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Abstract in rapid processing at or close to video frame rates. There-
fore, we employ simple algorithms that perform very rapid

We introduce a modular tracker architecture that combines target detection. Severalftérent such algorithms can be
the advantages of several simple and rapidly performing used without loss of processing speed if more than one CPU
tracking algorithms. Robust tracking is facilitated byrina- is available. This modular architecture permits the saect
rate or near-frame-rate processing. A Kalman filter is used of complementary algorithms to balance their respective ad
to integrate tracking results across detection modules andvantages and drawbacks. Our architecture combines the fol-
over time. Processing regions are smoothly localized by lowing features:
weighting with a Gaussian that is dimensioned according to
the target sizes and uncertainties estimated by the Kalman e rapid processing (typically at video frame rate) and au-
filter. From this Gaussian mask, Gaussian approximations tomatic adaptation to varying processing rates,
of known nearby targets are subtracted to allow individual e several complementary tracking algorithms,
tracking of interacting targets, that can be merged andtspli e recursive estimation of the target position and size,
based on Mahalanobis distances and a robust version of e adaptive outlier rejection during pixel-level detection
connected components. The result is an adaptive tracker and during estimation,
that can robustly track at video frame rates several targets e adaptive parameterization that allows tradirfijtone,

each of which corresponds to one or more individual ob- precision, and the number of targets simultaneously
jects. lIts performance degrades gracefully with increased tracked, and
system load. e use of color to take advantage of chromatic contrast,

that often exists even where intensity gradients vanish.

1. Introduction .

The system attempts to track each moving (or temporar-

A minimal requirement of semi-automatic video surveil- ily stationary) object as an individual target. Targetsttha

lance systems is the capability of tracking multiple otgect come very close to each other are merged. If a target sep-
or groups of objects in the presence of background noisearates into spatially distinct objects, it is split into thay-
and lighting variations. Various tracking algorithms have gets. In this way, interacting objects can be tracked [8, 7].
been published that fiier in their respective strengths and As a result, the system is robust to certain scene and system
weaknesses [8, 11, 4, 6]. These systems show that robustparameters such as the number and proximity of moving
ness to illumination changes can be substantially boldtere objects and the video processing frame rates.
if detailed information is available about the scene and the
objects of interest, such as 3-D scene geometry, object,size 2. Architecture

velocities, shapes, modes of their interaction, etc. Qigi _ _ . o
robustness in the absence of a-priori information is a much 1 e architecture of the tracking systemis shown in Figure 1.
greater challenge. Arrows indicate data flow. A video source provides a live

In this paper, we introduce a simple and flexible archi- video stream by writing frames into biers where they are

tecture that is designed for general scenarios and uses Ver§,\ccessed bY thefde'tecltlon modélesﬁ ‘é\'h'le ?"O'd'”g l]lnnec-
limited task-specific information. We adopt the viewpoint essary copying of pixel arrays. Each detection module im-

that a key to achieving robustness in general scenarios "espleme_nts a Specific fracking al_gonthm. Since they are mu-
tually independent, the detection modules can be executed

This work has been sponsored by Project IST-1999-10808 RISASE. in parallel, and can in principle operate atfdrent frame
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Figure 1: Architecture of the robust multi-modal trackerdaexamples of possible extensions (shown in light bluejckh
arrows indicate flow of pixel data, and thin arrows parancedta.

rates. Additional detection modules can be implemented as3. Detection M odules
desired.

The results of individual detection modules are inte-
grated by a recursive estimator. A supervisor performs
high-level control and analysis at the symbolic level. The
supervisor maintains a list) of currently known targets.
For each frame, the following procedure is performed:

The purpose of a detection module is to measure the current
location and sizel of a target in the current image, given
its estimated location and siZie The target descriptiod is
given in terms of a Gaussian estimate of the spatial extent of
a target, and thus contains the pixel coordinates of thetarg

center along with three spatial covariance parameters:
1. The supervisor handi$ over to the recursive estimator.
. . ':I = [f(, 9’ &XX’ &XY’ a'yy]T (2)
(a) The recursive estimator passes a copgf each
targetu € U to each detection module. Each The detection module looks for the target inside a Gaus-
detection module asynchronously updates its in- sian region of interest reflecting the uncertainty about the

stances according to its algorithm. current estimate of the target:
(b) The recursive estimator obtains an updated tar- s e )
getu from a detection module, and recursively ROIU) = G(X; pu, Zy) = €727 2

updates its estimate of the target parameters: where the mean vectoy, = [%, §]T is simply the predicted

u « updateq, u’) Q) location of target in the current image, provided by the
) ] ) recursive estimator. The spatial covariantereflects the
This step is repeated until all targets have been g, of the target, as well as the uncertainty about the otirre
processed. target location and size:

(c) The recursive estimator asks a designated detec-
tion module to generate a libkyey Of Nnew targets S| O Txy | ap| Bxxt Qo 0 3)
(which may be empty). Oxy Oyy 0 Qyy + Qoryy

(d) The recursive estimator returbls— U U Upey to

: The first term is the current spatial extent of the target, and
the supervisor.

the second term specifies the growing uncertainty about the

2. The supervisor examines the listof targets in order ~ location G« andqy,) and spatial extent,, andq,) of
to remove expired or SpriOUS targets, perform Sp"ts the target. All these values are prOV|ded by the recursive
and merges, and to generate any associated events igstimator. Proportionally to the elapsed video frame time,
so desired by the application context. It may also call the ROl grows into an increasingly axis-parallel ellipse de
upon other modules, e.g. a face recognizer. Such aux-Scribed by the second term in Equation 3 that specifies the
iliary modules may also access the video source andestimator’s idea of possible horizontal and vertical tavge
may trigger events. locities and growth, without bias toward a diagonal slant.



For dficiency, the Gaussian ROl is cuff@t a reason- premgu @
able size, e.g. at a radius of-zhorizontally and vertically. <—|
Within this area, the detection module producedegec-
tion image Dthat encodes, for each pixel, the probability C#Z%"QD @ @ @ Dmgigo;mstory

(or a pseudo-probability) of that pixel being part of the tar

get. The diference between detection modules lies in the

method of computind; other than that, all detection mod- Figure 2: Computing a motion-history image.
ules within our framework are identical.

The detection imagB is multiplied by a mask, that, for ~ The performance of backgroundfidirence detectors de-
the moment, is simply the Gaussian ROI, and is then thresh-pends crucially on the accuracy of the background repre-
olded to yield a binary image representing the target: sentationB. Therefore, the background is updated using a

weighted average

Bt =al + (1—&’)Bt7m,

excluding regions that belong to tracked targets.

The threshold is easily adjusted for each detection module For reasons of computationaffieiency, we chose this
by visual inspection ob, and can in principle be computed  simplistic background model. For increased robustness in
probabilistically by collecting statistics dd in non-target  combination with high sensitivity, one can model the back-
image regions, or, in a Bayes-optimal way, using hand- ground as pixel-wise Gaussian distributions [11] or mix-
selected regions representing target and non-targetmegio tures of Gaussians [3].

The measurement of the target parameters =
[X. Y, 0x Txys o] T is then formed by computing the spa-  3.2. Motion-History Detection

tial means and covariances of the pixel coordinates, maskeq_ike background-derencing, the motion-history image [2]
by the pixel valugs of the t-)marlzed. deteguon |me§ye has also become a standard technique in computer vision.
The thresholding step in Equation 5 is not strictly nec- tpe gpiective here is to increase the robustness of simple
essary; in principle, the spatial Gaussian approximations pange detection between consecutive frames by represent-
can be computed by weighting each pixel by its value in g g history of change that decays over time. The algorithm
D7 = D x MASK(u) [9]. However, itis not generally clear s jystrated in Figure 2. Wherever a change exceeding a
that a high pixel value irD should have a high influence i, eqhoidm is detected between the current frame and the
on the target parameters, and vice versa. In general, if ayre\ious frame (computed using Equation 6) within the cur-
spatially coherent collection of pixels b have marginally gy ROI, the corresponding pixels in the motion-history im
higher values than would be expected if no target is present,ageD are set to the maximum intensity valgeay. Before
then the collective evidence in favor of a target is high de- processing a new frame, the entire motion-history image is

spite the relatively low pixel values. Thigfect is achieved decayed by multiplying each pixel value with a fadtor 1:
by thresholding the detection image. In fact, we have found

MASK (u)
D/

ROI(u) (4)
threshD x MASK(u),t)  (5)

empirically that a pmanzed detection ma@éusu.ally pro- Dy = max(hDi_at, Gmaxmin (Max(|l; — li_atl — m, 0), 1)
duces more precise and stable target approximations than _ _ o . -
the non-thresholded version. This constitutes a multiplicative version of the additive

At this point, the task of the detection module is done, €chnique introduced by Davis and Bobick [2]. The satura-
and the parameter vectaris passed to the recursive esti- 10N parametem depends on the given imaging conditions.
mator. The following two sections describe the two detec- 't iS €quivalent to the parameteof Equation 5 and can be

tion modules that we used to generate the results describe§h0Sen automatically in the same way, such thatt. The
in Section 5. algorithm is robust to the choice &f as long as it is cho-

sen small enough such that the motion-history image decays

. . fast in relation to the velocity of the tracked targets.
3.1. Background-Difference Detection

The background-dlierence detector maintains an internal 3-3- Complementary Properties
background image Band produces a monochromatic de- The background-dlierence detector performs robustly as
tection imageD using the current frameaccording to the  long as the background remains stationary. It is very sensi-
equation tive to changes of the background that are unrelated tottarge
movement, e.g. changes in illumination direction or inten-
D= min(llred — Bred + |Igreen— Bgree,{ + |lplue — Boiuel » Imaxg. sity. If the lighting changes while a target is being tracked
(6 the current location will become part of the target even if



the object moves elsewhere, because the background is nahg any events that are of interest in the given application
updated within target ROIs. In a typical indoor situation, a context. In the next section, we will describe our method
tracked person sits down, then gets up and leaves the chaifor splitting and merging of targets.

in a different position than it was before. Now the moved

chair differs from the background represented by the detec-4.1. Tr acking Interacting Targets

tor, and thus becomes a part of the tracked target. Using the basic algorithm as described above, targets that

The motion-history detector is resistant to background draw near each other will increasingly overlap. Even if the

han ttendstol tationary targets. Mor n . .
changes, but te ds. 0 lose stationary targets. Vo eovgr, 0 tracked objects move apart again, the two target representa
boundaries of moving regions are detected that are not par-

S . . tions will remain identical. They will continue to track ot
allel to the direction of motion. A backgroundstrence ) :
: objects, and will perhaps lose one of them. Our approach to
detector does not have this problem.

Thus, both of these simple tracking algorithms have their dgahng with such |_nteract|ng tqrgets involves explicitae
tion and suppression or merging of nearby targets. To de-

advantages and drawbacks. As we will discuss further be- . .

: s . tect target overlaps in less thidg,...expected time, each
low, a simple combination of these algorithms allows us to kS| inth g fourth | Ioh
take advantage of the strengths of both target marks its ROl in the unL!sed ourt 1image band (f';\ pha

' channel) of the BGRA-format image delivered by our video

A vanety of other detection algonthms is possible. We source (hence the reverse arrows pointing back to the video
also have implemented a detection module based on color

histograms [10, 9] and one using multidimensional his- source in F|gure 1. . . .
. A : Figure 3 illustrates the central ideas involved in merg-
tograms of chromatic receptive field responses [5], which . - : . o
: : ing and splitting targets. To avoid merging disjoint tasyet
will be described elsewhere. For the PETS data, these modw hose ROIs barely overlap. each tar@eSuppresses its
ules are not helpful as many target objects arefiixgantly y b gesupp

large to create meaningful color statistics neighlborsu’ by §ubtracting thgir_current Kalman est.imates
' from its ROI (Figure 3b). This is done by generating the
4. Recursive Estimator and Supervisor MASK using the following rule in place of Equation 4:
The recursive estimator tracks five parameters of each tar- MASK(u) = ROI(u) - maxG(x; i, Zv) (7)
getu, specifying the position and spatial extent of the target
(Equation 2). It integrates sensor measurements across dewhere the max is taken pixel-wise over all known nearby
tection modules and over time. To perform this fusion, we targets. As a result, most pixels belonging to nearby target
use a conventional first-order Kalman filter [1]. In addition in D (Figure 3c) are suppressed from the weighted detection
to the five target parameters, the Kalman filter estimates theimageD x MASK (Figure 3d). The thresholded version
2-D velocity vector of each target. Compared to a zeroth- of this image is shown in Figure 3e.
order Kalman filter, this increases the precision and rebust  If the Mahalanobis distance between two targets falls be-
ness of target localization while allowing smaller ROl size  low a thresholdmerge the two targets are merged. An ex-
if the processing frame rates are high in relation to the ve- ample is shown in the second column of Figure 3.
locity changes of targets. This condition is easily met for  If several objects tracked by a single target move apart,
the types of objects of interest in surveillance appliaatio  they should be split into separate targets. A natural diird e
The Kalman filter must be parameterized according to cient way to detect spatial discontinuities is the conrabcte
the accuracy of the measurementsuoby each detection components algorithm. We compute connected components
module, and to the expected velocity changes of movingusing the thresholded imad® (Figure 3e). If more than
objects. This can be done by careful calibration using mea-two connected components result, we successively merge
sured data, or simply by rough estimation as the perfor- them in increasing order of pairwise Mahalanobis distance
mance is quite robust to imprecise parameterization. Theuntil two components remain (third column in Figure 3e).
parameters) that occur in Equation 3 with various sub- These are then only merged if their Mahalanobis distance
scripts are precisely those dieients specifying the ex-  falls below a thresholtpiic > tmerge AS a result, we always
pected velocity changes of moving objects. obtain one or two subtargets, indicating whether or not the
The supervisor triggers the acquisition of a new frame, target should be split, in a way that is much more robust
passes targets to the recursive estimator, and retrieees thto discretization artifacts than the conventional coneéct
results. Each target has an associatmufidence factorf a components algorithm.
targetis successfully tracked by one or more detection mod- If two disconnected components result, their individual
ules, the confidence factor is incremented (up to a limit). Gaussian approximations are computed (blue ellipses in the
Otherwise, the confidence factor is decremented. Targetghird column of Figure 3a). If the supervisor encounters a
with zero confidence are eliminated. The supervisor is alsotarget that is composed of two disconnected subtargets, it
responsible for splitting and merging targets, and forrepo  first checks whether one or both of them overlap another
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Figure 3: Merging and splitting targets in PETS Dataset Jltaf@ets tracked in the video (purple: ROI; green: targedlized
by the background-elierence detector; red: Kalman estimate; blue: disconneceghonents; ellipses have a radius of) 2
(b) MASK (Equation 7) corresponding to the white van, (c)e¢ibn imageD, (d) detection imag® xMASK corresponding
to the white van (Equation 5), (e) thresholded detectiorgei (Equation 5), with color-coded connected components.

existing target. If this is the case, then no special action To avoid ambiguities, only one detection module is cur-
needs to be taken, as such an overlapping component isently used for target detection. A maximum of one new
likely to be a residual part of an incompletely suppressed target per trigger region is detected in each frame. This is
neighbor. If, on the other hand, no overlapping targets areensured using the connected-components algorithm as de-
detected, then the target is split into the two separate com-scribed in the previous section. If two subtargets residt, t
ponents, as shown in the fourth column of Figure 3. Note larger one is kept, and the smaller is discarded. If therlatte
that in the figure, the target corresponding to the white van does belong to an actual target object, it will be detected in
already overlaps (and suppresses) the target corresgpndinthe following frame.

to the pedestrians, without interference with the splitfro
the blue car.

We make no attempt at this point to keep track of the
identities of objects across merges and splits. In general,Our tracker delivers bestfiert performance. Naturally, it
this problem s very dficult to solve without genuine recog- performs most robustly at video frame rate. If performance
nition capabilities. However, the ancestral history offeac drops below frame rate (e.g. due to a large number of targets
target is recorded. or otherwise high CPU load), performance degrades grace-
fully. The Kalman filter updates its parameter estimates ac-
. cording to the elapsed video time, and processing ROIs are
4.2. Detecting New Targets scaled proportionally to the spatial uncertainties estada
New targets are detected in designatiégger regionsthat by the Kalman filter. The result is a consistent, beBbé
are placed wherever new target objects may appear. Fotracker that performs robustly over a range of frame rates.
both of the above detection modules, the detection pro- In practice, however, there are limits to the achievable
cedure is exactly the same as the tracking algorithms de-performance. Therefore, the architecture permits to trade
scribed above, except that no MASK is applied. Instead, off processing speed, spatial precision, and the number of
pixels marked in the alpha channel as occupied by a knowntargets tracked. For example, if performance speed drops
target are ignored. below a given minimum processing rate, the supervisor can

4.3. Adapting Parameters



Dataset 1: targets lost Dataset 2: targets lost Dataset 3: targets lost

10 10 20
5 5 %@ 10 :@//
1 2 1 2 4

video motion-history imag®

1 2 4
pixel step p pixel step p pixel step p
Figure 4: Disjoint motion-history regions cause Spurious  paaset 1: spurious splits , ODatasetz; spurious splits  pataset 3: spurious splits
target splits (Sequence 1, frame 881; compare with Fig- 200 -©- bgﬁ_iftf 100
MHIS]
ure 3). 100 20 —— both 50
ol —e —s ol —&——% ol —a o

. 1 2 4 1 2 1 2 4

take countermeasures: pixel step p pixel step p pixel step p

e |t can choose not to track certain targets. Good candi-
dates are targets that are currently stationary.

e Targets can be tracked by only some of the available
detection modules. For example, for stationary targets
a motion-history detector will not produce a reliable the motion-history tracker loses targets that remain sta-
result anyway. tionary for longer than about two seconds. Therefore,

¢ The spatial resolution of pixel-level processing can be the number of lost targets is consistently higher for the
reduced. This is controlled by a run-time parameter motion-history tracker in Figure 5. Secondly, the motion-
p: Instead of processing every pixgd €& 1) within a history tracker performs many more spurious splits than the
ROI, thep parameter sets the detection module to pro- background-dference tracker because its detection images
cess everyth column and everpth row. This allows D tend to consist of many spatially disjoint regions.

Figure 5: Performance statistics. Note that the rangesof th
vertical axes dter greatly.

computing time to be tradediowith scale without any With increasing pixel step paramefgmore targets tend
re-copying of pixels. to be lost. These are typically very small targets that are
hard to detect at reduced resolution. The number of splits,
5. Exper iments however, is naturally reduced at lower resolution.

Most tracking errors made by our system are caused by
We tested our system on the first three PETS test sequencegndetected target splits. As described in Section 4.1, the
(encoded as 25-Hz MPEG-1 files at the original frame for- gpitting algorithm functions reliably as long as the subta
mat) using only the backgroundtBrence detector, only  gets are of similar size, or the smaller subtarget has-su
the motion-history detector, and both of them simultane- cjent contrast. A counterexample is illustrated in Figure 6
ously, using several fferent pixel-step parameteps Un-  ¢ojlected from Dataset 1 using= 2: Here, the person has
less otherwise noted, when both detection modules weregyite low contrast to the background, especially the pants.
run simultaneously, the background¥drence detectorwas  Therefore, the Gaussian approximation of the target is dom-
used to detect new targets and to trigger target splittirlh an jnated almost exclusively by the large, high-contrastaar,
merging because the detection imagesroduced by the  ¢an pe seen in the video frame. As a result, when the person
background-dference detector are much more spatially co- i getached from the car, she has already advanced quite far
herent than those produced by the motion-history detectorjnto the periphery of the Gaussian ROI, where her detection
that is blind to homogeneous regions (Figure 4). In the gyrength is even further depressed (Figure 6, bottom right)
following sections, we will briefly characterize the paHfo  ag g result, she is no longer picked up as a separate compo-

mance of our system on each sequence. nent by the connected-components algorithm (bottom left).
To alleviate this problem for this data set, we used quite ag-
5.1. PETSTest Sequence 1 gressive thresholds for splitting and mergitgefge = V20

Figure 5 summarizes some statistics collected while run-andtspit = 207, as compared thnerge = 20 andtspjit = 30

ning the tracker. They were collected by visual inspection, used in all other experiments). This has the undesired side

and must therefore be taken as subjective and approximategffect that objects moving in parallel are sometimes repeti-

The top row in Figure 5 plots the number of times a target is tively merged and split.

lost, and the bottom row shows the number of times a target If a target no longer detects its object, the target state

is split even though the split does not correspond to actualis updated according to the Kalman prediction. If spurious

objects. In most cases, the children of a spurious split areimage change is picked up in such a situation, the target ap-

re-merged shortly after. pears to wander erratically. Occasionally, it is accekstat
The performance of the three tracker combinations is so that it “flies away”. In this test sequence, sstiay tar-

quite similar, but there are also strikingfiirences: Firstly,  gets occurred between 0 and 2 times; slightly more often



where there are known targets, lighting changes produce ar-
tifacts in the background model that later become part of the
tracked object. This results in a large number of stray tar-
gets, around 10 for the background¥drence tracker. Since
these are supported by rather large quantities in the detec-
tion imageD, actual objects tend to be lost in such regions.
This dfect is responsible for the high target loss rate re-
ported in Figure 5. Due to lighting changes, around 20 spu-
rious new targets were created by the trigger regions.

The motion-history tracker is much lesstected by
gradual lighting changes. In contrast to the background-
difference tracker, any resulting artifacts are transient. In
fact, the motion-history tracker performs better than the
background-dterence tracker, which is in contrast to the
other two test sequences. However, the number of lost tar-
getsis still high due to the complex target interactionsis t
sequence, and relatively many spurious splits are produced

Sequence 3 does not contain any stationary targets.
Therefore, we can combine the advantages of both detection
) ) ) algorithms. When running both of them simultaneously, we
when both detection modules were running simultaneously. ;s the motion-history detector for new-target detection

because of its low sensitivity to gradual lighting changes,
5.2. PETS Test Sequence 2 and the background-fierence detector to trigger splitting
The main problem in Sequence 2 is the presence of a largeand merging. Moreover, the backgroundFelience detec-
occluding bush in the foreground. This bush, as well as tor did not contribute to confidence factors. As a result, the
other plants, move slightly in the wind, pushing our sim- number of stray targets produced by the combined tracker
ple background model and motion detector to their limits. —around 5 — was only slightly higher than for the motion-
To compensate, we used a relatively high threshold on thehistory tracker alone, and they did not persist due to lack
detection of new targets, at the expense of a somewhat in-0f support from the motion-history tracker. As can be seen
creased target loss rate as compared to Sequence 1. Du# Figure 5, the combined tracker outperformed both of the
to less aggressive target splitting, far fewer spuriougtsspl  individual detection modules.
were performed. As in Sequence 1, running both detection
modules simultaneously did not yield any benefits. Due to 5.4. General Remarks
the abundance of tiny objects, we did not run any experi-
ments withp > 2, as performance gt = 2 was already
limited.

Figure 6: Failed split (test sequencefl= 2, frame 589).
Clockwise, the images depict the vidén,D x MASK, and
D'.

Currently, our system can track up to about two targets in a
half-PAL image (384« 288 pixels) at video frame rate (25—
| ¢ luded obiect in picked 30 Hz) on a 600 MHz Dual-Pentium Il usimg= 2. In this

N most cases, occluded ObJects Were again pIcked UBe,5e ahout one-third of the total available CPU time is con-
when they reappeared behind qbstacles, thpugh N SOM& med by the X server to display the live video. Without
cases a tgrget Igtched on to_ an incorrect Ob]e(.:t' To I(eepdisplay, video frame rate is attained usipg 1. In the ex-
ta}rgets alive during the reI_atlver Iong obstruction by the periments reported above, no real-time constraints were ap
big bush, we used a maximum cqnﬂdence factor of 100, plied since the decoding of the MPEG file alone consumes
corresponding to four seconds of video. In all other exper- significant computational resources
iments, we used a maximum confidence factor gf 50 (two To demonstrate the robustness of our tracker with respect
seconds). Due to the high level of background noise andtheto achieved frame rates, we had it process only one of ev-
complex scene dynamics, significantly more stray targets — '

L ry f frames, forf = 1,2, 4, 8,16, on Sequence 1 using the
up to 8 — were encountered in this sequence, as Comparegackground-dference tracker ap = 2. The tracker never
to Sequence 1. .

broke down. All error statistics remained consistently,low
including lost targets, spurious splits, stray targetsl, spu-

5.3. PETS Test Sequence 3 rious new targets. The mairffect is that, at reduced frame
Sequence 3 contained significant changes of backgroundates, targets tend to be split and merged across greater dis
lighting. Without any intensity normalization, this break tances due to increased ROI sizes. In other words, the pre-
our simple background-fference tracker, as can be seen in cision of tracking interacting targets is reduced. Figure 7
Figure 5. Since the background model cannot be updatedllustrates this using a scene from Sequence 1, frame 896,



roughly corresponding to Figure 3. Here= 16, yielding
a processing frame rate of less than 1.6 Hz.

Figure 7: Tracking at reduced frame rate< 16).

A distinguishing feature of our system is the consistent
Gaussian weighting of the detection image (Equation 5).

Robust tracking of multiple interacting targets is achive
at video frame rates using standard hardware. A variety of
pixel-level detection modules are easily integrated. is th
paper, we described two simple such modules (background-
difference and motion-history detectors). We also have
developed a color-histogram detector that computes pixel-
level target probabilities based on two-dimensional joint
chromaticity distributions [10, 9], and a more complex de-
tector based on multidimensional histograms of chromatic
receptive fields computed by Gaussian derivatives on color-
opponent images [5]. In future work, these color-based
modules will play a key role in re-assigning object ideesti
across target merges and splits.

All detection modules share the same method of com-
puting Gaussian approximations of targets. Neighboring
targets are smoothly suppressed at the pixel level by sub-
tracting their parametric representations from the Gaumssi
ROI. Due to the consistent use of Gaussian approximations,
the system is robust to pixel-level artifacts.

Since this computation requires an extra pass over each

ROI, it is worth asking what the practical tradé-@s be-
tween added computation and robustness. To shed som
light on this issue, we ran the tracker without Gaussian
weighting. It turns out that high-contrast peripheral cets,

e.g. due to extended hands or elbows, frequently cause the 2]

ROI to grow considerably larger than with Gaussian weight-
ing, which essentially fisets the computational savings.
Forcing smaller ROIs would make the tracker less robust to
rapidly-accelerating targets. In any case, without Gaumssi
weighting nearby targets tend to merge much more easily
than with Gaussian weighting. We conclude that Gaussian
weighting contributes substantially to the robustnessef t
tracking system, while adding little to the total computa-
tional cost due to its automatic maintenance of appropriate
ROl sizes.

A drawback of the Gaussian weighting is that spfitso
of small and faint subtargets ardfitiult to detect (cf. Sec-
tion 5.1). This requires quite careful calibration of thredt
level detection thresholt of Equation 5, which can — as

noted there — be automated by supervised-learning tech-

niques! The hardest parameters to calibrate are probably
the codficients associated with the Kalman filter, but sys-
tem performance does not depend on their precise choice
In summary, parameterization is not a critical issue.

6. Conclusions

We introduced a modular, flexible architecture for adaptive
tracking over a wide range of frame rates. The algorithm
can trade & processing frame rate and tracking accuracy.

1A more recent version of our system, not discussed in thigpa-
lows the definition of trigger regions around targets. Thikes detection
of asymmetric targets splits much easier, and further imgsdhe robust-
ness of the entire system to parameter choices.
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