developer-centric requirements analysis we
implemented vision-based interactive widgets - buttons and sliders. We illustrate
the feasibility of our approach with an implementation of a simple calculator for
projection-augmented surfaces.
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